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Introduction

Existence of Adversarial Example

@ State-of-the-art deep learning models are vulnerable to adversarial attacks.

@ Imperceptible attack. ! Sparse attack. 2 Universal attack 3.
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L, Explaining and harnessing adversarial examples.” ICLR 2014.
" One pixel attack for fooling deep neural networks.” IEEE Transactions on Evolutionary Computation (2019).

"Universal adversarial perturbations.” CVPR 2017.
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Introduction

Formulation

Definition (Robustness Problem)

Given a classification model f(6,x) : © x R” — RK parameterized by 6, data
points drawn from the distribution (x, y) ~ D and loss function £, robustness
problem is formulation as follows:

5 !
min E(x,y)~D x/gﬁ)((x)ﬁ(f(e,x ),¥) (1)

where Sc(x) is called the adversarial budget.
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Introduction

Formulation

Definition (Robustness Problem)

Given a classification model f(6,x) : © x R” — RK parameterized by 6, data
points drawn from the distribution (x, y) ~ D and loss function £, robustness
problem is formulation as follows:

5 !
min E(x,y)~D x/gﬁ)((x)ﬁ(f(e,x ),¥) (1)

where Sc(x) is called the adversarial budget.

@ Sc(x) is often defined by {x|||x" — x|| < €}
@ Attack algorithm solves the inner maximization problem.

@ Defense algorithm solves the outer minimization problem.
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Introduction

Attack Algorithms

4 Explaining and harnessing adversarial examples.” ICLR 2014.

" Towards deep learning models resistant to adversarial attacks.” ICLR 2018.
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Introduction

Attack Algorithms

max  L(f(0,x),y) (2)

[[x—x!||oc <€
@ Fast Gradient Sign Method (FGSM) *.

X' x + esign(VxL(f (0, %), y)) ®3)

4 Explaining and harnessing adversarial examples.” ICLR 2014.

" Towards deep learning models resistant to adversarial attacks.” ICLR 2018.
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Introduction

Attack Algorithms

max  L(f(0,x),y) (2)

[[x—x!||oc <€
@ Fast Gradient Sign Method (FGSM) *.

X' x + esign(VxL(f (0, %), y)) ®3)

@ Projected Gradient Descent (PGD) ® ~ iterative fast gradient sign method.

XD e <ey [0 + asign(VaL(F(6,x9), )] (4)

4 Explaining and harnessing adversarial examples.” ICLR 2014.

" Towards deep learning models resistant to adversarial attacks.” ICLR 2018.
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Introduction

Defense Algorithms

min  max L(f(6,X),y) (5)

0 ||x—x||oo <€

" Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.” ICML 2018.
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Introduction

Defense Algorithms

min  max L(f(6,X),y) (5)

0 ||x—x||oo <€

@ Empirical defense algorithm: estimate the inner maximization problem by its
lower bound.

o Most effective method: PGD adversarial training. ©

" Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.” ICML 2018.
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Introduction

Defense Algorithms

min  max L(f(0,x),y)

0 ||x—x||oo <€

(5)

@ Empirical defense algorithm: estimate the inner maximization problem by its
lower bound.

o Most effective method: PGD adversarial training. ©

@ Provably defense algorithm: solve the inner maximization problem exactly or
estimate by its upper bound.

e Convexize loss function. Linear approximation. Mixed integer
programming. Random input smoothing e.t.c.

" Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.” ICML 2018.
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Introduction

Defense Algorithms

min  max L(f(6,X),y) (5)

0 ||x—x||oo <€

@ Empirical defense algorithm: estimate the inner maximization problem by its
lower bound.

o Most effective method: PGD adversarial training. ©
@ Provably defense algorithm: solve the inner maximization problem exactly or
estimate by its upper bound.
e Convexize loss function. Linear approximation. Mixed integer
programming. Random input smoothing e.t.c.

@ Robust certification: the input neighbor region guaranteed to be
adversary-free.

@ Evaluation metrics:

Clean Accuracy > Empirical Robust Accuracy > Robust Accuracy > Certified Robust Accuracy

" Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.” ICML 2018.
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Regularization based on Geometric Envelope

Linear Approximation

kx +m2 e

- kx + ml
@ Given any nonlinear function o(x) with bounded input I < x < u, we can
introduce one diagonal matrix D and two vectors my, my:

Dx+m; < o(x) < Dx+m;

@ Equivalently, Vx : I < x < u, we have D,m;,m; and 3m: m; < m < my,
such that
o(x) =Dx+m
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Regularization based on Geometric Envelope

Model Linearization

@ Recall the N-layer neural network.

