# Differentially Private SGD under the Hidden State Assumption

#### Chen Liu

Department of Computer Science City University of Hong Kong



20th, December, 2024



## Privacy Matters in Machine Learning



Figure: (Left) Membership Inference Attack (MIA) <sup>1</sup>; (Right) Training Set Reconstruction. <sup>2</sup>

<sup>&</sup>lt;sup>2</sup>Haim, N., Vardi, G., Yehudai, G., Shamir, O., & Irani, M. Reconstructing training data from trained neural networks. NeurIPS 2022.



<sup>&</sup>lt;sup>1</sup>Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against machine learning models. IEEE S&P. 2017.

## Privacy Threat in Deep Learning Era



Figure: Training data leakage from GPT-2 (left) <sup>3</sup> and ChatGPT (right) <sup>4</sup>.

<sup>&</sup>lt;sup>3</sup>Carlini, Nicholas, et al. "Extracting training data from large language models." USENIX Security 2021.
<sup>4</sup>www.zdnet.com



## Why Privacy Matters in Machine Learning

- Deep neural networks have capacity to memorize training data.
  - Models should learn generalizable features instead of just memorizing training data.
- Overparameterized models and huge dataset raise more concerns about privacy.
- Black-box nature of deep neural networks hinders their application in privacy-critic applications, such as ones in finance.



...

## Why Privacy Matters in Machine Learning

- Deep neural networks have capacity to memorize training data.
  - Models should learn generalizable features instead of just memorizing training data.
- Overparameterized models and huge dataset raise more concerns about privacy.
- Black-box nature of deep neural networks hinders their application in privacy-critic applications, such as ones in finance.

Different from empirical risk minimization, we need new training algorithms to enhance or guarantee the privacy of the learned model.



## Why Privacy Matters in Machine Learning

- Deep neural networks have capacity to memorize training data.
  - Models should learn generalizable features instead of just memorizing training data.
- Overparameterized models and huge dataset raise more concerns about privacy.
- Black-box nature of deep neural networks hinders their application in privacy-critic applications, such as ones in finance.

- Different from empirical risk minimization, we need new training algorithms to enhance or guarantee the privacy of the learned model.
- A quantitative metric is needed to measure to which degree an algorithm guarantees privacy.



#### Definition

Differential Privacy (DP) A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$  and range  $\mathcal{R}$  satisfies  $(\epsilon, \delta)$ -differential privacy if  $\forall$  adjacent<sup>a</sup> datasets  $d, d' \in \mathcal{D}$  and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$\mathbb{P}(\mathcal{M}(d) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(d') \in S) + \delta$$
(1)

When  $\delta = 0$ ,  $(\epsilon, \delta)$ -DP can be written as  $\epsilon$ -DP.

<sup>a</sup>adjacent means the two datasets only differ in one instance.



#### Definition

Differential Privacy (DP) A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$  and range  $\mathcal{R}$  satisfies  $(\epsilon, \delta)$ -differential privacy if  $\forall$  adjacent<sup>a</sup> datasets  $d, d' \in \mathcal{D}$  and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$\mathbb{P}(\mathcal{M}(d) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(d') \in S) + \delta$$
(1)

When  $\delta = 0$ ,  $(\epsilon, \delta)$ -DP can be written as  $\epsilon$ -DP.

<sup>a</sup>adjacent means the two datasets only differ in one instance.

• Generally,  $\mathcal{M}$  is a stochastic algorithm. Therefore,  $(\epsilon, \delta)$ -DP measures how the distribution of the model's output changes if we only change one training data.



#### Definition

Differential Privacy (DP) A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$  and range  $\mathcal{R}$  satisfies  $(\epsilon, \delta)$ -differential privacy if  $\forall$  adjacent<sup>a</sup> datasets  $d, d' \in \mathcal{D}$  and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$\mathbb{P}(\mathcal{M}(d) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(d') \in S) + \delta$$
(1)

When  $\delta = 0$ ,  $(\epsilon, \delta)$ -DP can be written as  $\epsilon$ -DP.

<sup>a</sup>adjacent means the two datasets only differ in one instance.

- Generally,  $\mathcal{M}$  is a stochastic algorithm. Therefore,  $(\epsilon, \delta)$ -DP measures how the distribution of the model's output changes if we only change one training data.
- Differential privacy provides the theoretical upper bound of membership inference attacks' success rate.



#### Definition

Differential Privacy (DP) A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$  and range  $\mathcal{R}$  satisfies  $(\epsilon, \delta)$ -differential privacy if  $\forall$  adjacent<sup>a</sup> datasets  $d, d' \in \mathcal{D}$  and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$\mathbb{P}(\mathcal{M}(d) \in S) \le e^{\epsilon} \mathbb{P}(\mathcal{M}(d') \in S) + \delta$$
(1)

When  $\delta = 0$ ,  $(\epsilon, \delta)$ -DP can be written as  $\epsilon$ -DP.

<sup>a</sup>adjacent means the two datasets only differ in one instance.

