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Broad Applications of Al

lwchen Liu / CS8695

“Siri, what is
Deep Learning?”

With thelascendance of Toni MorrisonaGis!literary star, it has become commonplace for critics to
de-racialize her by saying that Morrison is not just a 4GIBlack woman writer,aGL: that she has
moved beyond the limiting confines of race and gender to larger aGluniversalaGL issues. Yet
Morrison, a Nobel laureate with six highly acclaimed novels, bristles at having to choose between
being a writer or a Black woman writer, and willingly accepts critical classification as the latter.

To call her simply a writer denies the!key roles that MorrisonaGls African-American roots and her
Black female perspective have played in her work. For instance, many of MorrisonaGls characters
treat their dreams as aGlreal,4GL: are nonplussed by visitations from dead ancestors, and
generally experience intimate connections with! beings whose existence isnaGLt empirically ver

ifiable. While critics might see MorrisonaGLs|Use of the supernatural as purely a literary device,
Morrison herself explains, 4GIThataGLs simply the way the world was for me and the Black
people I knew.aGL:

Just as her work has given voice to this/littl ked facet of Afri culture, it has
affirmed the unique vantage point of the Black woman. aGII really feel the range of emotion and
perception T have had access to as a Black person and a female person are greater than that of
people who are neither,aGL says Morrison. 4GIMy world did not shrink because I was a Black
female writer. It just got bigger.aGl:
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Al Comes with Risks

Including but not limited to:
» Wrong predictions with malicious input.
> Sensitive data or information leakage.

» Ethics violation.
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Al Comes with Risks

Including but not limited to:

» Wrong predictions with malicious input.

> Sensitive data or information leakage.

» Ethics violation.
Especially when modern Al systems broadly deploy deep neural networks, which are
hard to interpret and like black boxes.

Artificial intelligence is NOT human intelligence!
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Failure Cases of Al
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Failure Cases of Al

Original Text Prediction = Negative. (Confidence = 78.0%)

This movie had terrible acting, terrible plot, and terrible choice of actors. (Leslie Nielsen ...come on!!!)
the one part I considered slightly funny was the battling FBI/CIA agents, but because the audience was
mainly kids they didn’t understand that theme.

Adpversarial Text Prediction = Positive. (Confidence = 59.8%)

This movie had horrific acting, horrific plot, and horrifying choice of actors. (Leslie Nielsen ...come
on!!!) the one part I regarded slightly funny was the battling FBI/CIA agents, but because the audience
was mainly youngsters they didn’t understand that theme.

Table 1: Example of attack results for the sentiment analysis task. Modified words are highlighted in green and
red for the original and adversarial texts, respectively.

Original Text Prediction: Entailment (Confidence = 86%)
Premise: A runner wearing purple strives for the finish line.
Hypothesis: A runner wants to head for the finish line.
Adversarial Text Prediction: Contradiction (Confidence = 43%)
Premise: A runner wearing purple strives for the finish line.
Hypothesis: A racer wants to head for the finish line.
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Failure Cases of Al

Fundoscopy Chest X-ray Dermoscopy

Absent/mild DR Moderate/severe DR Normal Pneumothorax Nevus Melanoma

Clean

PGD
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Failure Cases of Al

sports ball: 80%
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Failure Cases of Al

Opponent =3 Ties=0 Victim =
Adversary (Adv2) Normal (ZooV?2)

The resulting strange sensory observation causes

the to fail to kick the ball, or even fall over.
> MW oans o @& EO0I

Figure: https://www.youtube.com/watch?v=XPFQ9TBvtCE

1

A, Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, S. Russell. “Adversarial Policies: Attacking Deep
Reinforcement Learning”. ICLR 2020.
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Failure Cases of Al

Reconstructed |

Original

Reconstructed

T PR
o BEIEGSSH Y ) EEN

Figure: Dataset reconstruction. 1.

IN. Haim, G. Vardi, G. Yehudai, O. Shamir, M. Irani“Reconstructing Training Data from Trained Neural
Networks”. NeurlPS 2022.
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Failure Cases of Al

Airplanes

Graduation
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Adversarial Examples

+.007 x

. T+
= sign(VzJ(6,x,y)) esign(VoJ (0, ,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure: Image from pytorch.org.

