
Differentially Private SGD
under the Hidden State Assumption

Chen Liu
Department of Computer Science

City University of Hong Kong

20th, December, 2024

Chen Liu (CS) 1 / 35



Privacy Matters in Machine Learning

Figure: (Left) Membership Inference Attack (MIA) 1; (Right) Training Set Reconstruction. 2

1Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against
machine learning models. IEEE S&P. 2017.

2Haim, N., Vardi, G., Yehudai, G., Shamir, O., & Irani, M. Reconstructing training data from trained neural
networks. NeurIPS 2022.

Chen Liu (CS) 2 / 35



Privacy Threat in Deep Learning Era

Figure: Training data leakage from GPT-2 (left) 3 and ChatGPT (right) 4.

3Carlini, Nicholas, et al. ”Extracting training data from large language models.” USENIX Security 2021.
4www.zdnet.com
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Why Privacy Matters in Machine Learning

▶ Deep neural networks have capacity to memorize training data.
▶ Models should learn generalizable features instead of just memorizing training data.

▶ Overparameterized models and huge dataset raise more concerns about privacy.
▶ Black-box nature of deep neural networks hinders their application in privacy-critic

applications, such as ones in finance.
▶ ...

▶ Different from empirical risk minimization, we need new training algorithms to
enhance or guarantee the privacy of the learned model.

▶ A quantitative metric is needed to measure to which degree an algorithm
guarantees privacy.
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Differential Privacy (DP)
Definition
Differential Privacy (DP) A randomized mechanism M : D → R with domain D
and range R satisfies (ϵ, δ)-differential privacy if ∀ adjacenta datasets d, d′ ∈ D and
∀ subset of the outputs S ⊆ R, it holds that:

P(M(d) ∈ S) ≤ eϵP(M(d′) ∈ S) + δ (1)

When δ = 0, (ϵ, δ)-DP can be written as ϵ-DP.
aadjacent means the two datasets only differ in one instance.

▶ Generally, M is a stochastic algorithm. Therefore, (ϵ, δ)-DP measures how the
distribution of the model’s output changes if we only change one training data.

▶ Differential privacy provides the theoretical upper bound of membership inference
attacks’ success rate.

▶ Smaller ϵ, δ are, more privacy the algorithm will be.
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Rényi Differential Privacy (RDP)
Alternatively, we can measure the distributional distance between the outputs of the
algorithm when using these two neighboring datasets.
Definition
Rényi Differential Privacy A randomized mechanism M : D → R with domain D
and range R satisfies α, ϵ-Rényi differential privacy if ∀ adjacent datasets d, d′ ∈ D
and ∀ subset of the outputs S ⊆ R, it holds that:

Rα(M(d)||M(d′)) ≤ ϵ (2)

where Rα represents the Rényi divergence of order α:
Rα(P||Q) := 1

α−1 logEθ∼Q
[(

P(θ)
Q(θ)

)α]
.

▶ If a mechanism satisfies (α, ϵ)-RDP, then it satisfies (ϵ− log δ
α−1 , δ)-DP.

▶ Due to nice properties of Rényi divergence, RDP can help derive tighter bounds
than DP.
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How to Achieve Differential Privacy

▶ A common paradigm to approximate a real-valued function f : D → R with a
differential private mechanism is M(d) = f(d) + noise where the noise is
calibrated to f’s sensitivity.

▶ The noise can be Gaussian noise or Laplacian noise, the corresponding
mechanisms are called Gaussian mechanism and Laplacian mechanism.

▶ Intuition: more sensitive f is to its inputs, then more noise is needed to
“camouflage” the function f.
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More Rigorous Privacy Guarantee

Definition (Sensitivity)
Sensitivity of the function f based on lp norm is defined as:

Sp(f) = max
d,d′∈D,|d−d′|1=1

∥f(d)− f(d′)∥p (3)

For stochastic mechanism M(d) = f(d) + noise
▶ In Laplacian mechanism, if the l1 sensitivity of f is s, then we need Laplace noise

of scale σ = s
ϵ to make the mechanism M satisfy ϵ-DP.