- Generally,  $\mathcal{M}$  is a stochastic algorithm. Therefore,  $(\epsilon, \delta)$ -DP measures how the distribution of the model's output changes if we only change one training data.
- Differential privacy provides the theoretical upper bound of membership inference attacks' success rate.
- Smaller  $\epsilon$ ,  $\delta$  are, more privacy the algorithm will be.

# Rényi Differential Privacy (RDP)

Alternatively, we can measure the distributional distance between the outputs of the algorithm when using these two *neighboring* datasets.

#### Definition

Rényi Differential Privacy A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$ and range  $\mathcal{R}$  satisfies  $\alpha, \epsilon$ -Rényi differential privacy if  $\forall$  adjacent datasets  $d, d' \in \mathcal{D}$ and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$R_{\alpha}(\mathcal{M}(d)||\mathcal{M}(d')) \le \epsilon$$
(2)

where  $R_{\alpha}$  represents the Rényi divergence of order  $\alpha$ :  $R_{\alpha}(P||Q) := \frac{1}{\alpha-1} \log \mathbb{E}_{\theta \sim Q} \left[ \left( \frac{P(\theta)}{Q(\theta)} \right)^{\alpha} \right].$ 



# Rényi Differential Privacy (RDP)

Alternatively, we can measure the distributional distance between the outputs of the algorithm when using these two *neighboring* datasets.

#### Definition

Rényi Differential Privacy A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$ and range  $\mathcal{R}$  satisfies  $\alpha, \epsilon$ -Rényi differential privacy if  $\forall$  adjacent datasets  $d, d' \in \mathcal{D}$ and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$R_{\alpha}(\mathcal{M}(d)||\mathcal{M}(d')) \le \epsilon$$
(2)

where  $R_{\alpha}$  represents the Rényi divergence of order  $\alpha$ :  $R_{\alpha}(P||Q) := \frac{1}{\alpha-1} \log \mathbb{E}_{\theta \sim Q} \left[ \left( \frac{P(\theta)}{Q(\theta)} \right)^{\alpha} \right].$ 

▶ If a mechanism satisfies  $(\alpha, \epsilon)$ -RDP, then it satisfies  $(\epsilon - \frac{\log \delta}{\alpha - 1}, \delta)$ -DP.



# Rényi Differential Privacy (RDP)

Alternatively, we can measure the distributional distance between the outputs of the algorithm when using these two *neighboring* datasets.

#### Definition

Rényi Differential Privacy A randomized mechanism  $\mathcal{M} : \mathcal{D} \to \mathcal{R}$  with domain  $\mathcal{D}$ and range  $\mathcal{R}$  satisfies  $\alpha, \epsilon$ -Rényi differential privacy if  $\forall$  adjacent datasets  $d, d' \in \mathcal{D}$ and  $\forall$  subset of the outputs  $S \subseteq \mathcal{R}$ , it holds that:

$$R_{\alpha}(\mathcal{M}(d)||\mathcal{M}(d')) \le \epsilon \tag{2}$$

where  $R_{\alpha}$  represents the Rényi divergence of order  $\alpha$ :  $R_{\alpha}(P||Q) := \frac{1}{\alpha-1} \log \mathbb{E}_{\theta \sim Q} \left[ \left( \frac{P(\theta)}{Q(\theta)} \right)^{\alpha} \right].$ 

- If a mechanism satisfies  $(\alpha, \epsilon)$ -RDP, then it satisfies  $(\epsilon \frac{\log \delta}{\alpha 1}, \delta)$ -DP.
- Due to nice properties of Rényi divergence, RDP can help derive tighter bounds than DP.

#### How to Achieve Differential Privacy

A common paradigm to approximate a real-valued function f: D → R with a differential private mechanism is M(d) = f(d) + noise where the noise is calibrated to f's sensitivity.



### How to Achieve Differential Privacy

A common paradigm to approximate a real-valued function f: D → R with a differential private mechanism is M(d) = f(d) + noise where the noise is calibrated to f's sensitivity.

► The noise can be Gaussian noise or Laplacian noise, the corresponding mechanisms are called Gaussian mechanism and Laplacian mechanism.



### How to Achieve Differential Privacy

- A common paradigm to approximate a real-valued function f: D → R with a differential private mechanism is M(d) = f(d) + noise where the noise is calibrated to f's sensitivity.
- The noise can be Gaussian noise or Laplacian noise, the corresponding mechanisms are called Gaussian mechanism and Laplacian mechanism.
- Intuition: more sensitive f is to its inputs, then more noise is needed to "camouflage" the function f.



