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Abstract

This work studies sparse adversarial perturbations, including both unstructured and struc-
tured ones. We propose a framework based on a white-box PGD-like attack method named
Sparse-PGD to effectively and efficiently generate such perturbations. Furthermore, we com-
bine Sparse-PGD with a black-box attack to comprehensively and more reliably evaluate
the models’ robustness against unstructured and structured sparse adversarial perturbations.
Moreover, the efficiency of Sparse-PGD enables us to conduct adversarial training to build
robust models against various sparse perturbations. Extensive experiments demonstrate that
our proposed attack algorithm exhibits strong performance in different scenarios. More im-
portantly, compared with other robust models, our adversarially trained model demonstrates
state-of-the-art robustness against various sparse attacks.

1 Introduction
Deep learning has been developing tremendously fast in the last decade. However, it is shown
vulnerable to adversarial attacks: imperceivable adversarial perturbations [1, 2] could change the
prediction of a model without altering the input’s semantic content, which poses great challenges
in safety-critical systems. Among different kinds of adversarial perturbations, the ones bounded
by l∞ or l2 norms are mostly well-studied [3, 4, 5] and benchmarked [6], because these adversarial
budgets, i.e., the sets of all allowable perturbations, are convex, which facilitates theoretical analyses
and algorithm design. By contrast, we study sparse perturbations in this work, including both
unstructured and structured ones which are bounded by l0 norm and group l0 norm, respectively.
These perturbations are quite common in physical scenarios, including broken pixels in LED screens
to fool object detection models and adversarial stickers on road signs to make an auto-driving system
fail [7, 8, 9, 10, 11].

However, constructing such adversarial perturbations is challenging as the corresponding adver-
sarial budget is non-convex. Therefore, gradient-based methods, such as projected gradient descent
(PGD) [4], usually cannot efficiently obtain a strong adversarial perturbation. In this regard, ex-
isting methods to generate sparse perturbations [12, 13, 14, 15, 16, 17] either cannot control the
l0 norm or the group l0 norm of perturbations or have prohibitively high computational complex-
ity, which makes them inapplicable for adversarial training to obtain robust models against sparse
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perturbations. The perturbations bounded by l1 norm are the closest scenario to l0 bounded pertur-
bations among convex adversarial budgets defined by an lp norm. Nevertheless, adversarial training
in this case [18, 19] still suffers from issues such as slow convergence and instability. Jiang et al. [20]
demonstrates that these issues arise from non-sparse perturbations bounded by l1 norm. In other
words, l1 adversarial budget guarantees still cannot the sparsity of the perturbations. Further-
more, existing works investigating structured sparse perturbations [16, 17, 21, 22, 23] only support
generating a single adversarial patch, lacking flexibility and generality. Thus, it is necessary but
challenging to develop a unified framework for both unstructured and structured sparse adversarial
perturbations.

In this work, we propose a white-box attack named Sparse-PGD (sPGD) to effectively and
efficiently generate unstructured and structured sparse perturbations. For unstructured sparse
perturbations, we decompose the perturbation δ as the product of a magnitude tensor p and a
binary sparse mask m: δ = p⊙m , where p and m determine the magnitudes and the locations of
perturbed features, respectively. Although p can be updated by PGD-like methods, it is challenging
to directly optimize the binary mask m in the discrete space. We thereby introduce an alternative
continuous variable m̃ to approximate m and update m̃ by gradient-based methods, m̃ is then
transformed to m by projection to the discrete space. To further boost the performance, we
propose the unprojected gradient of p and random reinitialization mechanism. For structured
sparse perturbations, we study group l0 norm and its approximated version based on the group
norm proposed in [24]. The structured sparse perturbation bounded by approximated group l0
norm can be thus decomposed as δ = p ⊙m = p ⊙min (TConv(v,k), 1), where the binary group
mask v determines the positions of the groups to be perturbed and the customized binary kernel k
determines the pattern of groups. That is to say, we decompose the structured sparse perturbations
into their positions and the patterns. Furthermore, we leverage transposed convolution (TConv)
and clipping operations to map the positions of the groups v to the positions of perturbed features
m. Similar to the unstructured cases, we introduce the continuous ṽ and update it by gradient-
based methods. Ultimately, we manage to transform the problem of optimizing the structured
sparse mask m into the problem of optimizing the group mask v bounded by l0 norm, which can
be resolved in the framework of sPGD. The whole pipeline is illustrated in Figure 2. On top of
sPGD, we propose Sparse-AutoAttack (sAA), which is the ensemble of the white-box sPGD and
another black-box sparse attack, for a more comprehensive and reliable evaluation against both
unstructured and structured sparse perturbations. Through extensive experiments, we show that
our method exhibits better performance than other attacks.

More importantly, we explore adversarial training to obtain robust models against sparse at-
tacks. In this context, the attack method will be called in each mini-batch update, so it should
be both effective and efficient. Compared with existing methods, our proposed sPGD performs
much better when using a small number of iterations, making it feasible for adversarial training
and its variants [25]. Empirically, models adversarially trained by sPGD demonstrate the strongest
robustness against various sparse attacks.

We summarize the contributions of this paper as follows:

1. We propose an effective and efficient white-box attack algorithm named Sparse-PGD (sPGD)
which can be utilized to generate both unstructured and structured sparseadversarial pertur-
bations.

2. sPGD achieves the best performance among white-box sparse attacks. We then combine it
with a black-box sparse attack to construct Sparse-AutoAttack (sAA) for more comprehensive
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robustness evaluation against sparse adversarial perturbations.

3. sPGD achieves much better performance in the regime of limited iterations, it is then adopted
for adversarial training. Extensive experiments demonstrate that models adversarially trained
by sPGD have significantly stronger robustness against various sparse attacks.

Preliminaries: We use image classification as an example, although the proposed methods are
applicable to any classification model. Under lp bounded perturbations, the robust learning aims
to solve the following min-max optimization problem.

min
θ

1

N

N∑
i=1

max
δi

L(θ,xi + δi),

s.t. ||δi||p ≤ ϵ, 0 ≤ xi + δi ≤ 1.

(1)

where θ denotes the parameters of the model and L is the loss objective function. xi ∈ Rh×w×c is
the input image where h, w and c represent the height, width, and number of channels, respectively.
δi has the same shape as xi and represents the perturbation. The perturbations are constrained by
its lp norm and the bounding box. In this regard, we use the term adversarial budget to represent
the set of all allowable perturbations. Adversarial attacks focus on the inner maximization problem
of (1) and aim to find the optimal adversarial perturbation, while adversarial training focuses on
the outer minimization problem of (1) and aims to find a robust model parameterized by θ. Due to
the high dimensionality and non-convexity of the loss function when training a deep neural network,
[26] has proven that solving the problem (1) is at least NP-complete.

We consider the pixel sparsity for image inputs in this work, which is more meaningful than
feature sparsity and consistent with existing works [13, 17]. That is, a pixel is considered perturbed
if any of its channel is perturbed, and sparse perturbation means few pixels are perturbed.

2 Related Works
Non-sparse Attacks: The pioneering work [1] finds the adversarial perturbations to fool image
classifiers and proposes a method to minimize the l2 norm of such perturbations. To more efficiently
generate adversarial perturbations, the fast gradient sign method (FGSM) [3] generates l∞ pertur-
bation in one step, but its performance is significantly surpassed by the multi-step variants [27].
Projected Gradient Descent (PGD) [4] further boosts the attack performance by using iterative
updating and random initialization. Specifically, each iteration of PGD updates the adversarial
perturbation δ by:

δ ←− ΠS(δ + α · s(∇δL(θ,x+ δ))) (2)

where S is the adversarial budget, α is the step size, s : Rh×w×c → Rh×w×c selects the steepest
ascent direction based on the gradient of the loss L with respect to the perturbation. Inspired
by the first-order Taylor expansion, Madry et al. [4] derives the steepest ascent direction for l2
bounded and l∞ bounded perturbations to efficiently find strong adversarial examples; SLIDE [18]
and l1-APGD [19] use k-coordinate ascent to construct l1 bounded perturbations, which is shown
to suffer from the slow convergence [20].

Besides the attacks that have access to the gradient of the input (i.e., white-box attacks), there
are black-box attacks that do not have access to model parameters, including the ones based on
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gradient estimation through finite differences [28, 29, 30, 31, 32] and the ones based on evolutionary
strategies or random search [33, 34]. To improve the query efficiency of these attacks, [35, 36, 37, 38]
generate adversarial perturbation at the corners of the adversarial budget.

To more reliably evaluate the robustness, Croce and Hein [39] proposes AutoAttack (AA) which
consists of an ensemble of several attack methods, including both black-box and white-box attacks.
Croce and Hein [19] extends AA to the case of l1 bounded perturbations and proposes AutoAttack-l1
(AA-l1). Although the l1 bounded perturbations are usually sparse, Jiang et al. [20] demonstrates
that AA-l1 is able to find non-sparse perturbations that cannot be found by SLIDE to fool the
models. That is to say, l1 bounded adversarial perturbations are not guaranteed to be sparse. We
should study perturbations bounded by l0 norm.