▶ In Gaussian mechanism, if the l2 sensitivity of f is s, then we need Gaussian noise
of scale σ = s

ϵ

√
2 log(1.25/δ) to make the mechanism M satisfy (ϵ, δ)-DP.
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Differential Privacy for Deep Learning: DP-SGD

To guarantee DP in deep learning training, we recall the paradigm
M(d) = f(d) + noise. Now d represents the model parameters.

▶ In deep learning training, we typically use gradient-based methods such as SGD to
update model parameters. The function f should reflect SGD update.

▶ We should guarantee that the sensitivity of f w.r.t. each input data is bounded.
The straightforward solution is clip per-sample gradient.

▶ In practice, we clip gradient based on its l2 norm, so the corresponding noise is
sampled from a Gaussian distribution.
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DP in Training Stage: DP-SGD5

Algorithm 1: Pseudo-code of DP-SGD
Input: training data {x1, x2, ..., xN}, loss function L(θ) = 1

N
∑

i L(θ, xi).
Hyper-parameters: learning rate ηt, noise scale σ, batch size B, gradient norm bound C.
Initialize θ0 randomly
for t = 1, 2, ...,T do

Take a random sample xi with probability B/N and form a mini-batch B.
for each instance i ∈ B do

Calculate the per-sample gradient gi = ∇θL(θt−1, xi), i ∈ B.
Clip the gradient gi ← gi/max(1, ∥gi∥2

C )

Add noise g = 1
|B|

(∑
i∈B gi +N (0, σ2C2I)

)
.

Gradient descent θt = θt−1 − ηtg.
end for

end for

▶ If we choose σ =
√
2 log(1.25/δ)/ϵ, then each update step is (ϵ, δ)-DP.

5Abadi, Martin, et al. ”Deep learning with differential privacy.” ACM SIGSAC conference on computer and
communications security. 2016.
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Privacy Guarantee in DP-SGD

By setting δ properly, each update step of DP-SGD is (ϵ, δ)-DP. Now, we estimate the
privacy loss of the whole training process.

▶ By naive composition theorem, the training stage of T mini-batch updates is (ϵT, δT)-DP.
▶ However, each training update in DP-SGD is not independent, navie composition property

only generates a very pessimistic result.
▶ Considering the sequential dependency, the training stage of T mini-batch updates is

(ϵ′, δT + δ′)-DP where ϵ′ =
√
2ϵT log(1/δ′) + Tϵ(eϵ − 1). When ϵ is small, ϵ′ = o(ϵ2T) is

smaller than ϵT.

▶ However, does training for a longer really mean privacy degradation?
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Pros and Cons of DP-SGD
Pros:
▶ Easy to implement.
▶ Generally applicable to all deep neural networks.

Cons:
▶ Efficiency issue caused on per sample clipping, in both computational complexity

and memory consumption.

▶ Control the Lipschitz constant of the model, so that the norm of the gradient is
always below a threshold.

▶ The privacy loss assumes leakage of all intermediate states, which is too
pessimistic.

▶ The privacy loss (both in ϵ and in δ) monotonically increases with the iteration
number T.

▶ We should consider another setting that is better aligned with deep learning training.

▶ Loss of model utility and training stability.
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Hidden State Assumption

Definition
Different from what composition theorem assumes, hidden state assumption (HSA)
assumes all intermediate training states are hidden, i.e., not accounted for privacy
leakage. Under HSA, we only need to consider the first and the final state that are
released.

▶ HSA is better aligned with the practice of deep learning training, where the
intermediate model parameters are not even saved.

▶ In some senarios, we save the model parameters periodically when training. This
setting is a mixture of what composition theorem assumes and HSA.
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Hidden State Assumption

▶ The privacy loss under HSA can converge when the iteration number N increases,
in contrast to the pessimistic composition theorem.6

▶ Without composition theorem, Langevin dynamic is utilized to derive a tighter
bound for privacy loss under HSA. 7 8

Current literature usually have strong assumptions, such as the loss function L being
smooth, strongly convex, without which the privacy loss will increase exponentially.
However, the loss function of almost all deep neural networks is non-convex!