#### More Rigorous Privacy Guarantee

Definition (Sensitivity) Sensitivity of the function f based on  $l_p$  norm is defined as:  $S_p(f) = \max_{\substack{d,d' \in \mathcal{D}, |d-d'|_1 = 1}} \|f(d) - f(d')\|_p$ 



(3)

### More Rigorous Privacy Guarantee

Definition (Sensitivity) Sensitivity of the function f based on  $l_p$  norm is defined as:

$$S_{p}(f) = \max_{d,d' \in \mathcal{D}, |d-d'|_{1} = 1} \|f(d) - f(d')\|_{p}$$
(3)

For stochastic mechanism  $\mathcal{M}(d) = f(d) + \text{noise}$ 

- ▶ In Laplacian mechanism, if the  $l_1$  sensitivity of f is s, then we need Laplace noise of scale  $\sigma = \frac{s}{\epsilon}$  to make the mechanism  $\mathcal{M}$  satisfy  $\epsilon$ -DP.
- ▶ In Gaussian mechanism, if the  $l_2$  sensitivity of f is s, then we need Gaussian noise of scale  $\sigma = \frac{s}{\epsilon} \sqrt{2 \log(1.25/\delta)}$  to make the mechanism  $\mathcal{M}$  satisfy  $(\epsilon, \delta)$ -DP.



To guarantee DP in deep learning training, we recall the paradigm  $\mathcal{M}(d) = f(d) + \text{noise}$ . Now d represents the model parameters.



To guarantee DP in deep learning training, we recall the paradigm  $\mathcal{M}(d) = f(d) + \text{noise.}$  Now d represents the model parameters.

In deep learning training, we typically use gradient-based methods such as SGD to update model parameters. The function *f* should reflect SGD update.



To guarantee DP in deep learning training, we recall the paradigm  $\mathcal{M}(d) = f(d) + \text{noise}$ . Now d represents the model parameters.

- In deep learning training, we typically use gradient-based methods such as SGD to update model parameters. The function *f* should reflect SGD update.
- We should guarantee that the sensitivity of f w.r.t. each input data is bounded. The straightforward solution is clip *per-sample* gradient.



To guarantee DP in deep learning training, we recall the paradigm  $\mathcal{M}(d) = f(d) + \text{noise}$ . Now *d* represents the model parameters.

- In deep learning training, we typically use gradient-based methods such as SGD to update model parameters. The function *f* should reflect SGD update.
- We should guarantee that the sensitivity of f w.r.t. each input data is bounded. The straightforward solution is clip *per-sample* gradient.
- In practice, we clip gradient based on its l<sub>2</sub> norm, so the corresponding noise is sampled from a Gaussian distribution.



## DP in Training Stage: DP-SGD<sup>5</sup>

Algorithm 1: Pseudo-code of DP-SGD

**Input**: training data  $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ , loss function  $\mathcal{L}(\theta) = \frac{1}{N} \sum_i \mathcal{L}(\theta, \mathbf{x}_i)$ . **Hyper-parameters**: learning rate  $\eta_t$ , noise scale  $\sigma$ , batch size B, gradient norm bound C. Initialize  $\theta_0$  randomly

for t = 1, 2, ..., T do

Take a random sample  $\mathbf{x}_i$  with probability B/N and form a mini-batch  $\mathcal{B}$ .

for each instance  $i \in \mathcal{B}$  do

Calculate the per-sample gradient  $g_i = \nabla_{\theta} \mathcal{L}(\theta_{t-1}, \mathbf{x}_i), i \in \mathcal{B}$ . Clip the gradient  $g_i \leftarrow g_i / \max(1, \frac{||g_i||_2}{C})$ Add noise  $g = \frac{1}{|\mathcal{B}|} \left( \sum_{i \in \mathcal{B}} g_i + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) \right)$ . Gradient descent  $\theta_t = \theta_{t-1} - \eta_t g$ . end for end for

• If we choose  $\sigma = \sqrt{2\log(1.25/\delta)}/\epsilon$ , then each update step is  $(\epsilon, \delta)$ -DP.

<sup>5</sup>Abadi, Martin, et al. "Deep learning with differential privacy." ACM SIGSAC conference on computer and communications security. 2016.





By setting  $\delta$  properly, each update step of DP-SGD is  $(\epsilon, \delta)$ -DP. Now, we estimate the privacy loss of the whole training process.

By naive composition theorem, the training stage of T mini-batch updates is  $(\epsilon T, \delta T)$ -DP.



- By naive composition theorem, the training stage of T mini-batch updates is  $(\epsilon T, \delta T)$ -DP.
- However, each training update in DP-SGD is not independent, navie composition property only generates a very pessimistic result.



- By naive composition theorem, the training stage of T mini-batch updates is  $(\epsilon T, \delta T)$ -DP.
- However, each training update in DP-SGD is not independent, navie composition property only generates a very pessimistic result.
- Considering the sequential dependency, the training stage of T mini-batch updates is  $(\epsilon', \delta T + \delta')$ -DP where  $\epsilon' = \sqrt{2\epsilon T \log(1/\delta')} + T\epsilon(e^{\epsilon} 1)$ . When  $\epsilon$  is small,  $\epsilon' = o(\epsilon^2 T)$  is smaller than  $\epsilon T$ .