Sparse Attacks: For perturbations bounded by l0 norm, directly adopting vanilla PGD as in
Eq. (2) leads to suboptimal performance due to the non-convexity nature of the adversarial budget:
PGD0 [13], which updates the perturbation by gradient ascent and project it back to the adversarial
budget, turns out very likely to trap in the local maxima. Different from PGD0, CW L0 [40] projects
the perturbation onto the feasible set based on the absolute product of gradient and perturbation
and adopts a mechanism similar to CW L2 [40] to update the perturbation. SparseFool [12] and
GreedyFool [15] also generate sparse perturbations, but they do not strictly restrict the l0 norm of
perturbations. If we project their generated perturbations to the desired l0 ball, their performance
will drastically drop. Sparse Adversarial and Interpretable Attack Framework (SAIF) [41] is similar
to our method in that SAIF also decomposes the l0 perturbation into a magnitude tensor and
sparsity mask, but it uses the Frank-Wolfe algorithm [42] to separately update them. SAIF turns
out to get trapped in local minima and shows poor performance on adversarially trained models.
Besides white-box attacks, there are black-box attacks to generate sparse adversarial perturbations,
including CornerSearch [13] and Sparse-RS [17]. However, these black-box attacks usually require
thousands of queries to find an adversarial example, making it difficult to scale up to large datasets.
In addition to the unstructured adversarial perturbations mentioned above, there are several works
discussing structured sparse perturbations, including universal adversarial patch for all data [21, 22]
and some image-specific patches [16, 17, 23]. However, these works only support generating a single
adversarial patch, which lacks of flexibility and generality.

Adversarial Training: Despite the difficulty in obtaining robust deep neural network, adver-
sarial training [4, 43, 44, 45, 46, 47, 48, 49] stands out as a reliable and popular approach to do so
[39, 50]. It generates adversarial examples first and then uses them to optimize model parameters.
Despite effective, adversarial training is time-consuming due to multi-step attacks. Shafahi et al.
[51], Zhang et al. [52], Wong et al. [53], Sriramanan et al. [54] use weaker but faster one-step attacks
to reduce the overhead, but they may suffer from catastrophic overfitting [55]: the model overfits
to these weak attacks during training instead of achieving true robustness to various attacks. Kim
et al. [56], Andriushchenko and Flammarion [57], Golgooni et al. [58], de Jorge et al. [59] try to
overcome catastrophic overfitting while maintaining efficiency.

Compared with l∞ and l2 bounded perturbations, adversarial training against l1 bounded per-
turbations is shown to be even more time-consuming to achieve the optimal performance [19]. In
the case of l0 bounded perturbations, PGD0 [13] is adopted for adversarial training. However,
models trained by PGD0 exhibit poor robustness against strong sparse attacks. In this work, we
propose an effective and efficient sparse attack that enables us to train a model that is more robust
against various sparse attacks than existing methods.
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3 Unstructured Sparse Adversarial Attack
In this section, we introduce Sparse-PGD (sPGD) for generating unstructured sparse perturbations.
Its extension that generates structured sparse perturbations is introduced in Sec. 4. Similar to Au-
toAttack [19, 39], we further combine sPGD with a black-box attack to construct sparse-AutoAttack
(sAA) for more comprehensive and reliable robustness evaluation.

3.1 Sparse-PGD (sPGD)
Inspired by SAIF [41], we decompose the sparse perturbation δ into a magnitude tensor p ∈ Rh×w×c

and a sparsity mask m ∈ {0, 1}h×w×1, i.e., δ = p⊙m. Therefore, the attacker aims to maximize
the following loss objective function:

max
∥δ∥0≤ϵ,0≤x+δ≤1

L(θ,x+ δ) = max
p∈Sp,m∈Sm

L(θ,x+ p⊙m). (3)

The feasible sets for p and m are Sp = {p ∈ Rh×w×c|0 ≤ x + p ≤ 1} and Sm = {m ∈
{0, 1}h×w×1|∥m∥0 ≤ ϵ}, respectively. Similar to PGD, sPGD iteratively updates p and m un-
til finding a successful adversarial example or reaching the maximum iteration number.

Update Magnitude Tensor p: The magnitude tensor p is only constrained by the input
domain. In the case of images, the input is bounded between 0 and 1. Note that the constraints on
p are elementwise and similar to those of l∞ bounded perturbations. Therefore, instead of greedy
or random search [13, 17], we utilize PGD in the l∞ case, i.e., use the sign of the gradients, to
optimize p as demonstrated by Eq. (4) below, with α being the step size.

p←− ΠSp (p+ α · sign(∇pL(θ,x+ p⊙m))) , (4)

Update Sparsity Mask m: The sparsity mask m is binary and constrained by its l0 norm.
Directly optimizing the discrete variable m is challenging, so we update its continuous alternative
m̃ ∈ Rh×w×1 and project m̃ to the feasible set Sm to obtain m before multiplying it with the
magnitude tensor p to obtain the sparse perturbation δ. Specifically, m̃ is updated by gradient
ascent. Projecting m̃ to the feasible set Sm is to set the ϵ-largest elements in m̃ to 1 and the rest
to 0. In addition, we adopt the sigmoid function to normalize the elements of m̃ before projection.

Mathematically, the update rules for m̃ and m are demonstrated as follows:

m̃←− m̃+ β · ∇m̃L/∥∇m̃L∥2, (5)
m←− ΠSm(σ(m̃)) (6)

where β is the step size for updating the sparsity mask’s continuous alternative m̃, σ(·) denotes the
sigmoid function. Furthermore, to prevent the magnitude of m̃ from becoming explosively large,
we do not update m̃ when ||∇m̃L||2 < γ, which indicates that m̃ is located in the saturation zone
of sigmoid function. The gradient ∇m̃L is calculated at the point δ = p⊙ΠSm(σ(m̃)), where the
loss function is not always differentiable. We demonstrate how to estimate the update direction in
the next part.

Backward Function: Based on Eq. (3), we can calculate the gradient of the magnitude tensor
p by ∇pL = ∇δL(θ,x + δ) ⊙m and use gp to represent this gradient for notation simplicity. At
most, ϵ non-zero elements are in the mask m, so gp is sparse and has at most ϵ non-zero elements.
That is to say, we update at most ϵ elements of the magnitude tensor p based on the gradient gp.
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Algorithm 1 Sparse-PGD for l0 Bounded Perturbations
1: Input: Clean image: x ∈ [0, 1]h×w×c; Model parameters: θ; Max iteration number: T ; Toler-

ance: t; l0 budget: ϵ; Step size: α, β; Small constant: γ = 2× 10−8

2: Random initialize p and m̃
3: m = ΠSm(σ(m̃))
4: for i = 0, 1, ..., T − 1 do
5: Calculate the loss L(θ,x+ p⊙m)
6: if unprojected then
7: gp = ∇δL ⊙ σ(m̃) {δ = p⊙m}
8: else
9: gp = ∇δL ⊙m

10: end if
11: gm̃ = ∇δL ⊙ p⊙ σ′(m̃)
12: p = ΠSp(p+ α · sign(gp))
13: d = gm̃/∥gm̃∥2 if ||gm̃||2 ≥ γ else 0
14: mold, m̃ = m, m̃+ β · d
15: m = ΠSm(σ(m̃))
16: if attack succeeds then
17: break
18: end if
19: if ||m−mold||0 ≤ 0 for t consecutive iters then
20: Random initialize m̃
21: end if
22: end for
23: Output: Perturbation: δ = p⊙m

Like coordinate descent, this may result in suboptimal performance since most elements of p are
unchanged in each iterative update. To tackle this problem, we discard the projection to the binary
set Sm when calculating the gradient and use the unprojected gradient g̃p to update p. Based on
Eq. (6), we have g̃p = ∇δL(θ,x+ δ)⊙ σ(m̃). The idea of the unprojected gradient is inspired by
training pruned neural networks and lottery ticket hypothesis [60, 61, 62, 63]. All these methods
train importance scores to prune the model parameters but update the importance scores based on
the whole network instead of the pruned sub-network to prevent the sparse update, which leads to
suboptimal performance.

In practice, the performance of using gp and g̃p to optimize p is complementary. The sparse
gradient gp is consistent with the forward propagation and is thus better at exploitation. By con-
trast, the unprojected gradient g̃p updates the p by a dense tensor and is thus better at exploration.
In view of this, we set up an ensemble of attacks with both gradients to balance exploration and
exploitation.

When calculating the gradient of the continuous alternative m̃, we have ∂L
∂m̃ = ∂L(θ,x+δ)

∂δ ⊙
p ⊙ ∂ΠSm (σ(m̃))

∂m̃ . Since the projection to the set Sm is not always differentiable, we discard the
projection operator and use the approximation ∂ΠSm (σ(m̃))

∂m̃ ≃ σ′(m̃) to calculate the gradient.
Random Reinitialization: Due to the projection to the set Sm in Eq. (6), the sparsity mask

m changes only when the relative magnitude ordering of the continuous alternative m̃ changes. In
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other words, slight changes in m̃ usually mean no change in m. As a result, m usually gets trapped
in a local maximum. To solve this problem, we propose a random reinitialization mechanism.
Specifically, when the attack fails, i.e., the model still gives the correct prediction, and the current
sparsity mask m remains unchanged for three consecutive iterations, the continuous alternative m̃
will be randomly reinitialized for better exploration.

To summarize, we provide the pseudo-code of sparse PGD (sPGD) in Algorithm 1. SAIF [41]
also decomposes the perturbation δ into a magnitude tensor p and a mask m, but uses a different
update rule: it uses Frank-Wolfe to update both p and m. By contrast, we introduce the continuous
alternative m̃ of m and use gradient ascent to update p and m̃. Moreover, we include unprojected
gradient and random reinitialization techniques in Algorithm 1 to further enhance the performance.