We aim to derive a tight privacy loss estimation under HSA for general deep
neural networks.

6Feldman, Vitaly, et al. ”Privacy amplification by iteration.” FOCS 2018.
7Chourasia, Rishav, Jiayuan Ye, and Reza Shokri. ”Differential privacy dynamics of langevin diffusion and

noisy gradient descent.” NeurIPS 2021.
8Ye, Jiayuan, and Reza Shokri. ”Differentially private learning needs hidden state (or much faster

convergence).” NeurIPS 2022.

Chen Liu (CS) 15 / 35



Hidden State Assumption

▶ The privacy loss under HSA can converge when the iteration number N increases,
in contrast to the pessimistic composition theorem.6

▶ Without composition theorem, Langevin dynamic is utilized to derive a tighter
bound for privacy loss under HSA. 7 8

Current literature usually have strong assumptions, such as the loss function L being
smooth, strongly convex, without which the privacy loss will increase exponentially.
However, the loss function of almost all deep neural networks is non-convex!
We aim to derive a tight privacy loss estimation under HSA for general deep
neural networks.

6Feldman, Vitaly, et al. ”Privacy amplification by iteration.” FOCS 2018.
7Chourasia, Rishav, Jiayuan Ye, and Reza Shokri. ”Differential privacy dynamics of langevin diffusion and

noisy gradient descent.” NeurIPS 2021.
8Ye, Jiayuan, and Reza Shokri. ”Differentially private learning needs hidden state (or much faster

convergence).” NeurIPS 2022.

Chen Liu (CS) 15 / 35



DP for Deep Learning under HSA

We consider a N-layer deep neural network defined as follows:

min
θ
L(θ, x) := R(θDxD; y) s.t. xd+1 = σd(θdxd) d = 0, . . . ,D− 1 (4)

▶ We control the Lipschitz constant of each layer by normalize its weight parameters. We
use power iteration to approximate the spectral norm Λ̃d of the parameter θd and apply
normalization by:

θd ← θd ·min(1/Λ̃d, 1)

▶ With a bounded Lipschitz constant, we do not need to clip per-sample gradient anymore.

Chen Liu (CS) 16 / 35



DP for Deep Learning under HSA

We consider a N-layer deep neural network defined as follows:

min
θ
L(θ, x) := R(θDxD; y) s.t. xd+1 = σd(θdxd) d = 0, . . . ,D− 1 (4)

▶ We control the Lipschitz constant of each layer by normalize its weight parameters. We
use power iteration to approximate the spectral norm Λ̃d of the parameter θd and apply
normalization by:

θd ← θd ·min(1/Λ̃d, 1)

▶ With a bounded Lipschitz constant, we do not need to clip per-sample gradient anymore.

Chen Liu (CS) 16 / 35



DP for Deep Learning under HSA

We consider a N-layer deep neural network defined as follows:

min
θ
L(θ, x) := R(θDxD; y) s.t. xd+1 = σd(θdxd) d = 0, . . . ,D− 1 (4)

▶ We control the Lipschitz constant of each layer by normalize its weight parameters. We
use power iteration to approximate the spectral norm Λ̃d of the parameter θd and apply
normalization by:

θd ← θd ·min(1/Λ̃d, 1)

▶ With a bounded Lipschitz constant, we do not need to clip per-sample gradient anymore.

Chen Liu (CS) 16 / 35



Outline

Background & Introduction

Differential Privacy in Hidden State Assumption
Hidden State Assumption
Differential Private Stochastic Block Coordinate Descent
Differential Private SGD under Hidden State Assumption

Conclusions

Chen Liu (CS) 17 / 35



DP for Deep Learning under HSA

We introduce two sets of auxiliary parameters {Ud}D−1
d=0 and {xd}Dd=0 to rewrite the

problem of training deep neural networks by:

min
θ
L(θ, x) := R(θD, xD; y)

s.t.xd+1 = σd(Ud),Ud = θdxd, d = 0, 1, ...,D− 1.
(5)

We then consider the Lagrangian function with a multiplier coefficient γ:

F(θ, x,U) = R(θD, xD; y) +
γ

2

D−1∑
d=0

(
∥xd+1 − σd(Ud)∥22 + ∥Ud − θdxd∥2F

)
(6)
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DP for Deep Learning under HSA

F(θ, x,U) = R(θD, xD; y) +
γ

2

D−1∑
d=0

(
∥xd+1 − σd(Ud)∥22 + ∥Ud − θdxd∥2F

)

▶ Compared with the original function which is non-convex, F is strongly convex in each
coordinate, i.e., Ud, xd and θd for any d.