- By naive composition theorem, the training stage of T mini-batch updates is  $(\epsilon T, \delta T)$ -DP.
- However, each training update in DP-SGD is not independent, navie composition property only generates a very pessimistic result.
- Considering the sequential dependency, the training stage of T mini-batch updates is  $(\epsilon', \delta T + \delta')$ -DP where  $\epsilon' = \sqrt{2\epsilon T \log(1/\delta')} + T\epsilon(e^{\epsilon} 1)$ . When  $\epsilon$  is small,  $\epsilon' = o(\epsilon^2 T)$  is smaller than  $\epsilon T$ .
- However, does training for a longer really mean privacy degradation?



Pros:

- Easy to implement.
- Generally applicable to all deep neural networks.

Cons:

Efficiency issue caused on *per sample* clipping, in both computational complexity and memory consumption.

The privacy loss assumes leakage of *all* intermediate states, which is too pessimistic.

Loss of model utility and training stability.



Pros:

- Easy to implement.
- Generally applicable to all deep neural networks.

Cons:

- Efficiency issue caused on *per sample* clipping, in both computational complexity and memory consumption.
  - Control the Lipschitz constant of the model, so that the norm of the gradient is always below a threshold.
- The privacy loss assumes leakage of *all* intermediate states, which is too pessimistic.

Loss of model utility and training stability.



Pros:

- Easy to implement.
- Generally applicable to all deep neural networks.

Cons:

- Efficiency issue caused on *per sample* clipping, in both computational complexity and memory consumption.
  - Control the Lipschitz constant of the model, so that the norm of the gradient is always below a threshold.
- The privacy loss assumes leakage of *all* intermediate states, which is too pessimistic.
  - The privacy loss (both in ε and in δ) monotonically increases with the iteration number T.

Loss of model utility and training stability.



Pros:

- Easy to implement.
- Generally applicable to all deep neural networks.

Cons:

- Efficiency issue caused on *per sample* clipping, in both computational complexity and memory consumption.
  - Control the Lipschitz constant of the model, so that the norm of the gradient is always below a threshold.
- The privacy loss assumes leakage of *all* intermediate states, which is too pessimistic.
  - The privacy loss (both in ε and in δ) monotonically increases with the iteration number T.
  - We should consider another setting that is better aligned with deep learning training.
  - Loss of model utility and training stability.



#### Outline

#### Background & Introduction

#### Differential Privacy in Hidden State Assumption

#### Hidden State Assumption

Differential Private Stochastic Block Coordinate Descent Differential Private SGD under Hidden State Assumption

Conclusions



### Hidden State Assumption

#### Definition

Different from what composition theorem assumes, hidden state assumption (HSA) assumes all intermediate training states are *hidden*, i.e., not accounted for privacy leakage. Under HSA, we only need to consider the first and the final state that are released.



### Hidden State Assumption

#### Definition

Different from what composition theorem assumes, hidden state assumption (HSA) assumes all intermediate training states are *hidden*, i.e., not accounted for privacy leakage. Under HSA, we only need to consider the first and the final state that are released.

- ► HSA is better aligned with the practice of deep learning training, where the intermediate model parameters are not even saved.
- In some senarios, we save the model parameters periodically when training. This setting is a mixture of what composition theorem assumes and HSA.



#### Hidden State Assumption

- The privacy loss under HSA can converge when the iteration number N increases, in contrast to the pessimistic composition theorem.<sup>6</sup>
- Without composition theorem, Langevin dynamic is utilized to derive a tighter bound for privacy loss under HSA. <sup>7 8</sup>

Current literature usually have strong assumptions, such as the loss function  $\mathcal{L}$  being **smooth, strongly convex**, without which the privacy loss will increase exponentially. However, the loss function of almost all deep neural networks is non-convex!

<sup>&</sup>lt;sup>6</sup>Feldman, Vitaly, et al. "Privacy amplification by iteration." FOCS 2018.

<sup>&</sup>lt;sup>7</sup>Chourasia, Rishav, Jiayuan Ye, and Reza Shokri. "Differential privacy dynamics of langevin diffusion and noisy gradient descent." NeurIPS 2021.

<sup>&</sup>lt;sup>8</sup>Ye, Jiayuan, and Reza Shokri. "Differentially private learning needs hidden state (or much faster convergence)." NeurIPS 2022.
#### Hidden State Assumption

- The privacy loss under HSA can converge when the iteration number N increases, in contrast to the pessimistic composition theorem.<sup>6</sup>
- Without composition theorem, Langevin dynamic is utilized to derive a tighter bound for privacy loss under HSA. <sup>7 8</sup>

Current literature usually have strong assumptions, such as the loss function  $\mathcal{L}$  being **smooth, strongly convex**, without which the privacy loss will increase exponentially. However, the loss function of almost all deep neural networks is non-convex!

We aim to derive a tight privacy loss estimation under HSA for general deep neural networks.

<sup>&</sup>lt;sup>8</sup>Ye, Jiayuan, and Reza Shokri. "Differentially private learning needs hidden state (or much faster convergence)." NeurIPS 2022.



<sup>&</sup>lt;sup>6</sup>Feldman, Vitaly, et al. "Privacy amplification by iteration." FOCS 2018.