For an Al model f: RM — RS which maps the M-dimensional input x to C categories,
adversarial examples X' are the perturbed input that looks almost the same as x, but
f(x) is quite different from f(x'). Undefended neural network models can be easily
broken by adversarial perturbations!

lmChen Liu / CS8695 6/43


https://pytorch.org/tutorials/beginner/fgsm_tutorial.html

Adversarial Examples

Thresher ) Labrador

» Adversarial perturbations
can be universal!

Flagpole Labrador

Tibetan mastiff

Lycaenid

Balloon aw
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Robust Learning Problem

in Ky fix+ A,
min B,p max L((x+ A,0))
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Robust Learning Problem

in Ky fix+ A,
min B,p max L((x+ A,0))

in By pme fix+ A,
min By.pimax L(Ax+ A,0))

Adversarial attacks.
Adversarial training.
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Robust Learning Problem

in Ky fix+ A,
min B,p max L((x+ A,0))

in Ey.pmax L(f A0 i DI
min Ey.pmax (fx+ ) nmeEx Dgeaéﬁ(f(er A, 6))

Adversarial attacks.
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Robust Learning Problem

nE,
min Fp max L(Ax+ A,0))

m@inExwpgléng L(Ax+ A,0)) nbinEXNpg?é L(fx+ A,0))
Adversarial attacks. Robustness verification.
Adversarial training. Training provably networks.
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Robust Learning Problem

m@in Exp

Empirical robustness.

€

fix+ A
max L(fx+ A, 0))

Verified robustness.

in Ey.pmax L(f A0 i DI
min By pimax (fx+ ) nmeEx Dgggiﬁ(f(er A, 6))

Adversarial attacks.
Adversarial training.

mchen Liu / CS8695

Robustness verification.
Training provably networks.
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Robust Learning Problem

m@in Exp

Empirical robustness.

fix+ A
max L(fx+ A, 0))

Verified robustness.

in Ey.pmax L(f A0 i DI
min By pimax (fx+ ) ngnIEx Dgﬁéﬁ(f(er A, 6))

€

Adversarial attacks.
Adversarial training.

Robustness verification.
Training provably networks.

Verified robust accuracy < “True” robust accuracy < Empirical robust accuracy

@Chen Liu / CS8695
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Outline

Verified Robustness
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Linear Approximation of Deep Neural Networks

Motivation:
1. The decision boundary of deep neural network is complex and nonlinear.
2. The nonlinearity arises from the activation function.

3. Estimating the nonlinear activation function by linear functions can derive the
lower and the upper bound of the network outputs.

mcm Liu / CS8695
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Linear Approximation of Deep Neural Networks

ket me e

1 o

kx + ml

» Given any nonlinear function o(x) with bounded input 1 < x < u, we can introduce one
diagonal matrix D and two vectors m;, my:

Dx+ m; < o(x) < Dx+ my
» Equivalently, Vx:1 < x < u, we have D,m;, ms and dm : m; < m < msy, such that

o(x) =Dx+m

C. Liu, R. Tomioka, V. Cevher. “On Certifying Non-uniform Bounds against Adversarial Attacks.”. ICML
2019.
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Linear Approximation of Deep Neural Networks

» Recall the N-layer neural network.

2D — wz(0) L p() = 1,2,..,N—1 )
20 = o(2) i=2,3,.,N=-1
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Linear Approximation of Deep Neural Networks

» Recall the N-layer neural network.

A w0 4 p0) =12 . N-1

. . 1
20 = o(2) i=2,3,.,N=-1 (1)
» We can linearize the output of each layer.
2D = WD (WD (L (WD (x + mD) + bM).) + b—2)) 4 b0
=wiEDOEDWED (WD (x4 mD) 4 5.y + b2y 4 mU-D)y 4 pi-1)
()

i—1 i—1
= <Hj;§w(j)])0)> wOx + Z (Hj{;}l+1w(j)D(j)> b Z <H;;’11+1w(j)])(,i)) W mpk)
h=1 h=1
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Linear Approximation of Deep Neural Networks

» Recall the N-layer neural network.