▶ We can then decompose the original problem into several sub-problems: each of these
sub-problems represents training one layer and has a strongly convex loss function. Based
on composition properties, the overall privacy loss is the summation of all sub-problems.

▶ When Ud, xd and θd are bounded for all d (which can be easily achieved by clipping),
there exists an universal constant to bound the Lipschitz constant for each sub-problem.

▶ Ud and xd are not even saved, so we only need to calculate the privacy loss by θd.
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When σd is ReLU, both of the problem minxd F and minUF have analytical solutions.
When coming to θ, we use gradient based methods.
We focus on θd (d < D): the weight parameter of an intermediate layer.

▶ As long as xd is bounded, i.e., ∃Xd <∞, we have ∥∇2
xdF∥ = γ∥xd∥22 ≤ γX2

d. Therefore,
the Lipschitz constant is γX2

d.
▶ Although xd and θd are not independent, we treat xd as a constant when calculating the

gradient of θd. Therefore, we can use the spectral norm of Hessian matrix ∇2
xdF to bound

the Lipschitz constant.
▶ The Lipschitz constant is independent of any other variables such as Ud and xd. Although

Ud and xd are not independent of θd, they do not cause any privacy leakage via the
Lipschitz constant.
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DP for Deep Learning under HSA
When updating model parameter θd, we consider two additional factors to boost DP
guarantee and ensure the algorithm generality.
▶ (Proximal Operator) We consider the use of some regularization schemes rd(θd), such as

LASSO and weight decay.
▶ (Adaptive Calibrated Noise) We study the calibrate noise with adaptive scale. We use

o(θ, k, j) to represent the scale of the noise as a function of the learning rate θ, the epoch
index k and the batch index j.

The generic update scheme for θd is:

θd ← Proxη,rd (θd − η∇θdF +N (0, 2η · o(θ, k, j)I)) (7)

▶ Due to convexity of F w.r.t. θd, the update scheme is Lipschitz continuous if
considered as a function.
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DP-Stochastic Block Coordinate Descent

Algorithm 2: DP-Stochastic Block Coordinate Descent (DP-SBCD)
Input: step size η, regularization scheme {rd}D

d=0, batch size B, noise scale o(θ, k, j).
Initialize all parameters θd, xd and Ud for all values of d.
for epoch index k = 0, 1, ...,K− 1 do

for each mini-batch of size B do
for layer d = 0, 1, ...,D do

xd ← arg minx′d F(x
′
d)

Ud ← arg minU′
d
F(U′

d)

Noramlize θd by its spectral norm: θd ← θd ·min(1/Λ̃d, 1).
Update θd by θd ← Proxη,rd (θd − η∇θdF +N (0, 2η · o(θ, k, j)I)).

end for
end for

end for
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Privacy Guarantee - Formulation

▶ We use Θ to represent the distribution of the model parameters before the
update, then their distribution after the model update is:

Θ̃ = T#(F#(Θ) ∗ N (0, 2t · o(θ, k, j)I))

where F# and T# are two push-forward mappings, representing the gradient
descent update and the proximal operator; ∗ is the convolution operator.

▶ Due to the convexity of the loss, the Lipschitz constants of F# and T# are
bounded, which have analytical expression and are denoted LF and LT.

▶ Consider two neighboring datasets D, D′ that differ in just one instance, we study
how the distributional distance of the trained parameters evolves during training.