<sup>&</sup>lt;sup>7</sup>Chourasia, Rishav, Jiayuan Ye, and Reza Shokri. "Differential privacy dynamics of langevin diffusion and noisy gradient descent." NeurIPS 2021.

We consider a N-layer deep neural network defined as follows:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x}) := \mathcal{R}(\theta_D \boldsymbol{x}_D; \boldsymbol{y}) \quad \text{s.t.} \quad \boldsymbol{x}_{d+1} = \sigma_d(\theta_d \boldsymbol{x}_d) \quad d = 0, \dots, D-1$$
(4)



We consider a *N*-layer deep neural network defined as follows:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x}) := \mathcal{R}(\theta_D \boldsymbol{x}_D; \boldsymbol{y}) \quad \text{s.t.} \quad \boldsymbol{x}_{d+1} = \sigma_d(\theta_d \boldsymbol{x}_d) \quad d = 0, \dots, D-1$$
(4)

• We control the Lipschitz constant of each layer by normalize its weight parameters. We use power iteration to approximate the spectral norm  $\widetilde{\Lambda}_d$  of the parameter  $\theta_d$  and apply normalization by:

 $\theta_d \leftarrow \theta_d \cdot \min(1/\widetilde{\Lambda}_d, 1)$ 



We consider a *N*-layer deep neural network defined as follows:

$$\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x}) := \mathcal{R}(\theta_D \boldsymbol{x}_D; \boldsymbol{y}) \quad \text{s.t.} \quad \boldsymbol{x}_{d+1} = \sigma_d(\theta_d \boldsymbol{x}_d) \quad d = 0, \dots, D-1$$
(4)

• We control the Lipschitz constant of each layer by normalize its weight parameters. We use power iteration to approximate the spectral norm  $\widetilde{\Lambda}_d$  of the parameter  $\theta_d$  and apply normalization by:

$$\theta_d \leftarrow \theta_d \cdot \min(1/\widetilde{\Lambda}_d, 1)$$

▶ With a bounded Lipschitz constant, we do not need to clip per-sample gradient anymore.



#### Outline

#### Background & Introduction

#### Differential Privacy in Hidden State Assumption

Hidden State Assumption Differential Private Stochastic Block Coordinate Descent Differential Private SGD under Hidden State Assumption

Conclusions



We introduce two sets of auxiliary parameters  $\{\mathbf{U}_d\}_{d=0}^{D-1}$  and  $\{\mathbf{x}_d\}_{d=0}^{D}$  to rewrite the problem of training deep neural networks by:

$$\min_{\theta} \mathcal{L}(\theta, \mathbf{x}) := \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y})$$
  
s.t. $\mathbf{x}_{d+1} = \sigma_d(\mathbf{U}_d), \mathbf{U}_d = \theta_d \mathbf{x}_d, d = 0, 1, ..., D - 1.$  (5)



We introduce two sets of auxiliary parameters  $\{\mathbf{U}_d\}_{d=0}^{D-1}$  and  $\{\mathbf{x}_d\}_{d=0}^D$  to rewrite the problem of training deep neural networks by:

$$\min_{\theta} \mathcal{L}(\theta, \mathbf{x}) := \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y})$$
  
s.t. $\mathbf{x}_{d+1} = \sigma_d(\mathbf{U}_d), \mathbf{U}_d = \theta_d \mathbf{x}_d, d = 0, 1, ..., D - 1.$  (5)

We then consider the Lagrangian function with a multiplier coefficient  $\gamma$ :

$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$
(6)



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

Compared with the original function which is non-convex,  $\mathcal{F}$  is strongly convex in each coordinate, i.e.,  $\mathbf{U}_d$ ,  $\mathbf{x}_d$  and  $\theta_d$  for any d.



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

- Compared with the original function which is non-convex,  $\mathcal{F}$  is strongly convex in each coordinate, i.e.,  $\mathbf{U}_d$ ,  $\mathbf{x}_d$  and  $\theta_d$  for any d.
- We can then decompose the original problem into several sub-problems: each of these sub-problems represents training one layer and has a strongly convex loss function. Based on composition properties, the overall privacy loss is the summation of all sub-problems.



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

- Compared with the original function which is non-convex,  $\mathcal{F}$  is strongly convex in each coordinate, i.e.,  $\mathbf{U}_d$ ,  $\mathbf{x}_d$  and  $\theta_d$  for any d.
- We can then decompose the original problem into several sub-problems: each of these sub-problems represents training one layer and has a strongly convex loss function. Based on composition properties, the overall privacy loss is the summation of all sub-problems.
- When  $U_d$ ,  $x_d$  and  $\theta_d$  are bounded for all d (which can be easily achieved by clipping), there exists an universal constant to bound the Lipschitz constant for each sub-problem.



