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Concerns Raised by Deployment of Deep Learning

Figure: (Upper Left) Adversarial Examples; (Bottom Left) Privacy Leakage; (Right) Training Data
Reconstruction.
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Preliminary: Machine Unlearning

Machine unlearning (MU) targets the need to remove specific data influences from
pretrained models, while complying with privacy requirements.

Examples:
▶ Some training data is updated or no longer correct.
▶ The copyright of some training data expired.
▶ We export model to external users who should not have access to some sensitive

information.
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Preliminary: Exact and Approximate Machine Unlearning
Exact machine unlearning
▶ Remove the data to forget and retrain the model using the remaining data from

scratch.
▶ Golden standard but expensive. Impossible for cases of large amount of

parameters or data like large language models.

Approximate machine unlearning
▶ Finetune the pretrained models to remove the effect of data to forget while

maintaining the performance of the remaining data.
▶ Inaccurate but efficient. Suffer from issues like unstable performance and

catastrophic forgetting.

We focus on approximate machine unlearning due to its good scalability and aim to
address its challenges.
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Preliminary: Terminologies
▶ Forget set Df: the set of data to forget.
▶ Retain set Dr: the remaining data to remember.
▶ Pretaining model with parameter θo: the model trained on both Df

⋃
Dr.

▶ Retrained model with parameter θu: the model trained only on Dr.

In approximate machine unlearning, we aim to design an algorithm A such that
A(θo,Df,Dr) ≃ θu.
▶ A should have different strategies on the forget set Df and the retain set Dr, with

Lf and Lr as the corresponding loss functions, respectively.

min
θ

Lf(θ) + Lr(θ)

▶ Lf and Lr are usually opposite functions.
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Preliminary: Evaluation Criteria

▶ The accuracy on the retrain set (RA).
▶ The accuracy on the forget set (FA).
▶ The accuracy on the test set (TA).
▶ The accuracy on the membership inference attack on the forget set (MIA).

Ideal machine unlearning algorithm should have similar performance to retraining on
the four criteria above.
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Challenges for Current MU Methods
Let’s review the machine unlearning problem below.

min
θ

Lf(θ) + Lr(θ)

Existing methods may (1) jointly minimize Lf and Lr; (2) alternatively minimize Lf
and Lr. However, they suffer from either suboptimal performance or prohibitively large
performance variance.
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Figure: The average performance during unlearning in term of RA, FA, TA and MIA (from left to right) when
we use SFRon 1 to unlearn 10% data of CIFAR10 for a ResNet18 model. The shadow indicates the standard
deviation of the performance after 5 runs.

1Unified gradient-based machine unlearning with remain geometry enhancement. NeurIPS 2024.
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Recipe 1: Adaptive Learning Rate
▶ Observation 1: the gradient magnitudes vary a lot during unlearning.
▶ Observation 2: there is a big discrepancy between the gradients on Lf and the ones on Lr.
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Figure: The gradient norms on Lf and Lr, respectively. Left: SGD;

Right: Adam

.

Both observations indicate challenges when using a unified learning rate, which is the
case of optimizers like SGD. We need to adaptively adjust the learning rate.
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Recipe 2: Decoupled Statistics in Optimizers

▶ Observation: there is a big discrepancy between the gradients on Lf and the ones on Lr.

This indicates that the optimization dynamics on minimizing Lf is rather different from
minimizing Lr. Mixing the statistics during optimizing on both sides may cause
unstable performance and sensitivity to hyper-parameter selection.

Therefore, we use different factors to denote the optimization statistics, such as
momentum factors, for Lf and Lr.
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Recipe 2: Decoupled Statistics in Optimizers

If we use ĝf,t and ĝr,t to represent the stochastic gradient from Lf and Lr at the time
stamp t, respectively.

(Shared Momentum)

{
mS

f,t = αmS
r,t−1 + ĝS

f,t, θS
f,t = θS

r,t−1 − ηmS
f,t

mS
r,t = αmS

f,t + ĝS
r,t, θS

r,t = θS
f,t − ηmS

r,t

(Decoupled Momentum)

{
mD

f,t = αmD
f,t−1 + ĝD

f,t, θD
f,t = θD

r,t−1 − ηmD
f,t

mD
r,t = αmD

r,t−1 + ĝD
r,t, θD

r,t = θD
f,t − ηmD

r,t

(1)

By induction, the variance of the model parameters by decoupled momentum is
theoretically guaranteed smaller compared with shared momentum after the same
number of iterations.
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Theoretical Guarantees
Assumptions:
(Stochastic Gradient Condition) For all time steps t = 0, . . . ,T − 1, the stochastic gradients of the forget loss
ĝf,t and retain loss ĝr,t satisfy:

ĝf,t = gf,t + ϵf,t, ĝr,t = gr,t + ϵr,t,

where gf,t := ∇θtLf(Df, θt) and gr,t := ∇θtLr(Dr, θt) are the full-batch gradients with model parameter θt at
the time stamp t. ϵf,t and ϵr,t are batch noises with zero mean and a bounded variance: there exists a minimal
σ2 ≥ 0 such that Var(ϵf,t) ≤ σ2, Var(ϵr,t) ≤ σ2 for all t.

