Towards Efficient Training and Evaluation Robust Models against l_0 Bounded Adversarial Perturbation

Xuyang Zhong, Yixiao Huang, Chen Liu* xuyang.zhong@my.cityu.edu.hk, chen.liu@cityu.edu.hk City University of Hong Kong, University of Michigan

Introduction

Deep neural network is vulnerable to some imperceptible adversarial perturbations

Methods

$$
\max_{\|\boldsymbol{\delta}\|_0\leq k, 0\leq \boldsymbol{x}+\boldsymbol{\delta}\leq 1}\mathcal{L}(\boldsymbol{\theta},\boldsymbol{x}+\boldsymbol{\delta})=\max_{\boldsymbol{p}\in \mathcal{S}_{\boldsymbol{p}},\boldsymbol{m}\in \mathcal{S}_{\boldsymbol{m}}}\mathcal{L}(\boldsymbol{\theta},\boldsymbol{x}+\boldsymbol{p}\odot \boldsymbol{m})
$$

- Decompose the l_0 bounded perturbation δ into a magnitude tensor $p \in$ $\mathbb{R}^{h\times w\times c}$ and a sparsity mask $\boldsymbol{m} \in \{0,1\}^{h\times w\times 1}$
- $\bullet\;\; \mathcal{S}_{\bm p} = \{ \bm p\in \mathbb{R}^{h\times w\times c}\;|\; 0\leq \bm x+\bm p\leq 1\}$
- $S_m = \{m \in \{0,1\}^{h \times w \times 1} \mid ||m||_0 \leq k\}$
- We update \boldsymbol{p} and \boldsymbol{m} separately

Methods—Update p

$$
\boldsymbol{p} \longleftarrow \Pi_{\mathcal{S}_{\boldsymbol{p}} }\left(\boldsymbol{p} + \alpha \cdot \mathtt{sign}(\nabla_{\boldsymbol{p}} \mathcal{L}(\theta, \boldsymbol{x} + \boldsymbol{p} \odot \boldsymbol{m})) \right)
$$

- Standard l_{∞} -bounded PGD to update the magnitude tensor \boldsymbol{p}
- $\bullet \quad \prod_{\mathcal{S}_{\bm p}}$ is to clip $\bm p$ such that $0 \leq \bm x + \bm p \leq 1$

Methods—Update m

$$
\widetilde{\boldsymbol{m}} \longleftarrow \widetilde{\boldsymbol{m}} + \beta \cdot \nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L} / || \nabla_{\widetilde{\boldsymbol{m}}} \mathcal{L} ||_2, \boldsymbol{m} \longleftarrow \Pi_{\mathcal{S}_{\boldsymbol{m}}} (\sigma(\widetilde{\boldsymbol{m}}))
$$

- Instead updating a discrete m , we update its continuous alternative $\widetilde{m} \in \mathbb{R}^{h \times w \times 1}$
- Use l_2 -bounded PGD to update \widetilde{m}
- Project \widetilde{m} to the feasible set \mathcal{S}_m to get m before multiplying it with p
- $\prod_{\mathcal{S}_{\bm{m}}}$ is to set the *k*–largest elements to 1 and the rest to 0
- σ denotes the sigmoid function

Methods—Sparse-PGD (sPGD)

Algorithm 1 Sparse-PGD

Methods

- **Sparse-AutoAttack (sAA)**: A parameter-free ensemble of both sPGD and black-box attack for comprehensive robustness evaluation against l_0 bounded perturbations
- **Adversarial training**: Build models against sparse perturbations. We incorporate sPGD in the framework of vanilla adversarial training (Madry et al., 2017) and TRADES (Zhang et al., 2019) and name corresponding methods **sAT** and **sTRADES**.

Experiments

Table 1. Robust accuracy of various models on different attacks that generate l_0 bounded perturbations, where the sparsity level $k = 20$. The models are trained on CIFAR-10. Note that we report results of Sparse-RS (RS) with fine-tuned hyperparameters, which outperforms its original version in Croce et al. (2022). CornerSearch (CS) is evaluated on 1000 samples due to its high computational complexity.

Experiments

Comparison between sPGD and Sparse-RS attack under different iterations

Solid: sPGD Dashed: a strong black-box attack Sparse-RS

Conclusion

- 1. We propose an effective and efficient attack algorithm called sparse-PGD (sPGD) to generate l_0 bounded adversarial perturbation.
- 2. We propose an ensemble of sparse attacks called sparse-AutoAttack (sAA) for reliable robustness evaluation against l_0 bounded perturbation.
- 3. We conduct extensive experiments to demonstrate that our attack methods achieve impressive performance in terms of both effectiveness and efficiency.