A w0 4 p0) =12 . N-1

. . 1
20 = o(2) i=2,3,.,N=-1 (1)
» We can linearize the output of each layer.
2D = WD (WD (L (WD (x + mD) + bM).) + b—2)) 4 b0
=wiEDOEDWED (WD (x4 mD) 4 5.y + b2y 4 mU-D)y 4 pi-1)
)

i—1 i—1
= <Hj;§w(j)])0)) wOx + Z (H};}]+1WU)DO)> b Z <H;;’11+1w(j)])(j>) W mpk)
h=1 h=1

» Bound for {m"}/~} — bounds for z2? — bound for m()

> lteratively estimate the bounds for {z()}V,

MChen Liu / CS8695 12/43



Linear Approximation of Deep Neural Networks

Corollary (Model Linearization)

Given a classification model f(x,0) : RH x © — RX parameterized by 0, a data point
(x,y) and a pre-defined adversarial budget S.(x), IW € R"*K b c RX such that

VA €S, fix+A,0)—fix+A,0,), <WA+b (3)
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Linear Approximation of Deep Neural Networks

[ Corollary (Model Linearization)

(x,y) and a pre-defined adversarial budget S.(x), IW € R"*K b c RX such that

VA €S, fix+A,0)—fix+A,0,), <WA+b

Given a classification model f(x,0) : RH x © — RX parameterized by 0, a data point

(3)

~

> If YA €S, WA+ b<O, then fix+ A,0) — fix+ A,6,), <0, the model is
guaranteed robust.

wchen Liu / CS8695
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Geometric Intepretation of Model Linearization

» {A|WA + b < 0} forms a polyhedron in R" space and is an envelope of the
model's decision boundary.

C. Liu, M. Salzmann, S. Siisstrunk. “Training Provably Robust Models by Polyhedral Envelope
Regularization”. TNNLS 2021.
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Geometric Intepretation of Model Linearization

» {A|WA + b < 0} forms a polyhedron in R" space and is an envelope of the
model's decision boundary.

> If A e ScN{A/WA + b <0}, then x+ A is guaranteed to have the same
prediction as x.

C. Liu, M. Salzmann, S. Siisstrunk. “Training Provably Robust Models by Polyhedral Envelope
Regularization”. TNNLS 2021.

mcm Liu / CS8695 14 /43



Geometric Intepretation of Model Linearization
» {A|WA + b < 0} forms a polyhedron in R" space and is an envelope of the
model's decision boundary.
> If A e ScN{A/WA + b <0}, then x+ A is guaranteed to have the same
prediction as x.
» Geometric interpretation: when € is too big or too small.

C. Liu, M. Salzmann, S. Siisstrunk. “Training Provably Robust Models by Polyhedral Envelope
Regularization”. TNNLS 2021.
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Rethinking Linear Approximation

Limitations:
» Computational complexity.

» Degraded bounds when € is big or model is deep.
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Rethinking Linear Approximation

Limitations:
» Computational complexity.
» Degraded bounds when € is big or model is deep.

It is difficult to apply linear approximation to complex models.
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Randomized Smoothing

Definition (Randomized Smoothing)
Consider a classification model f(x,0) : RH x © — K mapping the input to a
category, its smoothed model g by a random distribution D is defined by

g(X, 0) = EJEDf(X + 57 9)

J. Cohen, E. Rosenfeld, Z. Kolter. “Certified Adversarial Robustness via Randomized Smoothing”. ICML
2019.
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Randomized Smoothing

» Adversarial examples are usually “in the corner” of the decision boundary.

» An adversarial example 0 for f may be surrounded by non-adversarial examples, so
it will not be an adversarial example for g.

» Randomized smoothing effectively smooth the decision boundary of f.