(Correlation Bounds) The correlation between the stochastic gradients from the same function in different time
steps is bounded while the correlation between stochastic gradients from different functions can be ignored.
That is to say, ∃τ ∈ [0, 1] such that:

∀t1 ̸= t2, , s.t. ρ(ĝf,t1 , ĝf,t2 ) ≤ τ, ρ(ĝr,t1 , ĝr,t2 ) ≤ τ, ∀t1, t2, ρ(ĝf,t1 , ĝr,t2 ) ≤ o(τ) ≃ 0

(Lipschitz Smoothness) The loss functions Lf and Lr are both L-smooth:

∀θ1, θ2, ∥∇θ1Lf(Df, θ1)−∇θ2Lf(Df, θ2)∥ ≤ L∥θ1 − θ2∥, (2)
∀θ1, θ2, ∥∇θ1Lr(Dr, θ1)−∇θ2Lr(Dr, θ2)∥ ≤ L∥θ1 − θ2∥. (3)
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Theoretical Guarantees

(Shared Momentum)

{
mS

f,t = αmS
r,t−1 + ĝS
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{
mD
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Lemma
(Variance of Gradients) If the loss function L is Lipschitz smooth with a constant L, and Var(θ) ≤ σ2

θ , then we
have Var(∇θL(θ)) ≤ L2σ2

θ .

Theorem
(Variance Bound Comparison for Decoupled vs. Shared Momentum) For the shared and decoupled schemes
using the same hyperparameters (η, α), and we use Var(·) to denote the maximum variance of a variable, if the
function Lf, Lr and the stochastic gradient {(ĝS

f,i, ĝ
S
r,i)}

T−1
i=0 , {(ĝD

f,i, ĝD
r,i)}

T−1
i=0 satisfy the assumptions, then

∀t,Var(θD
f,t) ≤ Var(θS

f,t), Var(θD
r,t) ≤ Var(θS

r,t),
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DualOptim
Algorithm 1: Machine Unlearning with Shared Optimizer / Dual Optimizers

1: Input: Model: fθ; Forget set: Df; Retain set: Dr; Iterations for outer loop: To; Iterations for forgetting:
Tf; Iterations for retaining: Tr; Step sizes: η , ηf, ηr .

2: Optim is the same optimizer as in pretraining with step size η.
Optimf is Adam(θ, ηf), Optimr is the same optimizer as in pretraining with step size ηr.

3: for t = 1, ...,To do
4: for t′ = 1, ...,Tf do
5: Fetch mini-batch data from the forget set Bf ∼ Df
6: Calculate the forget loss Lf on Bf and get the gradient
7: Use Optim / Optimf to update θ

8: end for
9: for t′ = 1, ...,Tr do

10: Fetch mini-batch data from the retain set Br ∼ Dr
11: Calculate the retain loss Lr on Br and get the gradient
12: Use Optim / Optimr to update θ

13: end for
14: end for
15: Output: Model fθ
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Experiments: Image Classification
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Experiments: Image Generation
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Experiments: Large Language Models
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Outline

A Brief Introduction of MLO @ CityU HK
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Overview of Research in Machine Learning Group

Fundamentals of Machine Learning

Robustness Privacy

Applications of Machine Learning

Convergence Generalization Efficiency

Model Verification

Adversarial Training

Adversary4SocialGood

Differential Privacy

Membership Inference

Training Set
Reconstruction

O
therReliability

Concerns
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▶ Shuangqi Li (Robustness, Generative Model)

▶ Project Advisee, 2023, −→ Ph.D. student at EPFL.
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Some Projects and Works
Adversarial Robustness
▶ Robustness Verification

▶ Geometric-inspired robustness verification and provably robust learning.
▶ Optimization Properties of Adversarial Training

▶ Convergence and generalization gaps.
▶ Accelerated Robust Learning.

▶ Adversarial training on pruned and quantized networks.
▶ Stable adversarial training by fast but cheap adversarial attack.

▶ Robustness for Different Threat Models.
▶ Sparse attack and structured sparse attack.

▶ Adversarial Attack for Social Good
▶ Manipulate generative models.
▶ Decrease learnability to enhance privacy.

C. Liu, R. Tomioka, V. Cevher. “On Certifying Non-uniform Bounds against Adversarial Attack.” ICML 2019.
C. Liu, M. Salzmann, S. Süsstrunk. “Training Provably Robust Models against Polyhedral Envelope Regularization.” IEEE TNNLS 2021.
C. Liu*, Z. Zhao*, S. Süsstrunk, M. Salzmann. “Robust Binary Models by Pruning Randomly-initialized Networks.” NeurIPS 2022.
Y. Jiang*, C. Liu*, M. Salzmann, S. Süsstrunk. “Towards Stable and Efficient Adversarial Training against l1 Bounded Adversarial Attacks.”

ICML 2023.
X. Zhong, Y. Huang, C. Liu. “Towards Efficient Training and Evaluation of Robust Models against l0 Bounded Adversarial Perturbations.”

ICML 2024.
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Some Projects and Works
Some theoretical works:
▶ Convergence Analysis

▶ First smooth analyses and convergence bound on the loss landscape of adversarial training.
▶ Generalization Bounds

▶ Derive the generalization bound in terms of data variance and adversarial perturbation magnitude in
adversarial training, showing data of larger conditional variance mainly contributes to robust
overfitting.

▶ Nash Equilibrum in Min-Max Problems.
▶ Using mirror descent and mirror-prox to guarantee mixed Nash Equilibria on Generative Adversarial

Networks (GANs).
▶ Differential Privacy

▶ Trace the evolution of privacy loss (Renyi Divergence between models trained by two consecutive
dataset) under the hidden state assumption where only the last state of the model is leaked to the
adversary.

Y-P. Hsieh, C. Liu, V. Cevher. “Finding Mixed Nash Equilibria of Generative Adversarial Networks”. ICML 2019.
C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Süsstrunk. “On the Loss Landscape of Adversarial Training: Identifying Challenges and How to

Overcome Them.” NeurIPS 2020.
C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Süsstrunk. “On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training.”

Journal of Machine Learning Research 2024.
D. Chen, C. Liu. “Differentially Private Neural Network Training under Hidden State Assumption”.

Chen Liu (CityU CS) 23 / 24



Thank You!
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