3.2 Sparse-AutoAttack (sAA)
AutoAttack (AA) [39] is an ensemble of four diverse attacks for a standardized parameters-free and
reliable evaluation of robustness against l∞ and l2 attacks. Croce and Hein [19] extends AutoAttack
to l1 bounded perturbations. In this work, we propose sparse-AutoAttack (sAA), which is also a
parameter-free ensemble of both black-box and white-box attacks for comprehensive robustness
evaluation against l0 bounded perturbations. It can be used in a plug-and-play manner. However,
different from the l∞, l2 and l1 cases, the adaptive step size, momentum and difference of logits
ratio (DLR) loss function do not improve the performance in the l0 case, so they are not adopted
in sAA. In addition, compared with targeted attacks, sPGD turns out stronger when using a larger
query budget in the untargeted settings given the same total number of back-propagations. As a
result, we only include the untargeted sPGD with cross-entropy loss and constant step sizes in sAA.
Specifically, we run sPGD twice for two different backward functions: one denoted as sPGDproj uses
the sparse gradient gp, and the other denoted as sPGDunproj uses the unprojected gradient g̃p as
described in Section 3.1. As for the black-box attack, we adopt the strong black-box attack Sparse-
RS [17], which can generate l0 bounded perturbations. We run each version of sPGD and Sparse-RS
for 10000 iterations, respectively. We use cascade evaluation to improve the efficiency. Concretely,
suppose we find a successful adversarial perturbation by one attack for one instance. Then, we will
consider the model non-robust in this instance and the same instance will not be further evaluated
by other attacks. Based on the efficiency and the attack success rate, the attacks in sAA are sorted
in the order of sPGDunproj, sPGDproj and Sparse-RS.

4 Structured Sparse Adversarial Attack
In this section, we extend Sparse-PGD (sPGD) and Sparse-AutoAttack (sAA) to generate struc-
tured sparse perturbations.

4.1 Formulation of Structured Sparsity
Given an input x ∈ Rd, we can partition its d features into several groups that may overlap and
define structured sparsity based on them. These groups can represent pixels of a row, a column,
a patch, or a particular pattern. Without the loss of generality, we use {1, 2, ..., d} as the indices
of d features of the input and N set of indices G = {Gj}Nj=1 to represent the groups. For any
perturbation, we define its group l0 norm based on groups G as the minimal number of groups
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needed to cover its non-zero components. Mathematically, Bach [24] proposed a convex envelope
of group l0 norm as follows:

Ω(x) =

d∑
k=1

|xπk
| [F ({π1, ..., πk})− F ({π1, ..., πk−1})] . (7)

where F is a submodular function defined on the subsets of V = {1, 2, ..., d} and {πi}di=1 is a
permutation of {1, 2, ..., d}. More specifically, F (A) indicates the minimal number of groups from
G to cover the set A and {πi}di=1 indicates the components of |x| in the decreasing order, i.e.,
|xπ1
| ≥ ... ≥ |xπd

| ≥ 0. Compared with the convex envelope Ω, the group l0 norm Ω0 is defined as
follows:

Ω0(x) =

d∑
k=1

1(|xπk
|) [F ({π1, ..., πk})− F ({π1, ..., πk−1})]

= F ({π1, ..., πd′}) where xπd′ ̸= 0 and xπd′+1
= 0.

(8)

Similar to the difference between l1 norm and l0 norm, we replace |xπk
| with 1(|xπk

|) in Eq. (8) to
indicate the number of groups with non-zero entities, where 1 is an indicator function. The second
equality in Eq. (8) is based on the decreasing order of {|xπi

|}di=1 and is a more straightforward
definition of the group l0 norm. Like the l0 norm, the adversarial budgets based on the group l0
norm are not convex, either.

In general, it is difficult to decide the minimum number of groups to cover non-zero elements, i.e.,
to calculate the function F . Therefore, it is challenging to directly apply sPGD to the group l0 norm
constraints. To address this issue, we can approximate Ω0 by a tight surrogate that facilitates the
optimization by sPGD. In this regard, we introduce a binary group mask v = [v1, ..., vN ] ∈ {0, 1}N
to indicate whether a specific group is chosen to be perturbed. Mathematically, ∀i, if xi ̸= 0, then
∃j ∈ {1, 2, ..., N}, vj = 1 and i ∈ Gj . In this context, we propose the following approximation of
the group l0 norm as the surrogate:

Ω′
0(x,v) =

N∑
i=1

1(∥xGi∥p) · vi, (9)

where xGi is the subvector of x on the indices in Gi, and p ∈ [0,+∞]. Compared with Ω0 in Eq.
(8), Ω′

0 in Eq. (9) does not require the number of groups in G to cover non-zero elements in x to
be minimum. Instead, Ω′

0 calculates the number of perturbed groups in G selected by the binary
vector v. In addition, when 1(∥xGi

∥p) = 1 for all i ∈ {j | vj = 1}, the approximated group l0 norm
Ω′

0(x,v) is equivalent to the l0 norm of the group mask v, i.e., Ω′
0(x,v) = ∥v∥0. In summary, we

have the following theorem:

Theorem 4.1. Given an input x ∈ Rd, a set of groups G = {Gj}Nj=1 and any vector v satisfying
the constraint in the definition of Ω′

0, then we have Ω0(x) ≤ Ω′
0(x,v) ≤ ∥v∥0.

Proof. The first inequality is based on the minimum optimality condition of the function F in
Eq. (8). Since Ω0(x) indicates the minimal number of groups needed to cover the indices of non-
zero elements in x, we have at least the same number of terms in Eq. (9) where xGi

̸= 0 and
vi = 1. Therefore, we have Ω0(x) ≤ Ω′

0(x). For the second inequality, v is a binary vector, i.e., ∀i,
vi ∈ {0, 1}, so Ω′

0(x,v) ≤ ∥v∥0 is clear.
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Figure 1: The ratio between the group l0
norm and the approximated group l0 norm.
The x-axis is the approximated group l0
norm, and the y-axis is the ratio. We plot the
ratios of random and adversarial 3 × 3 patch
perturbations, where the adversarial pertur-
bations are generated on vanilla ResNet-18
trained on CIFAR-10. The solid line and
shadow denote the mean value and standard
deviation, respectively.

Theorem 4.1 indicates that the number of perturbed
groups determined by v can be larger than the minimal
number of groups to cover the perturbed features x, i.e.,
Ω′

0(x,v) can be larger than Ω0(x). The gap between
Ω′

0(x,v) and Ω0(x) stem from the potential overlap among
groups in G. However, we demonstrate that Ω′

0(δ,v) is
quite close to Ω0(δ) in practice. To corroborate this, we
calculate the ratio between the group l0 norm and approx-
imated group l0 norm, i.e., Ω0(δ)/Ω

′
0(δ,v) of both random

and adversarial perturbations under different sparsity level
ϵ defined by Ω′

0(δ,v) ≤ ϵ. As illustrated in Figure 1, when
applying 3×3 patch perturbations, we can observe that the
ratio Ω0(δ)/Ω

′
0(δ,v) decreases as ϵ increases. Specifically,

when ϵ is smaller than 5, the ratios of both random and
adversarial perturbations are larger than 0.95. Notably,
the l0 norm of 5 non-overlapping 3× 3 patches reaches 45,
which is very large for a sparse perturbation used in prac-
tice, so we can conclude based on the simulation results
that Ω′

0 is a good approximation of Ω0 in the context of
the structured sparse attack.

4.2 sPGD for Structured Sparse Perturbations

Project

Continuous
Group Mask

Group Mask

Kernel

Pixel Mask

Dense
Perturbation

Structured Sparse
Perturbation

TConv 
Clip .

Learnable Variables:
- Continuous Group Mask
- Dense Perturbation

Figure 2: Pipeline of sPGD for structured sparse perturbations. The continuous group mask ṽ is first
projected to get the binary group mask v to ensure ∥v∥0 ≤ ϵ, which is similar to Eq. (6). Given the
kernel k ∈ {0, 1}r×r with a customized pattern, we can transform v to the pixel mask m using transposed
convolution and clipping (see Eq. (10)). Finally, we element-wisely multiply m with the dense perturbation
p to obtain the structured sparse perturbation δ. Note that the continuous group mask ṽ and the dense
perturbation p are learnable.

Based on the approximated group l0 norm Ω′
0 proposed in Eq. (9), we extend Sparse-PGD

(sPGD) to generate structured sparse perturbations. Similarly, we decompose the perturbation δ
into a magnitude tensor p and a binary pixel mask m. Like unstructured cases, the magnitude
tensor p is updated using l∞ PGD, as in Eq. (4).
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Based on the definition of structured sparsity and Ω′
0 defined in Eq. (9), if a specific group Gi

is chosen to be perturbed, then we let vi = 1, otherwise vi will be set 0. In this regard, finding the
optimal m s.t. Ω′

0(m,v) ≤ ϵ is equivalent to finding the optimal group mask v s.t. ∥v∥0 ≤ ϵ, which
can be resolved by sPGD. Similar to the unstructured cases, we optimize the continuous alternative
ṽ rather than optimizing a binary v directly. In the following, we will elaborate on the mapping
from v to m using different examples.

Column / Row: If we aim to perturb at most ϵ columns in an image x ∈ [0, 1]h×w×c. Since
we can partition x into w groups (i.e., columns), v has the size of 1 × w. Thus, m can obtained
through expanding v from 1 × w to h × w. As for row, the only difference is that the size of v is
h × 1. Note that, there is no overlap between any two columns or rows, so Ω′

0(m,v) ≡ Ω0(m) in
this case.