‘@ Chen Liu / CS8695
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Randomized Smoothing

We use p to represent the PDF of the distribution D and consider a perturbation A,
then

a(x,0) = /R PO)x+8,6)d5

g(x+A,0):/

RH

(4)
p(8)fx+ A+ 6,0)ds = /RH p(5 — A)fix+5,0)ds

mChen Liu / CS8695 18 /43



Randomized Smoothing

We use p to represent the PDF of the distribution D and consider a perturbation A,
then

a(x,0) = /R PO)x+8,6)d5

g(x+A,0):/

RH

(4)
p()Ax+ A +6,0)ds = / p(6 — A)A(x+ 6,6)ds
RH

By Neyman-Pearson lemma, we can bound the lower bound of g(x+ A, 6) if we bound
the magnitude of A and the lower bound of g(x, ).

@Chen Liu / CS8695 18 /43



Randomized Smoothing

Theorem

Let f be a classifier and g is defined as g(x, 0) := Espfix+ 9,0) where D is a
Gaussian distribution N'(0, 7%I), we assume c, is one output label and pa, pg € [0, 1]
satisfy Ps.p(f(x+09,0) = ca) > pa > Pg > maxcxc, Ps~p(fx+0,0) = ¢), then we
have g(x+ A, 0) for all ||Allz < 5 (D' (pa) — @~ '(pg)) where ® is the cumulative
distribution function of standard Gaussian.

Imchen Liu / CS8695
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Rethinking Randomized Smoothing

Pros:

» Scalable to any model architecture.

Cons:
» Slow inference because of Monte Carlo sampling.

» Probability guarantee.

wChen Liu / CS8695 20/43



Outline

Empirical Robustness
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Adversarial Training

inE,. fix+ A, 0
min E.pmax L(f(x+ )
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Adversarial Training

inE,. fix+ A, 0
min By pimax L(f(x+ )

» Generate adversarial examples.

» Run iteratively
A« [ls, (A+avaLl(fix+A,0)))

» Training using adversarial examples.
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Adversarial Training

inE,. fix+ A0
min By pimax L(f(x+ )

» Generate adversarial examples.

» Run iteratively
A« [ls, (A+avaLl(fix+A,0)))

» Training using adversarial examples.

Vanilla training v.s. adversarial training.

Lo(0) = ExupL(f(x,0))
L(0) = EXNDIAngg{ L(x+ A,0))
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Adversarial Training

mgin Exwpmax L(fx+ A,0))

AES.
0.81 ! — Vanilla Training
) ! Adversarial Training
» Generate adversarial examples. s
» Run iteratively S
A<+ Ils. (A+avaLl(fix+A,0))) 504
» Training using adversarial examples. 0.2
\\\
Vanilla training v.s. adversarial training. 00p _ TEmmmooo---mooo-
0 50 100 150 200

Epochs

[’0(9) = EXND‘C( ( )> Figure: Learning curves of vanilla training (clean error)

L(0) = Exopmax L(f(x+ A, 0)) and adversarial training (robust error). Dashed and
AeS. ’ solid lines are for the training and test sets.
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Adversarial Training

mein Exwpmax L(f(x+ A,0))

€S 081 | —— Vanilla Training
Adversarial Training
. 0.6
» Generate adversarial examples.
> Run iteratively £o4
A« [ls, (A+avaL(fix+ A,0))) "
» Training using adversarial examples. =
0.0 i et
Vanilla training v.s. adversarial training. 0 o SR
. Figure: Learning curves of vanilla training (clean error)
EO(G) - XNDE( ( )) and adversarial training (robust error). Dashed and
ﬁe(g) — EXN'Dglag( ﬁ(f(x + A’ 9)) solid lines are for the training and test sets.
S

Convergence |. Generalization gap 1.
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Non-smooth Nature of Adversarial Loss Landscapes
g(x,0) = L(fx+ A, 0))
1g(x,01) — g(x, 62)[| < Lo||61 — 02]]

IVog(x,01) — Vog(x, 02)|l < Logl|01 — 02|
IVog(x1,0) — Vog(x2,0)|| < Lox|lx1 — xa]

C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Siisstrunk. "On the Loss Landscape of Adversarial Training:
Identifying Challenges and How to Overcome Them". NeurlPS 2020.
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Non-smooth Nature of Adversarial Loss Landscapes
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Non-smooth Nature of Adversarial Loss Landscapes

g(x,0) = L(Ax+ A, 0)) Le(0) = Exwp max L(flx+ A, 0))
[STo
Hg(x, 91) - g(x,02)|| < L9H01 - 92” ||£e(91) - 56(92)|| < L9H91 - 92||
||V9g(X,91) - ng(X792)|| < L00||91 - 92” ||V9££(91) — V9£6(92)|| < L99||91 — 92“ + 2¢el gy

IVog(x1,0) — Vog(x2,0)|| < Lox|lx1 — xa]

Adversarial perturbations depends on model parameters = Non-smoothness.