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

- Compared with the original function which is non-convex, *F* is strongly convex in each coordinate, i.e., U<sub>d</sub>, x<sub>d</sub> and θ<sub>d</sub> for any d.
- We can then decompose the original problem into several sub-problems: each of these sub-problems represents training one layer and has a strongly convex loss function. Based on composition properties, the overall privacy loss is the summation of all sub-problems.
- When  $U_d$ ,  $x_d$  and  $\theta_d$  are bounded for all d (which can be easily achieved by clipping), there exists an universal constant to bound the Lipschitz constant for each sub-problem.
- ▶  $\mathbf{U}_d$  and  $\mathbf{x}_d$  are not even saved, so we only need to calculate the privacy loss by  $\theta_d$ .



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

When  $\sigma_d$  is ReLU, both of the problem  $\min_{\mathbf{x}_d} \mathcal{F}$  and  $\min_{\mathbf{U}} \mathcal{F}$  have analytical solutions. When coming to  $\theta$ , we use gradient based methods.

We focus on  $\theta_d$  (d < D): the weight parameter of an intermediate layer.



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

When  $\sigma_d$  is ReLU, both of the problem  $\min_{\mathbf{x}_d} \mathcal{F}$  and  $\min_{\mathbf{U}} \mathcal{F}$  have analytical solutions. When coming to  $\theta$ , we use gradient based methods.

We focus on  $\theta_d$  (d < D): the weight parameter of an intermediate layer.

▶ As long as  $\mathbf{x}_d$  is bounded, i.e.,  $\exists X_d < \infty$ , we have  $\|\nabla^2_{\mathbf{x}_d} \mathcal{F}\| = \gamma \|\mathbf{x}_d\|_2^2 \leq \gamma X_d^2$ . Therefore, the Lipschitz constant is  $\gamma X_d^2$ .



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

When  $\sigma_d$  is ReLU, both of the problem  $\min_{\mathbf{x}_d} \mathcal{F}$  and  $\min_{\mathbf{U}} \mathcal{F}$  have analytical solutions. When coming to  $\theta$ , we use gradient based methods.

We focus on  $\theta_d$  (d < D): the weight parameter of an intermediate layer.

► As long as  $\mathbf{x}_d$  is bounded, i.e.,  $\exists X_d < \infty$ , we have  $\|\nabla^2_{\mathbf{x}_d} \mathcal{F}\| = \gamma \|\mathbf{x}_d\|_2^2 \leq \gamma X_d^2$ . Therefore, the Lipschitz constant is  $\gamma X_d^2$ .

Although  $\mathbf{x}_d$  and  $\theta_d$  are not independent, we treat  $\mathbf{x}_d$  as a constant when calculating the gradient of  $\theta_d$ . Therefore, we can use the spectral norm of Hessian matrix  $\nabla_{\mathbf{x}_d}^2 \mathcal{F}$  to bound the Lipschitz constant.



$$\mathcal{F}(\theta, \mathbf{x}, \mathbf{U}) = \mathcal{R}(\theta_D, \mathbf{x}_D; \mathbf{y}) + \frac{\gamma}{2} \sum_{d=0}^{D-1} \left( \|\mathbf{x}_{d+1} - \sigma_d(\mathbf{U}_d)\|_2^2 + \|\mathbf{U}_d - \theta_d \mathbf{x}_d\|_F^2 \right)$$

When  $\sigma_d$  is ReLU, both of the problem  $\min_{\mathbf{x}_d} \mathcal{F}$  and  $\min_{\mathbf{U}} \mathcal{F}$  have analytical solutions. When coming to  $\theta$ , we use gradient based methods.

We focus on  $\theta_d$  (d < D): the weight parameter of an intermediate layer.

- ▶ As long as  $\mathbf{x}_d$  is bounded, i.e.,  $\exists X_d < \infty$ , we have  $\|\nabla^2_{\mathbf{x}_d} \mathcal{F}\| = \gamma \|\mathbf{x}_d\|_2^2 \leq \gamma X_d^2$ . Therefore, the Lipschitz constant is  $\gamma X_d^2$ .
- Although  $\mathbf{x}_d$  and  $\theta_d$  are not independent, we treat  $\mathbf{x}_d$  as a constant when calculating the gradient of  $\theta_d$ . Therefore, we can use the spectral norm of Hessian matrix  $\nabla_{\mathbf{x}_d}^2 \mathcal{F}$  to bound the Lipschitz constant.
- The Lipschitz constant is independent of any other variables such as U<sub>d</sub> and x<sub>d</sub>. Although U<sub>d</sub> and x<sub>d</sub> are not independent of θ<sub>d</sub>, they do not cause any privacy leakage via the Lipschitz constant.



When updating model parameter  $\theta_d$ , we consider two additional factors to boost DP guarantee and ensure the algorithm generality.

- (Proximal Operator) We consider the use of some regularization schemes  $r_d(\theta_d)$ , such as LASSO and weight decay.
- (Adaptive Calibrated Noise) We study the calibrate noise with adaptive scale. We use o(θ, k, j) to represent the scale of the noise as a function of the learning rate θ, the epoch index k and the batch index j.