Patch / Any Pattern: Without loss of generality, we assume that the perturbations are
contained to be localized in r× r patches. To avoid wasting budget due to the potential overlap at
the border or corner of images, we let v ∈ {0, 1}(h−r+1)×(w−r+1), and we can derive the mapping
operation from v to m as follows:

m = min (TConv(v,k, s), 1) , (10)

where TConv is the transposed convolution operation, k = 1r×r is the kernel with all-one entities,
s = 1 denotes the stride. The clipping operation is to ensure the output value assigned to m is
binary. Moreover, we can customize the kernel k ∈ {0, 1}r×r in Eq. (10) to make the perturbations
localized in groups with any desired patterns, such as hearts, stars, letters and so on. Notably,
when k = [1], i.e., a 1 × 1 matrix with a sole value 1, the resulting perturbations are degraded to
unstructured sparse ones; when k = 1h×1 or 11×w, specific columns or rows are perturbed. The
pipeline of sPGD for structured sparse perturbations in the general case is illustrated in Figure 2.

In addition to the forward mapping operation defined in Eq. (10), we provide its backward
function as follows:

gv = Conv(gm,k, s), (11)

where Conv is the convolution operation, and gm is the gradient of m. We neglect the clipping
operation when calculating the gradient of v since it is not always differentiable.

The extension of sPGD for structured sparse perturbations offers a unified framework to generate
sparse adversarial perturbations. We provide its pseudo-code in Algorithm 2.

4.3 sAA for Structured Sparse Perturbations
Similar to Section 3.2, we also combine sPGDunproj, sPGDproj and Sparse-RS to build Sparse-
AutoAttack (sAA) for reliable evaluation of robustness against structured sparse perturbations. We
extended the original version of Sparse-RS so that it can generate structured sparse perturbations
with any customized patterns. Specifically, we just apply a pattern mask to the patches generated
by Sparse-RS.

5 Adversarial Training
In addition to adversarial attacks, we explore adversarial training to build robust models against
sparse perturbations. In the framework of adversarial training, the attack is used to generate
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Algorithm 2 Sparse-PGD for Structured Sparse Perturbations
1: Input: Clean image: x ∈ [0, 1]h×w×c; Model parameters: θ; Customized pattern kernel:

k ∈ {0, 1}r×r; Stride: s = 1; Max iteration number: T ; Tolerance: t; group l0 budget: ϵ; Step
size: α, β; Small constant: γ = 2× 10−8

2: Random initialize p and ṽ
3: v = ΠSv (σ(ṽ)) where Sv = {v|∥v∥0 ≤ ϵ}.
4: m = min (TConv(v,k, s), 1)
5: for i = 0, 1, ..., T − 1 do
6: Calculate the loss L(θ,x+ p⊙m)
7: if unprojected then
8: gp = ∇δL ⊙min (TConv(σ(ṽ),k, s), 1)
9: else

10: gp = ∇δL ⊙m
11: end if
12: gṽ = Conv(∇mL,k, s)⊙ σ′(ṽ)
13: p = ΠSp(p+ α · sign(gp))
14: d = gṽ/∥gṽ∥2 if ||gṽ||2 ≥ γ else 0
15: vold, ṽ = v, ṽ + β · d
16: v = ΠSv (σ(ṽ))
17: m = min (TConv(v,k, s), 1)
18: if attack succeeds then
19: break
20: end if
21: if ||v − vold||0 ≤ 0 for t consecutive iters then
22: Random initialize ṽ
23: end if
24: end for
25: Output: Perturbation: δ = p⊙m

adversarial perturbation in each training iteration, so the attack algorithm should not be too com-
putationally expensive. In this regard, we run the untargeted sPGD (Algorithm 1) for 20 iterations
to generate sparse adversarial perturbations during training. We incorporate sPGD in the frame-
work of vanilla adversarial training [4] and TRADES [25] and name corresponding methods sAT
and sTRADES, respectively. Note that we use sAT and sTRADES as two examples of applying
sPGD to adversarial training since sPGD can be incorporated into any other adversarial train-
ing variant as well. To accommodate the scenario of adversarial training, we make the following
modifications to sPGD.

Random Backward Function: Since the sparse gradient and the unprojected gradient as
described in Section 3.1 induce different exploration-exploitation trade-offs, we randomly select one
of them to generate adversarial perturbations for each mini-batch when using sPGD to generate
adversarial perturbations. Compared with mixing these two backward functions together, as in
sAA, random backward function does not introduce computational overhead.

Multi-ϵ Strategy: Inspired by l1-APGD [19] and Fast-EG-l1 [20], multi-ϵ strategy is adopted to
strengthen the robustness of model. That is, we use a larger sparsity threshold, i.e., ϵ in Algorithm 1,
in the training phase than in the test phase.

11



Higher Tolerance for Reinitialization: The default tolerance for reinitialization in sPGD is
3 iterations, which introduces strong stochasticity. However, in the realm of adversarial training, we
have a limited number of iterations. As a result, the attacker should focus more on the exploitation
ability to ensure the strength of the generated adversarial perturbations. While stochasticity intro-
duced by frequent reinitialization hurts exploitation, we find a higher tolerance for reinitialization
improves the performance. In practice, we set the tolerance to 10 iterations in adversarial training.

6 Experiments
In this section, we conduct extensive experiments to compare our attack methods with baselines in
evaluating the robustness of various models against l0 bounded and structured sparse perturbations.
Besides the effectiveness with an abundant query budget, we also study the efficiency of our methods.
Our results demonstrate that our sPGD performs best among white-box attacks. With limited
iterations, sPGD achieves significantly better performance than existing methods. Therefore, sAA,
consisting of the best white-box and black-box attacks, has the best attack success rate. sPGD,
due to its efficiency, is utilized for adversarial training to obtain the best robust models against l0
bounded and structured sparse adversarial perturbations. To further demonstrate the efficacy of our
method, we evaluate the transferability of sPGD. The results show that sPGD has a high transfer
success rate, making it applicable in practical scenarios. The adversarial examples generated by
our methods are presented in Sec. 6.7. In addition, we conduct ablation studies for analysis in C.
Implementation details are deferred to Appendix A.

6.1 Robustness against Unstructured Sparse Perturbations
First, we compare our proposed sPGD, including sPGDproj (sPGDp) and sPGDunproj (sPGDu) as
defined in Section 3.2, and sAA with existing white-box and black-box attacks that generate l0
bounded sparse perturbations. We evaluate different attack methods based on the models trained
on CIFAR-10 [64] and report the robust accuracy with ϵ = 20 on the whole test set in Table 1.
Additionally, the results on ImageNet100 [65] and a real-world traffic sign dataset GTSRB [66] are
reported in Table 2. Note that the image sizes in GTSRB vary from 15 × 15 to 250 × 250. For
convenience, we resize them to 224 × 224 and use the same model architecture as in ImageNet-
100. Furthermore, only the training set of GTSRB has annotations, we manually split the original
training set into a test set containing 1000 instances and a new training set containing the rest
data. In Appendix B, we report more results on CIFAR-10 with ϵ = 10, ϵ = 15, and the results of
models trained on CIFAR-100 [64] in Table 7, 8, 9, respectively, to demonstrate the efficacy of our
methods.

Models: We select various models to comprehensively evaluate their robustness against l0
bounded perturbations. As a baseline, we train a ResNet-18 (RN-18) [67] model on clean inputs.
For adversarially trained models, we select competitive models that are publicly available, including
those trained against l∞, l2 and l1 bounded perturbations. For the l∞ case, we include adversarial
training with the generated data (GD) [46], the proxy distributions (PORT) [44], the decoupled
KL divergence loss (DKL) [48] and strong diffusion models (DM) [49]. For the l2 case, we include
adversarial training with the proxy distributions (PORT) [44], strong diffusion models (DM) [49],
helper examples (HAT) [47] and strong data augmentations (FDA) [45]. The l1 case is less explored
in the literature, so we only include l1-APGD adversarial training [19] and the efficient Fast-EG-l1
[20] for comparison. The network architecture used in these baselines is either ResNet-18 (RN-18),
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Table 1: Robust accuracy of various models on different sparse attacks, where the sparsity level ϵ = 20.
The models are trained on CIFAR-10. Note that we report results of Sparse-RS (RS) with fine-tuned
hyperparameters, which outperforms its original version in Croce et al. [17]. CornerSearch (CS) is evaluated
on 1000 samples due to its high computational complexity.

Model Network Clean Black White sAACS RS SF PGD0 SAIF sPGDp sPGDu

Vanilla RN-18 93.9 1.2 0.0 17.5 0.4 3.2 0.0 0.0 0.0

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 26.7 6.1 52.6 25.2 40.4 9.0 15.6 5.3
PORT RN-18 84.6 27.8 8.5 54.5 21.4 42.7 9.1 14.6 6.7
DKL WRN-28 92.2 33.1 7.0 54.0 29.3 41.1 9.9 15.8 6.1
DM WRN-28 92.4 32.6 6.7 49.4 26.9 38.5 9.9 15.1 5.9

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 34.5 12.7 56.3 22.5 49.5 9.1 8.5 7.2
PORT RN-18 89.8 30.4 10.5 55.0 17.2 48.0 6.3 5.8 4.9
DM WRN-28 95.2 43.3 14.9 59.2 31.8 59.6 13.5 12.0 10.2
FDA WRN-28 91.8 43.8 18.8 64.2 25.5 57.3 15.8 19.2 14.1

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 32.3 25.0 65.4 39.8 55.6 17.9 18.8 16.9
Fast-EG-l1 PRN-18 76.2 35.0 24.6 60.8 37.1 50.0 18.1 18.6 16.8

l0-adv. trained, ϵ = 20

PGD0-A PRN-18 77.5 16.5 2.9 62.8 56.0 47.9 9.9 21.6 2.4
PGD0-T PRN-18 90.0 24.1 4.9 85.1 61.1 67.9 27.3 37.9 4.5
sAT PRN-18 84.5 52.1 36.2 81.2 78.0 76.6 75.9 75.3 36.2
sTRADES PRN-18 89.8 69.9 61.8 88.3 86.1 84.9 84.6 81.7 61.7

PreActResNet-18 (PRN-18) [68] or WideResNet-28-10 (WRN-28) [69]. For the l0 case, we evaluate
PGD0 [13] in vanilla adversarial training (PGD0-A) and TRADES (PGD0-T) using the same hyper-
parameter settings as in Croce and Hein [13]. Since other white-box sparse attacks present trivial
performance in adversarial training, we do not include their results. Finally, we use our proposed
sPGD in vanilla adversarial training (sAT) and TRADES (sTRADES) to obtain PRN-18 models
to compare with these baselines.