C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Siisstrunk. "On the Loss Landscape of Adversarial Training:
Identifying Challenges and How to Overcome Them". NeurlPS 2020.
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Non-smooth Nature of Adversarial Loss Landscapes

g(x,0) = L(Ax+ A, 0)) Le(0) = Exwp max L(flx+ A, 0))
ES¢
lg(x,01) — g(x,62)|| < Lol|01 — 02| 1£c(01) — Le(62)]] < Lol|61 — 0]
||V9g(X,91) - ng(X792)|| < L90||91 - 92” ||V9££(91) — V9£6(92)|| < L99||01 — 92“ + 2¢el gy

IVog(x1,0) — Vog(x2,0)|| < Lox|lx1 — xa]

Adversarial perturbations depends on model parameters = Non-smoothness.

Abrupt changes in the optimal adversarial perturbations = Non-smooth points in the
loss landscape.

C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Siisstrunk. "On the Loss Landscape of Adversarial Training:
Identifying Challenges and How to Overcome Them". NeurlPS 2020.
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Non-smooth Nature of Adversarial Loss Landscape

4.0 4.0
= Vanilla = Vanilla

3.51 — Adversarial 3.51 — Adversarial
3.0

2.54

w

8 2.0

-
1.5
1.0
0.54
0.0

2 -1 0 1 2 -2 -1 0 1 2
Value of Model Parameters Value of Model Parameters
Figure: Le(6) = | ax log(1 + €2) with e = 0.6 (left) and e = 1.2 (right).
Al <e

A =¢ecwhen 8 >0 and A = —e when 8 <0.
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Non-smooth Nature of Adversarial Loss Landscape

Loss

wchen Liu / CS8695

—— Vanilla
— Adversarial

Loss

—— Vanilla
= Adversarial

Value of Model Parameters

Value of Model Parameters

Figure: Polynomial loss function with small € (left) and big e (right).

24 /43



Non-smoothness and Convergence Property

g(x,0) = L(x+ A,0))

lg(x,01) — g(x,02)|| < Lgl|61 — 62|
Vog(x,01) — Vog(x,02)| < Lgol|01 — 02|
Vog(x1,0) — Vog(xa, 0)|| < Lox|x1 — x2f|
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Non-smoothness and Convergence Property

g(x,0) = L(Aix+ A,0)) L(0) = Exup max L(fix+ A,0))
€Se
lg(x,01) — g(x,62)[| < Lo||61 — b2 [Le(01) — Le(02)] < Lol|01 — 62
[Vog(x,01) — Vog(x,02)| < Log||0h — 02| (Vo Le(01) — VoLe(B2)| < Logl|f1 — 02| + 2¢Lox

IVog(x1,6) — Vog(xz,0)|| < Lox|lx1 — x2]
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Non-smoothness and Convergence Property

g(x,0) = L(Aix+ A,0)) L(0) = Exup max L(fix+ A,0))
€S¢
lg(x,01) — g(x,62)[| < Lo||61 — b2 [Le(01) — Le(02)] < Lol|01 — 62
[Vog(x,01) — Vog(x,02)| < Log||0h — 02| (Vo Le(01) — VoLe(B2)| < Logl|f1 — 02| + 2¢Lox

IVog(x1,6) — Vog(xz,0)|| < Lox|lx1 — x2]

[ Theorem (Convergence Property of Adversarial Training)

Using the SGD updateftﬂ =0;— atvgfe(Ht) with unbiased, variance-bounded

stochastic gradient VoLc(0:) and a; = %ﬁ for T iterations, then:
00

4

Vy > 2, P(||VeLe(0T)| > veL o A
7> 2, P(|[VoLe(07)]| = ve 9x)<72_27+4
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Overfitting in Adversarial Training

