Towards Efficient Training and Evaluation Robust Models against l_0 Bounded Adversarial Perturbation

Xuyang Zhong, Yixiao Huang, Chen Liu* <u>xuyang.zhong@my.cityu.edu.hk</u>, <u>chen.liu@cityu.edu.hk</u> City University of Hong Kong, University of Michigan

ICML 2024, Vienna, Austria

Introduction

Deep neural network is vulnerable to some imperceptible adversarial perturbations

Methods

$$\max_{\|\boldsymbol{\delta}\|_0 \leq k, 0 \leq \boldsymbol{x} + \boldsymbol{\delta} \leq 1} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{\delta}) = \max_{\boldsymbol{p} \in \mathcal{S}_{\boldsymbol{p}}, \boldsymbol{m} \in \mathcal{S}_{\boldsymbol{m}}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m})$$

- Decompose the l_0 bounded perturbation δ into a magnitude tensor $p \in \mathbb{R}^{h \times w \times c}$ and a sparsity mask $m \in \{0,1\}^{h \times w \times 1}$
- $S_p = \{ p \in \mathbb{R}^{h \times w \times c} \mid 0 \le x + p \le 1 \}$
- $S_m = \{m \in \{0,1\}^{h \times w \times 1} | \|m\|_0 \le k\}$
- We update p and m separately

Methods—Update **p**

$$\boldsymbol{p} \longleftarrow \Pi_{\mathcal{S}_{\boldsymbol{p}}} \left(\boldsymbol{p} + \boldsymbol{\alpha} \cdot \texttt{sign}(\nabla_{\boldsymbol{p}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m})) \right)$$

- Standard l_∞ -bounded PGD to update the magnitude tensor $oldsymbol{p}$
- $\prod_{\mathcal{S}_p}$ is to clip p such that $0 \le x + p \le 1$

Methods—Update *m*

$$\widetilde{\boldsymbol{m}} \longleftarrow \widetilde{\boldsymbol{m}} + \beta \cdot \nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L} / ||\nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L}||_2, \\ \boldsymbol{m} \longleftarrow \Pi_{\mathcal{S}_{\boldsymbol{m}}}(\sigma(\widetilde{\boldsymbol{m}}))$$

- Instead updating a discrete m, we update its continuous alternative $\widetilde{m} \in \mathbb{R}^{h \times w \times 1}$
- Use l_2 -bounded PGD to update $\widetilde{\boldsymbol{m}}$
- Project \widetilde{m} to the feasible set \mathcal{S}_m to get m before multiplying it with p
- $\prod_{\mathcal{S}_m}$ is to set the *k*-largest elements to 1 and the rest to 0
- σ denotes the sigmoid function

Methods—Sparse-PGD (sPGD)

Algorithm 1 Sparse-PGD

1:	Input: Clean image: $x \in [0,1]^{h \times w \times c}$; Model parameters: θ ; Max iteration number:	T;							
	Tolerance: t; l_0 budget: k; Step size: α , β ; Small constant: $\gamma = 2 \times 10^{-8}$								
2:	Random initialize p and \widetilde{m}								
3:	${\bf for}i=0,1,,T-1{\bf do}$								
4:	$m{m} = \Pi_{m{\mathcal{S}}_{m{m}}}(\sigma(\widetilde{m{m}}))$								
5:	$ \text{Calculate the loss } \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m}) $								
6:	if unprojected then								
7:	$g_{oldsymbol{p}} = abla_{oldsymbol{\delta}} \mathcal{L} \odot \sigma(\widetilde{oldsymbol{m}}) \qquad \{oldsymbol{\delta} = oldsymbol{p} \odot oldsymbol{m}\}$								
8:	else								
9:	$g_{oldsymbol{p}} = abla_{oldsymbol{\delta}} \mathcal{L} \odot oldsymbol{m}$								
10:	end if								
11:	$g_{\widetilde{oldsymbol{m}}} = abla_{oldsymbol{\delta}} \mathcal{L} \odot oldsymbol{p} \odot \sigma'(\widetilde{oldsymbol{m}})$								
12:	$oldsymbol{p} = \Pi_{\mathcal{S}_{oldsymbol{p}}}(oldsymbol{p} + lpha \cdot \mathtt{sign}(g_{oldsymbol{p}}))$								
13:	$d = g_{\widetilde{m{m}}}/(g_{\widetilde{m{m}}} _2) {f if} g_{\widetilde{m{m}}} _2 \geq \gamma {f else} 0$								
14:	$oldsymbol{m}_{old}, \; \widetilde{oldsymbol{m}}=oldsymbol{m}, \; \widetilde{oldsymbol{m}}+eta\cdotoldsymbol{d}$								
15:	if attack succeeds then								
16:	break								
17:	end if								
18:	$ \mathbf{if} \Pi_{\mathcal{S}_{\boldsymbol{m}}}(\sigma(\widetilde{\boldsymbol{m}})) - \boldsymbol{m}_{old} _0 \leq 0 \text{for} t \text{consecutive iters then} \\ $								
19:	Random initialize \widetilde{m}								
20:	end if								
21:	end for								
22: Output: Perturbation: $\delta = p \odot m$									