Attacks: We compare our methods with various existing black-box and white-box attacks
that generate l0 bounded perturbations. The black-box attacks include CornerSearch (CS) [13]
and Sparse-RS (RS) [17]. The white-box attacks include SparseFool (SF) [12], PGD0 [13] and
Sparse Adversarial and Interpretable Attack Framework (SAIF) [41]. The implementation details
of each attack are deferred to Appendix A. Specifically, to exploit the strength of these attacks
in reasonable running time, we run all these attacks for either 10000 iterations or the number of
iterations where their performances converge. Note that, the number of iterations for all these
attacks are no smaller than their default settings. In addition, we report the results of RS with
fine-tuned hyperparameters, which outperforms its default settings in [17]. Finally, we report the
robust accuracy under CS attack based on only 1000 random test instances due to its prohibitively
high computational complexity.

Based on the results in Table 1 and Table 2, we can find that SF attack, PGD0 attack and
SAIF attack perform significantly worse than our methods for all the models studied. That is, our
proposed sPGD always performs the best among white-box attacks. Among black-box attacks, CS

13



Table 2: Robust accuracy of various models on different sparse attacks. Our sAT model is trained with
ϵ = 1200. (a) Results on ImageNet-100 [65]. (b) Results on GTSRB [66]. Note that the results of
Sparse-RS (RS) with tuned hyperparameters are reported. All models are RN-34, and are evaluated on
500 samples. The results of SparseFool (SF) and PGD0 are included due to their poor performance, and
CornerSearch (CS) is not evaluated here due to its high computational complexity, i.e. nearly 1 week on
one GPU for each run.

(a) ImageNet-100, ϵ = 200

Model Clean Black White sAARS SAIF sPGDp sPGDu

Vanilla 83.0 0.2 0.6 0.2 0.4 0.0

l0-adv. trained, ϵ = 200

PGD0 76.0 6.8 11.0 1.8 18.8 1.8
sAT 86.2 61.4 69.0 78.0 77.8 61.2

(b) GTSRB, ϵ = 600

Model Clean Black White sAARS SAIF sPGDp sPGDu

Vanilla 99.9 18.0 9.5 0.3 0.3 0.3

l0-adv. trained, ϵ = 600

PGD0 99.8 37.6 13.8 0.0 0.0 0.0
sAT 99.8 88.4 96.2 88.6 96.2 85.4

attack can achieve competitive performance, but it runs dozens of times longer than our method
does. Therefore, we focus on comparing our method with RS attack. For l1 and l2 models, our
proposed sPGD significantly outperforms RS attack. By contrast, RS attack outperforms sPGD for
l∞ and l0 models. This gradient masking phenomenon is, in fact, prevalent across sparse attacks.
Given sufficient iterations, RS outperforms all other existing white-box attacks for l∞ and l0 models.
Nevertheless, among white-box attacks, sPGD exhibits the least susceptibility to gradient masking
and has the best performance. The occurrence of gradient masking in the context of l0 bounded
perturbations can be attributed to the non-convex nature of adversarial budgets. In practice, the
perturbation updates often significantly deviate from the direction of the gradients because of the
projection to the non-convex set. Similar to AA in the l1, l2 and l∞ cases, sAA consists of both
white-box and black-box attacks for comprehensive robustness evaluation. It achieves the best
performance in all cases in Table 1 and Table 2 by a considerable margin.

In the case of l0 adversarial training, the models are adversarially trained against sparse attacks.
However, Figure 3 illustrates that the performance of RS attack drastically deteriorates with limited
iterations (e.g., smaller than 100), so RS is not suitable for adversarial training where we need to
generate strong adversarial perturbations in limited number iterations. Empirical evidence suggests
that employing RS with 20 iterations for adversarial training, i.e., the same number of iterations as in
other methods, yields trivial performance, so it is not included in Table 1 or Table 2 for comparison.
In addition, models trained by PGD0-A and PGD0-T, which generate l0 bounded perturbations,
exhibit poor robustness to various attack methods, especially sAA. By contrast, the models trained
by sAT and sTRADES show the strongest robustness, indicated by the comprehensive sAA method
and all other attack methods. Compared with sAT, sTRADES achieves better performance in
both robustness and accuracy. Finally, models trained with l1 bounded perturbations are the most
robust ones among existing non-l0 training methods. It could be attributed to the fact that l1
norm is the tightest convex relaxation of l0 norm [70]. From a qualitative perspective, l1 attacks
also generate relatively sparse perturbations [20], which makes the corresponding model robust to
sparse perturbations to some degree.

Our results indicate sPGD and RS can complement each other. Therefore, sAA, an AutoAttack-
style attack that ensembles both attacks achieves the state-of-the-art performance on all models.
It is designed to have a similar computational complexity to AutoAttack in l∞, l2 and l1 cases.
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6.2 Robustness against Structured Sparse Perturbations

Table 3: Robust accuracy of various models on different structured sparse attacks. (a) Results on CIFAR-
10, all models are PRN-18. (b) Results on ImageNet-100, the test set contains 500 samples, all models
are RN-34. Note that the evaluated group sparsity levels are approximately equivalent to the l0 sparsity
levels used in Table 1 and 2, and the Sparse-RS (RS) used here is the proposed extended version.

(a) CIFAR-10

Model Clean Black White sAARS LOAP sPGDp sPGDu

row, ϵ = 1

Vanilla 93.9 22.5 - 1.0 1.3 1.0
sTRADES-l0 89.8 83.1 - 54.6 65.0 53.9
sTRADES-row 89.3 85.9 - 77.3 83.7 77.3

3× 3 patch, ϵ = 2

Vanilla 93.9 6.7 4.5 1.9 6.6 1.7
sTRADES-l0 89.8 65.5 60.0 46.9 67.5 46.7
sTRADES-p3x3 87.9 77.5 81.4 72.8 81.7 72.3

5× 5 patch, ϵ = 1

Vanilla 93.9 7.5 2.3 1.7 3.2 1.7
sTRADES-l0 89.8 56.4 35.0 26.7 44.3 26.7
sTRADES-p5x5 89.5 72.9 73.1 56.0 73.3 55.9

(b) ImageNet-100

Model Clean Black White-Box sAARS LOAP sPGDp sPGDu

row, ϵ = 1

Vanilla 83.0 54.8 - 5.2 8.0 5.2
sAT-l0 86.2 78.6 - 65.8 73.8 65.8
sAT-row 81.0 78.2 - 76.6 78.4 76.6

10× 10 patch, ϵ = 2

Vanilla 83.0 13.0 4.6 4.6 6.4 4.0
sAT-l0 86.2 27.8 10.8 10.6 33.0 10.0
sAT-p10x10 81.6 64.0 62.8 35.8 73.2 35.8

14× 14 patch, ϵ = 1

Vanilla 83.0 7.5 2.3 1.7 12.0 1.7
sAT-l0 86.2 28.3 10.2 15.4 34.8 14.6
sAT-p14x14 80.0 57.2 73.0 41.2 71.2 39.6

Apart from unstructured sparse perturbations, we evaluate the effectiveness of our method in
Algorithm 2 in generating structured sparse perturbations in this subsection. Given the paucity of
available methods for comparison, we focus on comparing our method with the extended Sparse-RS
(RS) and LOAP [16], which is a white-box approach generating adversarial patches, on CIFAR-
10 and ImageNet-100. For a comprehensive evaluation, we include the results of different types
of structured sparse perturbations, e.g., row and patches with different group sparsity level and
different sizes. It should be noted that the unstructured l0 norms of the structured perturbations
studied here are approximately the same as the perturbations in Table 1 and 2. In addition, we
evaluate the attacks on vanilla models, models trained with unstructured l0 bounded perturbations,
and those trained with the specific structured sparse perturbations.

The results in Table 3 indicate that the proposed sAA also achieves the state-of-the-art perfor-
mance in generating structured sparse perturbations in almost all cases. Furthermore, the models
trained with our methods exhibit the strongest robustness against structured sparse perturbations.
As anticipated, models trained on specific structured sparse adversarial examples significantly out-
perform those trained on unstructured sparse adversarial examples. This highlights the inherent
limitation of adversarially trained models in maintaining robustness against unseen types of per-
turbations during training.

6.3 Adversarial Watermarks
Although only a few pixels are perturbed in sparse attacks, such perturbations are still perceptible
due to their unconstrained magnitude. In this subsection, we additionally constrain the l∞ norm
of magnitude p, meaning that the feasible set for vp is rewritten as Sp = {p ∈ Rh×w×c|∥p∥∞ ≤
ϵ∞, 0 ≤ x + p ≤ 1}. Combining with structured sparsity constraint, we can generate alleged
adversarial watermarks with our method.

15



Table 4: Robust accuracy of vanilla model (RN-34) against adversarial watermarks with different l∞
adversarial budgets. The experiment is conducted on ImageNet-100.