▶ We use Rényi divergence as the metric, then the privacy loss will be Rα(Θ||Θ′)
where D, D′ are the distributions of the model parameters trained by D and D′.
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Privacy Guarantee - One Update

Θ̃ = T#(F#(Θ) ∗ N (0, 2t · o(θ, k, j)I))

Lemma (Informal, Simplified)
Let D and D′ be neighbouring datasets that only differ in the i0-th data point, we
update the model parameters using a batch B by DP-SBCD, then the privacy loss
E := Rα(Θ||Θ′) under HSA will be updated in the following rules.
▶ If i0 /∈ B, the privacy loss decrease by E ← rE where r < 1 and decreases with

the increase of the noise scale o(η, k, j).
▶ If i0 ∈ B, the privacy loss increase by E ← E +O( 1

o(η,k,j)).
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Privacy Guarantee - Accumulation

Let’s call the only different instance in the neighboring datasets key instance.
▶ The original privacy loss is 0 upon initialization.

▶ The privacy loss is “discounted” if key instance is not in the current batch.
▶ The privacy loss increases if key instance is used to update model parameters.
▶ Since the key instance appears once per epoch, the overall privacy loss given a key

instance will be the accumulation of the contributions by the key instance in each
epoch.
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Privacy Guarantee - Accumulation
Theorem (Informal, Simplified)
We assume that the sensitivity Sg of the gradient is finite, the distribution of model
parameters θ satisfies log-Sobolev inequality. In addition, the update functions
F(θ) = θ − η∇F(θ) and the proximal operator T(θ) = Proxη,r(θ) are Lipschitz continuous
with constants LF and LT, respectively. When the training set has n instances and the batch
size is b, the DP-SBCD algorithm running after K epochs satisfies (α, ϵ(α))-Rényi
differential privacy with the constant:

ϵ(α) ≤ 1

α− 1
log

n/b−1∑
j0=0

b
n · e

(α−1)ϵK(α,j0)


ϵK(α, j0) ≤ α

K−1∑
k=0

ηS2
g

b2 · o(η, k, j0)
· H(k, LF, LT, o)

(8)

where H(k, LF, LT, o) monotonically increases with k when k, LF, LT and the noise function o
are fixed.
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Privacy Amplification and Privacy Loss

ϵ(α) ≤ 1

α− 1
log

n/b−1∑
j0=0

b
n · e

(α−1)ϵK(α,j0)


ϵK(α, j0) ≤ α

K−1∑
k=0

ηS2
g

b2 · o(η, k, j0)
· H(k, LF, LT, o)

▶ ϵK(α, j0) represents the privacy loss when the j0-th instance is the key instance.
▶ Under HSA, the calibrated noise in the last few epochs primarily contributes to

the total privacy loss.
▶ The noise scale o(η, k, j0) should be adaptive to minimize the privacy loss under

HSA.
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Privacy Amplification and Privacy Loss

Figure: Difference between hidden state assumption and composition theorem.
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Privacy Contribution of Each Epoch
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Figure: Under HSA, the calibrated noise in the last few epochs primarily contributes to the total privacy loss.
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Better Trade-offs between Utility and Privacy
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Figure: The privacy loss with adaptive noise has the potential to provide a better utility-privacy tradeoff.
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Limitations of Block Coordinate Descent

▶ Efficiency issue raised by coordinate descent.
▶ Large batch requirements to mitigate the high variance of the algorithm.

How to achieve the best of both worlds?
▶ to get rid of block coordinate descent.
▶ to obtain a tight privacy loss.

However, deep neural network training is
non-convex in general.
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Take Away Messages

▶ We propose DP-SBCD algorithm to ensure a tight differential privacy guarantee
for general neural networks under HSA.

▶ Our theorem offers a deeper interpretation of how privacy loss evolves under HSA.
It also explains the convergence behavior of the privacy loss.

▶ The algorithms and theorems in this works posses a generic nature, rendering
them compatible with proximal gradient descent and adaptive calibrated noise.

▶ By adaptive noise scale, we can empirically achieve better privacy-utility trade-offs.

Chen Liu (CS) 33 / 35



Acknowledgement

My Ph.D student Ding Chen contributed to this work.

Chen Liu (CS) 34 / 35



Thank you!
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