0.8 : —— Vanilla Training
Adversarial Training
0.6
S
5 0.4
0.2
3 4
\\~
0.0. Rl T T N —
0 50 100 150 200
Epochs

MC&E&@UW: dssagring curves of vanilla training (clean error) and adversarial training (robust error). Dashed and solid 26/43



Overfitting in Adversarial Training

3.0
= Hardest top 10% 0.8
Hardest 30% - 40%
2.5 \ Lo7
= Easiest 30% - 40% :
4 2.0 \\ = Easiest top 10% Lo.6
k] dedradtsomna i
g1 1 1055
E w
[
Z 10
0.5
0.0

0 25 50 75 100 125 150 175 200
Epoch

Figure: The loss values of the groups of instances of different difficulty levels.
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Overfitting in Adversarial Training

3.0
= Hardest top 10% 0.8
Hardest 30% - 40%
2.5 \ ¢ L 0.7
= Easiest 30% - 40% :
2 2.0 \\ = Easiest top 10% Lo.6
o \.-
- ey N
g1 1 1055
E w
2 0.4
zZ 10
F0.3
0.5
r0.2
0.0 Lo

0 25 50 75 100 125 150 175 200
Epoch

Figure: The loss values of the groups of instances of different difficulty levels.

Adversarial overfitting arises from hard adversarial instances.
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Training Instances of Different Difficulty Levels

‘Wcm Liu / CS8695

plane, 0.999  plane

Set| (ot

¥
¥

plane, 0994 plane
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plane, 0.99' plane

plane, 0.989  plane

=[x

plane,0.999  plane  plane, 0.998  plane

plane, 0.99 plane  plane, 0.99: plane

-

plane  plane, 0.995  plane  plane, 0.994  plane
5

plane, 0.99 plane  plane, 0993 plane

plane, 0.98 plane  plane, 0989 plane

plane, 0.988  plane  plane, 0.95f plane

beam

plane, 0.000  bird plane, 0.002 plane, 0.002

plane, 0.003 plane, 0.003 plane, 0.005

plane, 0.006 plane, 0.006

plane, 0.007

plane, 0.007 plane, 0.007
-

[ |
plane, 0.008 plane, 0.008

Figure: (Left) easy examples. (Right) hard examples.
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Training Instances of Different Difficulty Levels

plane, 0.999 plane plane, 0.999 plane plane, 0.998 plane plane, 0.000 bird plane, 0.002 frog plane, 0.002 frog
. N
oet| ot ~Ea ‘ L&
!

plane, 0.99 plane, 0.003 plane, 0.003 plane, 0.005 truck

plane  plane, 0.99: plane  plane, 0.99:

N

plane  plane, 0.995  plane  plane, 0.994  plane

o
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Figure: (Left) easy examples. (Right) hard examples.

How to quantitatively measure the difficulty?

@Chen Liu / CS8695 28 /43



Training Instances of Different Difficulty Levels

How to quantitatively measure the difficulty?
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Figure: (Left) easy examples. (Right) hard examples.

Conditional variance: E[Var(y|x)].
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Overfitting in Adversarial Training: Why?

Data The data {(x;, y;)}1; is binary, e, xi€ R™ y; € {—1,41}. It is sub-Gaussian
with positive conditional variance o2 = E[Varly|x]] = 0% > 0.

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on
Overfitting in Adversarial Training”. 2022.
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Data The data {(x;, y;)}1, is binary e, xi€ R™ y; € {—1,41}. It is sub-Gaussian
with positive conditional variance o2 = E[Varly|x]] = 0% > 0.

Lipschitz constant Lip(f(-,0)) = supxl,,@w is a good indicator of the

. e [Ix1—x2
adversarial vulnerability.

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on
Overfitting in Adversarial Training”. 2022.
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Overfitting in Adversarial Training: Why?

Theorem (Informal and Simplified)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the
training loss C= 137 | (f(x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(-,8)) = B(o* — C+ h(e, C)) (6)

J

where 3 1s a constant, h(e, C) decreases with C and increases with e.