(a) 18× 18 circle

ϵ∞ 8/255 16/255 32/255 64/255

RS 59.0 44.6 32.4 26.4
sPGDp 47.2 25.4 16.6 9.0
sPGDu 56.4 39.6 25.8 16.8
sAA 44.2 24.0 15.6 8.8

(b) 60× 60 letter “A”

ϵ∞ 8/255 16/255 32/255 64/255

RS 14.2 12.8 9.2 5.8
sPGDp 3.8 2.6 2.4 2.2
sPGDu 7.4 4.8 2.8 2.0
sAA 2.0 0.8 0.8 0.6

To evaluate the performance of our method in generating adversarial watermarks, we conduct
experiments with different patterns and different ∞ adversarial budgets. From Table 4, we can find
that when the size of the pattern is large, like 60× 60 letter “A” with 1747 non-zero elements, our
attack can still achieve decent performance under different l∞ adversarial budgets. In contrast,
when we adopt a 18×18 circle pattern with 208 non-zero elements, the attack success rate abruptly
declines as the l∞ adversarial budget decreases. Nevertheless, from the aspect of attack success
rate, our approaches still outperform Sparse-RS by a large margin.

6.4 Comparison under Different Iteration Numbers and Different Spar-
sity Levels
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(a) CIFAR-10, ϵ = 20
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(b) ImageNet-100, ϵ = 200
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(c) CIFAR-10, t = 10000

Figure 3: Comparison between sPGD and RS attack under different iteration numbers and different sparsity
levels. (a) Different iteration number comparison on CIFAR-10, ϵ = 20. ResNet18 (std), PORT (l∞ and
l2) [44], l1-APGD (l1) [19] and sTRADES (l0) are evaluated. (b) Different iteration number comparison
on ImageNet-100, ϵ = 200. ResNet34 (std), Fast-EG-l1 (l1) [20] and sAT (l0) are evaluated. In (a) and (b),
the total iteration number ranges from 20 and 10000. For better visualization, the x-axis is in the log scale.
(c) Different sparsity comparison on CIFAR-10. The evaluated models are the same as those in (a). The ϵ
ranges from 0 and 50. The number of total iterations is set to 10000. Note that the results of sPGD
and RS attack are shown in solid lines and dotted lines, respectively.

In this subsection, we further compare our method sPGD, which is a white-box attack, with
RS attack, the strongest black-box attack in the previous section. Specifically, we compare them
under various iteration numbers on CIFAR-10 and ImageNet-100, which have different resolutions.
In addition, we also compare sPGD and RS under different sparsity levels on CIFAR-10.

As illustrated in Figure 3 (a) and (b), sTRADES has better performance than other robust
models by a large margin in all iterations of both sPGD and RS attacks, which is consistent with
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the results in Table 1, 2 and 9. For vanilla and other robust models, although the performances
of both sPGD and RS attack get improved with more iterations, sPGD outperforms RS attack
by a large margin when the iteration number is small (e.g. < 1000 iterations), which makes it
feasible for adversarial training. Similar to other black-box attacks, the performance of RS attack
drastically deteriorates when the query budget is limited. In addition, our proposed gradient-based
sPGD significantly outperforms RS on ImageNet-100, where the search space is much larger than
that on CIFAR-10, i.e., higher image resolution and higher sparsity level ϵ. This suggests that our
approach is scalable and shows higher efficiency on high-resolution images. Furthermore, although
the performance of RS does not converge even when the iteration number reaches 10000, a larger
query budget will make it computationally impractical. Following the setting in Croce et al. [17],
we do not consider a larger query budget in our experiments, either.

Furthermore, we can observe from Figure 3 (c) that RS attack shows slightly better performance
only on the l∞ model and when ϵ is small. The search space for the perturbed features is relatively
small when ϵ is small, which facilitates heuristic black-box search methods like RS attack. As ϵ
increases, sPGD outperforms RS attack in all cases until both attacks achieve almost 100% attack
success rate.

6.5 Efficiency of sPGD
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(a) l∞ PORT [44]

10
1

10
2

10
3

10
4

# Iterations

10
2

10
3

# 
Su

cc
es

sf
ul

ly
 A

dv
er

sa
ria

l S
am

pl
es sPGD (Avg.=380, ASR=81.2%)

RS (Avg.=1157, ASR=75.0%)

(b) l1-APGD [19]
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(c) sTRADES

Figure 4: Distribution of the iteration numbers needed by sPGD (blue) and RS (orange) to successfully
generate adversarial samples. The results are obtained from different models: (a) l∞ PORT [44], (b)
l1-APGD [19] and (c) our sPGD. The average iteration numbers (Avg.) and attack success rate (ASR),
i.e., 1−Robust Acc., are reported in the legend. For better visualization, we clip the minimum iteration
number to 10 and show the x- and y-axis in log scale.

Table 5: Runtime of different attacks on 1000 test
instances with batch size 500. The sparsity level
ϵ = 20. The evaluated model is sTRADES. The
model is trained on CIFAR-10. The experiments
are implemented on NVIDIA Tesla V100.

Attack CS RS SF PGD0

Runtime 604 min 59 min 92 min 750 min

Attack SAIF sPGDp sPGDu sAA

Runtime 122 min 42 min 45 min 148 min

To further showcase the efficiency of our ap-
proach, we first compare the distributions of the
number of iterations needed by sPGD and RS to
successfully generate adversarial samples. Figure 4
illustrates the distribution of the iteration numbers
needed by sPGD and RS to successfully generate ad-
versarial samples. For l∞ and l1 robust models, our
proposed sPGD consumes distinctly fewer iteration
numbers to successfully generate an adversarial sam-
ple than RS, the strongest black-box attack in Table
1, while maintaining a high attack success rate. Similar to the observations in Figure 3, the model
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trained by sTRADES suffers from gradient masking. However, RS still requires a large query budget
to successfully generate an adversarial sample. This further demonstrates the efficiency of sPGD,
which makes adversarial training feasible.

Additionally, we compare the runtime of sPGD with other attacks in the same configuration as
in Table 1. As shown in Table 5, the proposed sPGD shows the highest efficiency among various
attacks. Although sAA consumes more time (approximately 2× sPGD + RS), it can provide a
reliable evaluation against l0 bounded perturbation.

6.6 Transferability of Adversarial Perturbations

Table 6: Transferability of RS and sPGD between
vanilla VGG11 (V) and RN-18 (R) on CIFAR-10 with
ϵ = 20. Attack success rate (ASR) is reported. The per-
turbations are generated on the source model (left), and
are evaluated on the target model (right). Note that α
and β of sPGD are set to 0.75.

V→V V→R R→R R→V

RS 53.9 28.4 33.0 37.4
sPGDp 58.0 43.9 50.8 48.0
sPGDu 64.9 40.0 52.7 56.7

To evaluate the transferability of our attack
across different models and architectures, we
generate adversarial perturbations based on one
model and report the attack success rate (ASR)
on another model. As shown in Table 6, sPGD
exhibits better transferability than the most com-
petitive baseline, Sparse-RS (RS) [17]. This fur-
ther demonstrates the effectiveness of our method
and its potential application in more practical sce-
narios.

6.7 Visualization
We show some adversarial examples with different types of sparse perturbations in Figure 5, in-
cluding l0 bounded perturbations, row-wise perturbations, star-like perturbations, and adversarial
watermarks of letter “A”. The attack is sPGD, and the model is vanilla ResNet-34 trained on
ImageNet-100. More adversarial examples are shown in Appendix D.

7 Conclusion
In this paper, we propose an effective and efficient white-box attack named sPGD to generate both
unstructured and structured perturbations. sPGD obtains the state-of-the-art performance among
white-box attacks. Based on this, we combine it with black-box attacks for more comprehensive and
reliable evaluation of robustness against sparse perturbations. Our proposed sPGD is particularly
effective in the realm of limited iteration numbers. Due to its efficiency, we incorporate sPGD into
the framework of adversarial training to obtain robust models against sparse perturbations. The
models trained with our method demonstrate the best robust accuracy.
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A Implementation Details
In experiments, we mainly focus on the cases of the sparsity of perturbations ϵ = 10, 15 and 20,
where ϵ = ||

∑c
i=1 δ

(i)||0 or ||m||0, δ(i) ∈ Rh×w is the i-th channel of perturbation δ ∈ Rh×w×c,
and m ∈ Rh×w×1 is the sparsity mask in the decomposition of δ = p ⊙m, p ∈ Rh×w×c denotes
the magnitude of perturbations.

To exploit the strength of these attacks in reasonable running time, we run all these attacks for
either 10000 iterations or the number of iterations where their performances converge. More details
are elaborated below.

CornerSearch [13]: For CornerSearch, we set the hyperparameters as following: N = 100, Niter =
3000, where N is the sample size of the one-pixel perturbations, Niter is the number of queries. For
bot CIFAR-10 and CIFAR-100 datasets, we evaluate the robust accuracy on 1000 test instances
due to its prohibitively high computational complexity.

Sparse-RS [17]: For Sparse-RS, we set αinit = 0.8, which controls the set of pixels changed in
each iteration. Cross-entropy loss is adopted. Following the default setting in [17], we report the
results of untargeted attacks with the maximum queries up to 10000.

SparseFool [12]: We apply SparseFool following the official implementation and use the default
value of the sparsity parameter λ = 3. The maximum iterations per sample is set to 3000. Finally,
the perturbation generated by SparseFool is projected to the l0 ball to satisfy the adversarial budget.

PGD0 [13]: For PGD0, we include both untargeted attack and targeted attacks on the top-
9 incorrect classes with the highest confidence scores. We set the step size to η = 120000/255.
Contrary to the default setting, the iteration numbers of each attack increase from 20 to 300.
Besides, 5 restarts are adopted to boost the performance further.