Methods

- Sparse-AutoAttack (sAA): A parameter-free ensemble of both sPGD and black-box attack for comprehensive robustness evaluation against l_0 bounded perturbations
- Adversarial training: Build models against sparse perturbations. We incorporate sPGD in the framework of vanilla adversarial training (Madry et al., 2017) and TRADES (Zhang et al., 2019) and name corresponding methods sAT and sTRADES.

Experiments

Table 1. Robust accuracy of various models on different attacks that generate l_0 bounded perturbations, where the sparsity level k = 20. The models are trained on **CIFAR-10**. Note that we report results of Sparse-RS (RS) with fine-tuned hyperparameters, which outperforms its original version in Croce et al. (2022). CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Madal	Naturali	Clean	Black-Box			White-Box				
Model	Network		CS	RS	SF	PGD_0	SAIF	$sPGD_{\rm proj}$	$sPGD_{\rm unproj}$	SAA
Vanilla	RN-18	93.9	1.2	0.0	17.5	0.4	3.2	0.0	0.0	0.0
l_{∞} -adv. trained, $\epsilon = 8/255$										
GD	PRN-18	87.4	26.7	6.1	52.6	25.2	40.4	9.0	15.6	5.3
PORT	RN-18	84.6	27.8	8.5	54.5	21.4	42.7	9.1	14.6	6.7
DKL	WRN-28	92.2	33.1	7.0	54.0	29.3	41.1	9.9	15.8	6.1
DM	WRN-28	92.4	32.6	6.7	49.4	26.9	38.5	9.9	15.1	5.9
l_2 -adv. trained, $\epsilon = 0.5$										
HAT	PRN-18	90.6	34.5	12.7	56.3	22.5	49.5	9.1	8.5	7.2
PORT	RN-18	89.8	30.4	10.5	55.0	17.2	48.0	6.3	5.8	4.9
DM	WRN-28	95.2	43.3	14.9	59.2	31.8	59.6	13.5	12.0	10.2
FDA	WRN-28	91.8	43.8	18.8	64.2	25.5	57.3	15.8	19.2	14.1
l_1 -adv. trained, $\epsilon = 12$										
l ₁ -APGD	PRN-18	80.7	32.3	25.0	65.4	39.8	55.6	17.9	18.8	16.9
Fast-EG- l_1	PRN-18	76.2	35.0	24.6	60.8	37.1	50.0	18.1	18.6	16.8
l_0 -adv. trained, $k = 20$										
PGD ₀ -A	PRN-18	77.5	16.5	2.9	62.8	56.0	47.9	9.9	21.6	2.4
PGD ₀ -T	PRN-18	90.0	24.1	4.9	85.1	61.1	67.9	27.3	37.9	4.5
SAT	PRN-18	84.5	52.1	36.2	81.2	78.0	76.6	75.9	75.3	36.2
STRADES	PRN-18	89.8	69.9	61.8	88.3	86.1	84.9	84.6	81.7	61.7

Experiments

Comparison between sPGD and Sparse-RS attack under different iterations

Solid: sPGD Dashed: a strong black-box attack Sparse-RS

Conclusion

- 1. We propose an effective and efficient attack algorithm called sparse-PGD (sPGD) to generate l_0 bounded adversarial perturbation.
- 2. We propose an ensemble of sparse attacks called sparse-AutoAttack (sAA) for reliable robustness evaluation against l_0 bounded perturbation.
- 3. We conduct extensive experiments to demonstrate that our attack methods achieve impressive performance in terms of both effectiveness and efficiency.