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on
Overfitting in Adversarial Training”. 2022.
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Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the
training loss C= 137 | ((x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(-,8)) > H(o* ¢, C) (6)

ot, HT; e, HT, CJ, HT.
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Overfitting in Adversarial Training: Why?

Theorem (Informal and Simplified)

training loss C= 13" | ((x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(',e)) > H(0276a C)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the

(6)

P Lipschitz constant indicates adversarial vulnerability.

J

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on

Overfitting in Adversarial Training”. 2022.
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Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the

(6)

P Lipschitz constant indicates adversarial vulnerability.
» (s sufficiently small = Lipschitz constant indicates generalization gap.
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training loss C= 13" | ((x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(',e)) > H(0276a C)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the

(6)

P Lipschitz constant indicates adversarial vulnerability.

» (s sufficiently small = Lipschitz constant indicates generalization gap.
» (C|: training processes = H 1 overfitting.

J
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Overfitting in Adversarial Training: Why?

Theorem (Informal and Simplified)

training loss C= 13" | ((x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(',e)) > H(0276a C)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the

(6)

P Lipschitz constant indicates adversarial vulnerability.
» (s sufficiently small = Lipschitz constant indicates generalization gap.
» (C|: training processes = H 1 overfitting.
» o 1: harder instances = H {: overfitting.

J

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on
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Overfitting in Adversarial Training: Why?

Theorem (Informal and Simplified)

Given training data {(x;,y;)}?_,, and a model parameterized by bounded parameters
6, we conduct adversarial training and let X to the adversarial examples of x. If the
training loss C= 13" | ((x;,0) — y;)? is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

L’p(f(79)) > H(O’2,6, C) (6)

. J

P Lipschitz constant indicates adversarial vulnerability.
» (s sufficiently small = Lipschitz constant indicates generalization gap.
» (C|: training processes = H 1 overfitting.
» o 1: harder instances = H {: overfitting.
» ¢ 1: larger adversarial budget = H {: overfitting.

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Siisstrunk. "On the Impact of Hard Adversarial Instances on
Overfitting in Adversarial Training”. 2022.
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Overfitting in Adversarial Training: How?

Methods mitigating adversarial overfitting implicitly downplay hard instances.
> Weaker perturbation.
P> Adaptive and easier targets.

» Smaller weights when calculating the loss objective.

mChen Liu / CS8695 30/43
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Adversarial Training is Expensive

in By Ax+ A0
min Exop max L(flx + A, 0))

» If we run projected gradient descent (PGD) for M iterations, then the complexity
of adversarial training will be (M + 1) times that of training on clean inputs.
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Adversarial Training is Expensive

in By Ax+ A0
min Exop max L(flx + A, 0))

» If we run projected gradient descent (PGD) for M iterations, then the complexity
of adversarial training will be (M + 1) times that of training on clean inputs.

» We can decrease the value of M to decrease the complexity.

» But at the cost of performance and stability.

MChen Liu / CS8695 32/43



Catastrophic Overfitting
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Figure: Catastrophic Overfitting.
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Catastrophic Overfitting
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Figure: Catastrophic Overfitting.

» Small M typically means large step sizes.

lwchen Liu / CS8695
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Catastrophic Overfitting

=== Train Robust Accuracy (FGSM) 60
0.8 Val Robust Accuracy (PGD20)
> = Avg Gradient Norm 50 £
Cos 5
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v 407
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Figure: Catastrophic Overfitting.

» Small M typically means large step sizes.

» Large gradient norm VAL indicates distorted loss landscape.
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Catastrophic Overfitting
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Figure: Loss landscape distortion when catastrophic overfitting happens.
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Solutions for Catastrophic Overfitting

Inspired by pre-conditioned optimizers.
» Large gradients — hard examples — smaller step size.

» Small gradients — easy examples — larger step size.