SAIF [41]: Similar to PGD0, we apply both untargeted attack and targeted attacks on the top-9
incorrect classes with 300 iterations per attack, however, the query budget is only 100 iterations in
the original paper [41]. We adopt the same l∞ norm constraint for the magnitude tensor p as in
sPGD.

Sparse-PGD (sPGD): Cross-entropy loss is adopted as the loss function of both untargeted
and targeted versions of our method. The small constant γ to avoid numerical error is set to 2×10−8.
The number of iterations T is 10000 for all datasets to ensure fair comparison among attacks in
Table 1. For generating l0 bounded perturbations, the step size for magnitude p is set α = 0.25×ϵ∞;
the step size for continuous mask m̃ is set β = 0.25 ×

√
h× w, where h and w are the height and

width of the input image x ∈ Rh×w×c, respectively; the tolerance for reinitialization t is set to 3.
For generating structured sparse perturbations, we let α = 0.0125× ϵ∞, β = 0.0125×

√
h× w and

t = 50.
Sparse-AutoAttack (sAA): It is a cascade ensemble of five different attacks, i.e., a) un-

targeted sPGD with unprojected gradient (sPGDu), b) untargeted sPGD with sparse gradient
(sPGDp), and c) untargeted Sparse-RS. The hyper-parameters of sPGD are the same as those
listed in the last paragraph.

Adversarial Training: sPGD is adopted as the attack during the training phase, the number
of iterations is 20, and the backward function is randomly selected from the two different backward
functions for each batch. For sTRADES, we only compute the TRADES loss when training, and
generating adversarial examples is based on cross-entropy loss. We use PreactResNet18 [68] with
softplus activation [71] for experiments on CIFAR-10 and CIFAR-100 [64], and ResNet34 [67] for
experiments on ImageNet100 [65] and GTSRB [66]. We train the model for 100 epochs on CIFAR-10
and CIFAR-100, for 40 epochs on ImageNet100, and for 20 epochs on GTSRB. The training batch
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size is 128 on CIFAR-10 and CIFAR-100, and 32 on ImageNet100 and GTSRB. The optimizer is
SGD with a momentum factor of 0.9 and weight decay factor of 5 × 10−4. The learning rate is
initialized to 0.05 and is divided by a factor of 10 at the 1

4 and the 3
4 of the total epochs. The

tolerance for reinitialization is set to 10.

B More Results of Section 6.1
In this subsection, we present the robust accuracy on CIFAR-10 with the sparsity level ϵ = 10
and ϵ = 15, as well as those on CIFAR-100 with ϵ = 10 in Table 7, 8 and 9, respectively. The
observations with different sparsity levels and on different datasets are consistent with those in
Table 1 and 2, which indicates the effectiveness of our method.

Table 7: Robust accuracy of various models on different sparse attacks, where the sparsity level ϵ = 10.
The models are trained on CIFAR-10 [64]. Note that we report results of Sparse-RS (RS) with tuned
hyperparameters, which outperforms its original version in [17]. CornerSearch (CS) is evaluated on 1000
samples due to its high computational complexity.

Model Network Clean Black White sAACS RS SF PGD0 SAIF sPGDp sPGDu

Vanilla RN-18 93.9 3.2 0.5 40.6 11.5 31.8 0.5 7.7 0.5

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 36.8 24.5 69.9 50.3 63.0 31.0 37.3 23.2
PORT RN-18 84.6 36.7 27.5 70.7 46.1 62.6 31.0 36.2 25.0
DKL WRN-28 92.2 40.9 25.0 71.9 54.2 64.6 32.6 38.8 23.7
DM WRN-28 92.4 38.7 23.7 68.7 52.7 62.5 31.2 37.4 22.6

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 47.3 40.4 74.6 53.5 71.4 37.3 36.7 34.5
PORT RN-18 89.8 46.8 37.7 74.2 50.4 70.9 33.7 33.0 30.6
DM WRN-28 95.2 57.8 47.9 78.3 65.5 80.9 47.1 48.2 43.1
FDA WRN-28 91.8 55.0 49.4 79.6 58.6 77.5 46.7 49.0 43.8

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 51.4 51.1 74.3 60.7 68.1 47.2 47.4 45.9
Fast-EG-l1 PRN-18 76.2 49.7 48.0 69.7 56.7 63.2 44.7 45.0 43.2

l0-adv. trained, ϵ = 10

PGD0-A PRN-18 85.8 20.7 16.1 77.1 66.1 68.7 33.5 36.2 15.1
PGD0-T PRN-18 90.6 22.1 14.0 85.2 72.1 76.6 37.9 44.6 13.9
sAT PRN-18 86.4 61.0 57.4 84.1 82.0 81.1 78.2 77.6 57.4
sTRADES PRN-18 89.8 74.7 71.6 88.8 87.7 86.9 85.9 84.5 71.6

C Ablation Studies
We conduct ablation studies in this section. We focus on CIFAR10 and the sparsity level ϵ = 20.
Unless specified, we use the same configurations as in Table 1.

Table 10: Ablation study of each component in
sPGDproj in terms of robust accuracy. The model is
Fast-EG-l1 trained on CIFAR-10.

Ablations Robust Acc.

Baseline (PGD0 w/o restart) 49.4
+ Decomposition: δ = p⊙m 58.0 (+8.6)
+ Continuous mask m̃ 33.9 (-15.5)
+ Random reinitialization 18.1 (-31.3)

sPGD: We first validate the effectiveness
of each component in sPGD. The result is re-
ported in Table 10. We observe that naively
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Table 8: Robust accuracy of various models on different sparse attacks, where the sparsity level ϵ = 15.
The models are trained on CIFAR-10 [64]. Note that we report results of Sparse-RS (RS) with tuned
hyperparameters, which outperforms its original version in [17]. CornerSearch (CS) is evaluated on 1000
samples due to its high computational complexity.

Model Network Clean Black White sAACS RS SF PGD0 SAIF sPGDp sPGDu

Vanilla RN-18 93.9 1.6 0.0 25.3 2.1 12.0 0.0 0.0 0.0

l∞-adv. trained, ϵ = 8/255

GD PRN-18 87.4 30.5 12.2 61.1 36.0 51.3 17.1 24.3 11.3
PORT RN-18 84.6 30.8 15.2 62.1 31.4 52.1 17.4 23.0 13.0
DKL WRN-28 92.2 35.3 13.2 62.5 41.2 52.3 18.4 24.9 12.1
DM WRN-28 92.4 34.8 12.6 57.9 38.5 49.4 17.9 24.0 11.6

l2-adv. trained, ϵ = 0.5

HAT PRN-18 90.6 38.9 23.5 65.3 35.4 60.2 19.0 18.6 16.6
PORT RN-18 89.8 36.8 20.6 64.3 30.6 59.7 16.0 15.5 13.8
DM WRN-28 95.2 48.5 27.7 68.2 47.5 70.9 25.0 26.7 22.1
FDA WRN-28 91.8 47.8 31.1 71.8 40.1 68.2 28.0 31.4 25.5

l1-adv. trained, ϵ = 12

l1-APGD PRN-18 80.7 41.3 36.5 70.3 50.5 62.3 30.4 31.3 29.0
Fast-EG-l1 PRN-18 76.2 40.7 34.8 64.9 46.7 56.9 29.6 30.1 28.0

l0-adv. trained, ϵ = 15

PGD0-A PRN-18 83.7 17.5 6.1 73.7 62.9 60.5 19.4 27.5 5.6
PGD0-T PRN-18 90.5 19.5 7.2 85.5 63.6 69.8 31.4 41.2 7.1
sAT PRN-18 80.9 46.0 37.6 77.1 74.1 72.3 71.2 70.3 37.6
sTRADES PRN-18 90.3 71.7 63.7 89.5 88.1 86.5 85.9 83.8 63.7

decomposing the perturbation δ by δ = p⊙m
and updating them separately can deteriorate
the performance. By contrast, the perfor-
mance significantly improves when we update
the mask m by its continuous alternative m̃
and l0 ball projection. This indicates that in-
troducing m̃ greatly mitigates the challenges in optimizing discrete variables. Moreover, the results
in Table 10 indicate the performance can be further improved by the random reinitialization mech-
anism, which encourages exploration and avoids trapping in a local optimum.

In addition, we compare the performance when we use different step sizes for the magnitude
tensor p and the sparsity mask m. As shown in Table 11 and 12, the robust accuracy does not
vary significantly with different step sizes. It indicates the satisfying robustness of our method to
different hyperparameter choices. In practice, We set α and β to 0.25 and 0.25×

√
hw, respectively.

Note that h and w denote the height and width of the image, respectively, which are both 32 in
CIFAR-10.

Ultimately, we compare the performance of sPGD with different tolerance iterations for reini-
tialization. As shown in Table 13, the performance of our method remains virtually unchanged,
which showcases that our approach is robust to different choices of tolerance for reinitialization.

Adversarial training: We conduct preliminary exploration on adversarial training against
sparse perturbations, since sPGD can be incorporated into any adversarial training variant. Ta-
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Table 9: Robust accuracy of various models on different sparse attacks, where the sparsity level ϵ = 10.
The models are trained on CIFAR-100 [64]. Note that we report results of Sparse-RS (RS) with tuned
hyperparameters, which outperforms its original version in [17]. CornerSearch (CS) is evaluated on 1000
samples due to its high computational complexity.