The generic update scheme for  $\theta_d$  is:

$$\theta_{d} \leftarrow \operatorname{Prox}_{\eta, r_{d}} \left( \theta_{d} - \eta \nabla_{\theta_{d}} \mathcal{F} + \mathcal{N}(0, 2\eta \cdot o(\theta, k, j)\mathbf{I}) \right)$$
(7)

• Due to convexity of  $\mathcal{F}$  w.r.t.  $\theta_d$ , the update scheme is Lipschitz continuous if considered as a function.



#### DP-Stochastic Block Coordinate Descent

Algorithm 2: DP-Stochastic Block Coordinate Descent (DP-SBCD)

```
Input: step size \eta, regularization scheme \{r_d\}_{d=0}^D, batch size B, noise scale o(\theta, k, j).
Initialize all parameters \theta_d, \mathbf{x}_d and \mathbf{U}_d for all values of d.
for epoch index k = 0, 1, ..., K - 1 do
    for each mini-batch of size B do
         for layer d = 0, 1, ..., D do
             \mathbf{x}_d \leftarrow \operatorname{arg\,min}_{\mathbf{x}'} \mathcal{F}(\mathbf{x}'_d)
             \mathbf{U}_d \leftarrow \arg\min_{\mathbf{U}'_d} \mathcal{F}(\mathbf{U}'_d)
             Noramlize \theta_d by its spectral norm: \theta_d \leftarrow \theta_d \cdot \min(1/\Lambda_d, 1).
             Update \theta_d by \theta_d \leftarrow \operatorname{Prox}_{n, r_d} (\theta_d - \eta \nabla_{\theta_d} \mathcal{F} + \mathcal{N}(0, 2\eta \cdot o(\theta, k, j)\mathbf{I})).
         end for
    end for
end for
```



## Privacy Guarantee - Formulation

We use Θ to represent the distribution of the model parameters before the update, then their distribution after the model update is:

$$\widetilde{\Theta} = T_{\#}(F_{\#}(\Theta) * \mathcal{N}(0, 2t \cdot o(\theta, k, j)\mathbf{I}))$$

where  $F_{\#}$  and  $T_{\#}$  are two push-forward mappings, representing the gradient descent update and the proximal operator; \* is the convolution operator.

▶ Due to the convexity of the loss, the Lipschitz constants of  $F_{\#}$  and  $T_{\#}$  are bounded, which have analytical expression and are denoted  $L_F$  and  $L_T$ .



## Privacy Guarantee - Formulation

We use Θ to represent the distribution of the model parameters before the update, then their distribution after the model update is:

$$\widetilde{\Theta} = \mathcal{T}_{\#}(\mathcal{F}_{\#}(\Theta) * \mathcal{N}(0, 2t \cdot o(\theta, k, j)\mathbf{I}))$$

where  $F_{\#}$  and  $T_{\#}$  are two push-forward mappings, representing the gradient descent update and the proximal operator; \* is the convolution operator.

- ▶ Due to the convexity of the loss, the Lipschitz constants of  $F_{\#}$  and  $T_{\#}$  are bounded, which have analytical expression and are denoted  $L_F$  and  $L_T$ .
- Consider two neighboring datasets D, D' that differ in just one instance, we study how the distributional distance of the trained parameters evolves during training.



## Privacy Guarantee - Formulation

We use Θ to represent the distribution of the model parameters before the update, then their distribution after the model update is:

$$\widetilde{\Theta} = \mathcal{T}_{\#}(\mathcal{F}_{\#}(\Theta) * \mathcal{N}(0, 2t \cdot o(\theta, \mathbf{k}, \mathbf{j})\mathbf{I}))$$

where  $F_{\#}$  and  $T_{\#}$  are two push-forward mappings, representing the gradient descent update and the proximal operator; \* is the convolution operator.

- ▶ Due to the convexity of the loss, the Lipschitz constants of  $F_{\#}$  and  $T_{\#}$  are bounded, which have analytical expression and are denoted  $L_F$  and  $L_T$ .
- Consider two neighboring datasets D, D' that differ in just one instance, we study how the distributional distance of the trained parameters evolves during training.
- ▶ We use Rényi divergence as the metric, then the privacy loss will be  $R_{\alpha}(\Theta||\Theta')$  where *D*, *D'* are the distributions of the model parameters trained by *D* and *D'*.



### Privacy Guarantee - One Update

$$\widetilde{\Theta} = \mathit{T}_{\#}(\mathit{F}_{\#}(\Theta) \ast \mathcal{N}(0, 2t \cdot \mathit{o}(\theta, \mathit{k}, \mathit{j})\mathbf{I}))$$

#### Lemma (Informal, Simplified)

Let D and D' be neighbouring datasets that only differ in the  $i_0$ -th data point, we update the model parameters using a batch B by DP-SBCD, then the privacy loss  $\mathcal{E} := R_{\alpha}(\Theta || \Theta')$  under HSA will be updated in the following rules.

If i<sub>0</sub> ∉ B, the privacy loss decrease by E ← rE where r < 1 and decreases with the increase of the noise scale o(η, k, j).

If 
$$i_0 \in B$$
, the privacy loss increase by  $\mathcal{E} \leftarrow \mathcal{E} + \mathcal{O}(\frac{1}{\rho(n,k,i)})$ .