Z. Huang, Y. Fan, C. Liu, W. Zhang, Y. Zhang, M. Salzmann, S. Siisstrunk, J. Wang. “Fast Adversarial
Training with Adaptive Steps”. TIP 2023.
Y. Jiang, C. Liu, Z. Huang, M. Salzmann, S. Susstrunk. “Towards Stable and Efficient Adversarial Training
against /1 Bounded Adversarial Attacks”. ICML 2023.
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Inspired by pre-conditioned optimizers.
» Large gradients — hard examples — smaller step size.
» Small gradients — easy examples — larger step size.
> We use exponential moving average to calculate the expected gradient magnitude
m < fm+ (1 — B)||VaL]|2 for each training instance.
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Solutions for Catastrophic Overfitting

Inspired by pre-conditioned optimizers.
» Large gradients — hard examples — smaller step size.
» Small gradients — easy examples — larger step size.

> We use exponential moving average to calculate the expected gradient magnitude
m < fm+ (1 — B)||VaL]|2 for each training instance.

» The actual step size is - for each training instance.

Z. Huang, Y. Fan, C. Liu, W. Zhang, Y. Zhang, M. Salzmann, S. Siisstrunk, J. Wang. “Fast Adversarial
Training with Adaptive Steps”. TIP 2023.
Y. Jiang, C. Liu, Z. Huang, M. Salzmann, S. Susstrunk. “Towards Stable and Efficient Adversarial Training
against /1 Bounded Adversarial Attacks”. ICML 2023.
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Other Solutions for Catastrophic Overfitting

» Smaller step size but memroize the perturbations in the last epoch.

» Gradient regularization to make the loss landscape more smooth.

H. Zheng, Z. Zhang, J. Gu, H. Lee, A. Prakash. "Efficient adversarial training with transferable adversarial
examples”. CVPR 2020.
M. Andriushchenko, N. Flammarion. “Understanding and improving fast adversarial training”. NeurlPS 2020.

mChen Liu / CS8695 36 /43



Other Ways to Improve Effectiveness

» Pruning network to make it more sparse can help robustness.

> We can even prune the network with their initialized parameters unchanged. (strong
lottery ticket hypothesis)

» Proper quantization can help robustness.

C. Liu, Z. Zhao, S. Sisstrunk, M. Salzmann. “Robust Binary Models by Pruning Randomly-initialized
Networks”. NeurlPS 2022.
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Benefits of Robustness

lmChen Liu / CS8695 38/43



Challenges of Obtaining Robustness

Larger models.

Larger datasets.

>

>

» Higher complexity.

» Poor transferability between different types of perturbations.
>
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Additional Benefits of Obtaining Robustness

Adversarial perturbations can be considered as a strong data augmentation.

C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille ,Q. Le. “Adversarial Examples Improve Image Recognition".
CVPR 2020.
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Additional Benefits of Obtaining Robustness

Adversarial perturbations can be considered as a strong data augmentation.

» Use clean inputs to train convolutional layers 4+ normalization layers A.

» Use adversarial inputs to train convolutional layers + normalization layers B.
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Additional Benefits of Obtaining Robustness

Adversarial perturbations can be considered as a strong data augmentation.

» Use clean inputs to train convolutional layers 4+ normalization layers A.
» Use adversarial inputs to train convolutional layers + normalization layers B.

» Then we will get two models with shared convolutional layers. Both has good
performance, since the shared layers are trained by more data.

C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille ,Q. Le. “Adversarial Examples Improve Image Recognition".
CVPR 2020.
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Additional Benefits of Obtaining Robustness
Adversarial perturbations destroy the non-robust features of the input and force the
model to learn robust features, which is aligned with human perception.
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Figure: The visualization of VA L.

A. llyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, A. Madry. “Adversarial Examples are not Bugs,
They are Features”. NeurlPS 2019.
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Additional Benefits of Obtaining Robustness

Robust features are usually more general features.

» Pretrained models by adversarial training can achieve better performance after
fine-tuning on a related task.

H. Salman, A. llyas, L. Engstrom, A. Kapoor, A. Madry. “Do adversarially robust imagenet models transfer
better?”. NeurlPS 2020.
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Remaining Challenges

> A better trade-off between clean accuracy and robust accuracy.

» Robustness against multiple types of adversarial perturbations.

» Narrow the gap between empirical robustness and verified robustness.
> ...
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