Model Network Clean Black White sAACS RS SF PGD0 SAIF sPGDp sPGDu

Vanilla RN-18 74.3 1.6 0.3 20.1 1.9 9.0 0.1 0.9 0.1

l∞-adv. trained, ϵ = 8/255

HAT PRN-18 61.5 12.6 9.3 39.1 19.1 26.8 11.6 14.2 8.5
FDA PRN-18 56.9 16.3 12.3 42.2 23.0 30.7 14.9 17.8 11.6
DKL WRN-28 73.8 12.4 6.3 44.9 20.9 26.5 10.5 14.0 6.1
DM WRN-28 72.6 14.0 8.2 46.2 23.4 29.8 12.7 15.8 8.0

l1-adv. trained, ϵ = 6

l1-APGD PRN-18 63.2 22.7 22.1 47.7 33.0 43.5 19.7 20.3 18.5
Fast-EG-l1 PRN-18 59.4 21.5 21.0 44.8 30.6 39.5 18.9 18.6 17.3

l0-adv. trained, ϵ = 10

PGD0-A PRN-18 66.1 9.3 7.1 57.9 29.9 39.5 13.9 20.4 6.5
PGD0-T PRN-18 70.7 14.8 10.5 63.5 46.3 51.7 24.5 28.6 10.2
sAT PRN-18 67.0 44.3 41.6 65.9 61.6 60.9 56.8 58.0 41.6
sTRADES PRN-18 70.9 52.8 50.3 69.2 67.2 65.2 64.0 63.7 50.2

ble 1, 2, 7, 8 and 9 study sAT and sTRADES, while sTRADES outperforms sAT in all cases. In
addition, the training of sAT is relatively unstable in practice, so we focus on sTRADES for abla-
tion studies in this section. We leave the design of sPGD-adapted adversarial training variants to
further improve model robustness as a future work.

Table 14 demonstrates the performance when we use different backward functions. The policies
include always using the sparse gradient (Proj.), always using the unprojected gradient (Unproj.),
alternatively using both backward functions every 5 epochs (Alter.) and randomly selecting back-
ward functions (Rand.). The results indicate that randomly selecting backward functions has the
best performance. In addition, Table 15 demonstrates the robust accuracy of models trained by
sTRADES with different multi-ϵ strategies. The results indicate that multi-ϵ strategy helps boost
the performance. The best robust accuracy is obtained when the adversarial budget for training is 6
times larger than that for test. Furthermore, we also study the impact of different tolerances during
adversarial training in Table 16. The results show that higher tolerance during adversarial training
benefits the robustness of the model, and the performance reaches its best when the tolerance is
set to 10.

Structured Sparse Perturbations: Since the optimal hyperparameters for structured sparse
perturbations differ from those for unstructured l0 bounded perturbations, we conduct further
ablation studies in the structured sparse setting.

The results in Table 17, 18 and 19 suggest that the step size α, β and the tolerance t for
generating structured sparse perturbations should be smaller than those for unstructured cases.
This can be attributed to the requirement for more exploitable attacks when generating structured
sparse perturbations, similar to conventional l∞ and l2 attacks [39].

The multi-ϵ strategy has been proven effective in l0 adversarial training. However, in the context
of structured sparse attack, particularly in the patch setting, we can increase either the sparsity
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level ϵ or the patch size to increase the corresponding l0 adversarial budget. Therefore, we compare
two different strategies here, i.e., multi-ϵ strategy and multi-size strategy. Specifically, the multi-ϵ
strategy increases the sparsity level ϵ while maintaining the patch size unchanged during training,
but the multi-size strategy only increases the patch size to make the l0 sparsity level of generated
perturbations similar to that in the multi-ϵ strategy. The results reported in Table 20 indicate that
the multi-ϵ strategy provides better performance.

D More Visualization
More adversarial examples are shown in Figure 6. Additionally, we showcase some l0 bounded
adversarial examples generated on our sAT model in Figure 7. Compared to Figure 5 (a)-(b) and
Figure 6 (a)-(b), the perturbations generated on the adversarially model are mostly located in the
foreground of images. It is consistent with the intuition that the foreground of an image contains
most of the semantic information [41].

Table 11: Robust accuracy at different step sizes α
for magnitude p. The evaluated attack is sPGDproj.
The model is Fast-EG-l1 trained on CIFAR-10.

α 1
16

1
8

1
4

1
2

3
4

1

Acc. 19.6 18.8 18.1 18.4 18.7 19.0

Table 12: Robust accuracy at different step sizes β
for mask m. The evaluated attack is sPGDproj. The
model is Fast-EG-l1 trained on CIFAR-10. Note that
h and w are both 32 in CIFAR-10.

β/
√
hw 1

16
1
8

1
4

1
2

3
4

1

Acc. 20.0 19.3 18.1 18.4 19.4 21.0

Table 13: Robust accuracy at different tolerance for
reinitialization t during attacking. The evaluated at-
tack is sPGDproj. The model is Fast-EG-l1 trained
on CIFAR-10.

t 1 3 5 7 10

Acc. 18.1 18.1 18.5 18.5 18.5

Table 14: Ablation study on different policies during
adversarial training. The model is PRN18 trained
by sTRADES with 6 × k. The robust accuracy is
obtained through sAA.

Policy Proj. Unproj. Alter. Rand.

Acc. 41.5 39.4 51.5 61.7

Table 15: Ablation study on multi-ϵ strategy during
adversarial training. The model is PRN18 trained by
sTRADES with random policy. The robust accuracy
is obtained through sAA.

ϵ 1× 2× 4× 6× 8× 10×

Acc. 34.0 39.7 54.5 61.7 60.2 55.5

Table 16: Ablation study on tolerance for reinitial-
ization t during adversarial training. The model is
PRN18 trained by sTRADES with 6 × k and toler-
ance t = 3. The robust accuracy is obtained through
sAA.

t 3 10 20

Acc. 51.7 61.7 60.0

Table 17: Robust accuracy at different step sizes α
for magnitude p. The evaluated attack is sPGDproj

generating 5 × 5 patch (ϵ = 1). The model is
sTRADES-l0trained on CIFAR-10.

α 0.01 0.0125 0.05 0.1 0.15 0.25

Acc. 28.1 26.7 33.8 41.5 47.9 58.1

Table 18: Robust accuracy at different step sizes β
for mask m. The evaluated attack is sPGDproj gener-
ating 5×5 patch (ϵ = 1). The model is sTRADES-l0
trained on CIFAR-10. Note that h and w are both
32 in CIFAR-10.

β/
√
hw 0.01 0.0125 0.05 0.1 0.15 0.25

Acc. 27.4 26.7 34.1 37.5 38.3 35.1
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Table 19: Robust accuracy at different tolerance
for reinitialization t during attacking. The eval-
uated attack is sPGDproj generating 5 × 5 patch
(ϵ = 1). The model is sTRADES-l0 trained on
CIFAR-10.

t 3 10 50 100 150

Acc. 36.1 28.7 26.7 28.1 33.7

Table 20: Ablation study on multi-ϵ / multi-size
strategy during adversarial training against 3 × 3
patch (ϵ = 2). The model is PRN18 trained by
sTRADES with random policy.

Attack RS LOAP sPGDproj sPGDunproj sAA

Multi-ϵ 77.5 81.4 72.8 81.7 72.3
Multi-size 75.5 79.2 68.4 79.8 67.9

(a) l0, ϵ = 100 (b) l0, ϵ = 100 (c) column, ϵ = 1 (d) column, ϵ = 1

(e) patch, 14× 14, ϵ = 1 (f) patch, 14× 14, ϵ = 1 (g) patch, 10× 10, ϵ = 2 (h) patch, 10× 10, ϵ = 2

(i) heart, 20× 20, ϵ = 1 (j) heart, 20× 20, ϵ = 1 (k) circle, 60× 60, ϵ∞ =
64/255

(l) circle, 60× 60, ϵ∞ =
64/255

Figure 6: Visualization of different sparse adversarial examples in ImageNet-100. The model is vanilla
ResNet-34. The predictions before (left) and after (right) attack are (a) loggerhead→stingray, (b)
frilled lizard→hornbill, (c) American alligator→African crocodile, (d) toucan→hornbill, (e) red-breasted
merganser→drake, (f)peacock→cock, (g) kite→vulture, (h) stingray→electric ray, (i) centipede→stingray,
(j) tree frog→tailed frog, (k) chickadee→junco, and (l) ostrich→peacock. Note that the red squares in
(k) and (l) are just for highlighting the perturbation position and not part of perturbations.
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(a) l0, ϵ = 200 (b) l0, ϵ = 200 (c) l0, ϵ = 200 (d) l0, ϵ = 200

Figure 7: Visualization of successful sparse adversarial examples in ImageNet-100. The model is ResNet-34
trained with sAT-l0. The predictions before (left) and after (right) attack are (a) alligator lizard→water
snake, (b) mud turtle→box turtle, (c) quail→partridge, and (d) black and gold garden spider→garden
spider.

31


	Introduction
	Related Works
	Unstructured Sparse Adversarial Attack
	Sparse-PGD (sPGD)
	Sparse-AutoAttack (sAA)

	Structured Sparse Adversarial Attack
	Formulation of Structured Sparsity
	sPGD for Structured Sparse Perturbations
	sAA for Structured Sparse Perturbations

	Adversarial Training
	Experiments
	Robustness against Unstructured Sparse Perturbations
	Robustness against Structured Sparse Perturbations
	Adversarial Watermarks
	Comparison under Different Iteration Numbers and Different Sparsity Levels
	Efficiency of sPGD
	Transferability of Adversarial Perturbations
	Visualization

	Conclusion
	Implementation Details
	More Results of Section 6.1
	Ablation Studies
	More Visualization