Let's call the only different instance in the neighboring datasets key instance.

► The original privacy loss is 0 upon initialization.



Let's call the only different instance in the neighboring datasets key instance.

- ► The original privacy loss is 0 upon initialization.
- ▶ The privacy loss is "discounted" if key instance is not in the current batch.
- ▶ The privacy loss increases if key instance is used to update model parameters.



Let's call the only different instance in the neighboring datasets key instance.

- The original privacy loss is 0 upon initialization.
- ▶ The privacy loss is "discounted" if key instance is not in the current batch.
- ▶ The privacy loss increases if key instance is used to update model parameters.
- Since the key instance appears once per epoch, the overall privacy loss given a key instance will be the accumulation of the contributions by the key instance in each epoch.



#### Theorem (Informal, Simplified)

We assume that the sensitivity  $S_g$  of the gradient is finite, the distribution of model parameters  $\theta$  satisfies log-Sobolev inequality. In addition, the update functions  $F(\theta) = \theta - \eta \nabla F(\theta)$  and the proximal operator  $T(\theta) = \operatorname{Prox}_{\eta,r}(\theta)$  are Lipschitz continuous with constants  $L_F$  and  $L_T$ , respectively. When the training set has n instances and the batch size is b, the DP-SBCD algorithm running after K epochs satisfies  $(\alpha, \epsilon(\alpha))$ -Rényi differential privacy with the constant:

$$\epsilon(\alpha) \leq \frac{1}{\alpha - 1} \log \left( \sum_{j_0 = 0}^{n/b - 1} \frac{b}{n} \cdot e^{(\alpha - 1)\epsilon_{\kappa}(\alpha, j_0)} \right)$$

$$\epsilon_{\kappa}(\alpha, j_0) \leq \alpha \sum_{k=0}^{K-1} \frac{\eta S_g^2}{b^2 \cdot o(\eta, k, j_0)} \cdot H(k, L_F, L_T, o)$$
(8)

where  $H(k, L_F, L_T, o)$  monotonically increases with k when k,  $L_F$ ,  $L_T$  and the noise function o are fixed.



# Privacy Amplification and Privacy Loss

$$\epsilon(\alpha) \leq \frac{1}{\alpha - 1} \log \left( \sum_{j_0 = 0}^{n/b - 1} \frac{b}{n} \cdot e^{(\alpha - 1)\epsilon_K(\alpha, j_0)} \right)$$
$$\epsilon_K(\alpha, j_0) \leq \alpha \sum_{k=0}^{K-1} \frac{\eta S_g^2}{b^2 \cdot o(\eta, k, j_0)} \cdot H(k, L_F, L_T, o)$$

•  $\epsilon_{\mathcal{K}}(\alpha, j_0)$  represents the privacy loss when the  $j_0$ -th instance is the key instance.

- Under HSA, the calibrated noise in the last few epochs primarily contributes to the total privacy loss.
- ► The noise scale o(η, k, j<sub>0</sub>) should be adaptive to minimize the privacy loss under HSA.



# Privacy Amplification and Privacy Loss

Difference between hidden state and composition theorem



Figure: Difference between hidden state assumption and composition theorem.



# Privacy Contribution of Each Epoch



Figure: Under HSA, the calibrated noise in the last few epochs primarily contributes to the total privacy loss.



### Better Trade-offs between Utility and Privacy



Figure: The privacy loss with adaptive noise has the potential to provide a better utility-privacy tradeoff.



#### Outline

#### Background & Introduction

#### Differential Privacy in Hidden State Assumption

Hidden State Assumption Differential Private Stochastic Block Coordinate Descent Differential Private SGD under Hidden State Assumption

Conclusions



#### Limitations of Block Coordinate Descent

- Efficiency issue raised by coordinate descent.
- Large batch requirements to mitigate the high variance of the algorithm.





#### Limitations of Block Coordinate Descent

- Efficiency issue raised by coordinate descent.
- Large batch requirements to mitigate the high variance of the algorithm.



How to achieve the best of both worlds?

- to get rid of block coordinate descent.
- to obtain a tight privacy loss.



#### Limitations of Block Coordinate Descent

- Efficiency issue raised by coordinate descent.
- Large batch requirements to mitigate the high variance of the algorithm.



How to achieve the best of both worlds?

- to get rid of block coordinate descent.
- to obtain a tight privacy loss.

However, deep neural network training is non-convex in general.



# Take Away Messages

- We propose DP-SBCD algorithm to ensure a tight differential privacy guarantee for general neural networks under HSA.
- Our theorem offers a deeper interpretation of how privacy loss evolves under HSA. It also explains the convergence behavior of the privacy loss.
- The algorithms and theorems in this works posses a generic nature, rendering them compatible with proximal gradient descent and adaptive calibrated noise.
- ▶ By adaptive noise scale, we can empirically achieve better privacy-utility trade-offs.



#### Acknowledgement

My Ph.D student Ding Chen contributed to this work.


## Thank you!