20t —wz() 1 p =12 . N—-1

' 6
3() = o(2()) i=23,..,N-1 ©

I8 Towards fast computation of certified robustness for relu networks.” ICML 2018

" Efficient neural network robustness certification with general activation functions.” NeutlPS 2018
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Regularization based on Geometric Envelope

Model Linearization

@ Recall the N-layer neural network.

2041 = wz() 4 p() i=1,2,...N—1
)

. 6
3() = 5 (2()) i=2,3,.,N—1 (©)

@ We can linearize the output of each layer.

20 = WD (WO (WD (x + mDy 4 M) ) + b —2)) 4 b0~V
W(ffl)(D(ifl)(W(i*2)(m(w(1)(x +m®) + M) )+ b(i*Z)) +ml=1) 4 pli-1

— <|-|J{;2lw(i)D(J ) WOx & Z (n, 1 J)) b + Z (n‘ ,{Hw(f)DU)) W m()

™

I8 Towards fast computation of certified robustness for relu networks.” ICML 2018

" Efficient neural network robustness certification with general activation functions.” NeutlPS 2018
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Regularization based on Geometric Envelope

Model Linearization

@ Recall the N-layer neural network.

2041 = wz() 4 p() i=1,2,...N—1
)

. 6
3() = 5 (2()) i=2,3,.,N—1 (©)

@ We can linearize the output of each layer.
20 = WD (WO (WD (x + mDy 4 M) ) + b —2)) 4 b0~V
W(ffl)(D(ifl)(W(i*2)(m(w(1)(x +m®) + M) )+ b(i*Z)) +ml=1) 4 pli-1

— <I'IJ’:;21WU)D(J ) w®x + Z (n’ 1 J)) b(h L Z (nl ;HWU)DU)) W m*)

)

@ Bound for {m"}i~% — bounds for z()) — bound for m(")

o lteratively estimate the bounds for {z()}N, 7 8

I8 Towards fast computation of certified robustness for relu networks.” ICML 2018

" Efficient neural network robustness certification with general activation functions.” NeutlPS 2018
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Methodology

Model Linearization

Proposition (Model Linearization)

Given a classification model f(0,x) : © x R — RX parameterized by 0, a
data point (x,y) and a pre-defined adversarial budget S(x),
JW € RH*K b € RX such that

vx' € S.(x), f(,x") — f(6,x"), <Wx'+b (8)

% Towards fast computation of certified robustness for relu networks.” ICML 2018
10, Efficient neural network robustness certification with general activation functions.” NeurlPS 2018
11 . . . - i

" On the effectiveness of interval bound propagation for training verifiably robust models.” 2018

12 . . . . "
" Provable defenses against adversarial examples via the convex outer adversarial ipolytope’ ICML 2018.
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Methodology

Model Linearization

Proposition (Model Linearization)

Given a classification model f(0,x) : © x R — RX parameterized by 0, a
data point (x,y) and a pre-defined adversarial budget S(x),
JW € RH*K b € RX such that

vx' € S.(x), f(,x") — f(6,x"), <Wx'+b (8)

@ Method to calculate W, b: Fast-Lin °, CROWN 0, IBP-inspired 1.

@ We can further bound Wx' + b < v,¥x" € S(x). If L is softmax cross
entropy loss, then we have max,cs, (x) £L(f(0,%'),y) < L(v,y). Minimizing
the RHS allows us to train provable models (KW 12).

9 . .
" Towards fast computation of certified robustness for relu networks.” ICML 2018
10 .. A . - . "
" Efficient neural network robustness certification with general activation functions.” NeurlPS 2018
11 . . . - i
" On the effectiveness of interval bound propagation for training verifiably robust models.” 2018

12
" Provable defenses against adversarial examples via the convex outer adversarial ipolytope’ ICML 2018.
November 23, 2020 11/29
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Methodology

Geometric Interpretation

vx' € S.(x), f(,x") — f(6,x"), <Wx'+b (9)
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Geometric Interpretation
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Methodology

Geometric Interpretation

VX' € S(x),Vi € [K], F(6,x)i — F(6,X), <Wix' +b; <0  (9)

@ If x' € S.(x) N {x'|Vi,W;x" + b; < 0}, then x is guaranteed to have the
same prediction as x.
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@ If x' € S.(x) N {x'|Vi,W;x" + b; < 0}, then x is guaranteed to have the
same prediction as x.
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Methodology

Geometric Interpretation

VX' € S(x),Vi € [K], F(6,x)i — F(6,X), <Wix' +b; <0  (9)

@ If x' € S.(x) N {x'|Vi,W;x" + b; < 0}, then x is guaranteed to have the
same prediction as x.

e {X'|Vi,W;x' +b; < 0} forms a polyhedron in R space and is an envelope
of the model’s decision boundary.

@ Geometric interpretation: when ¢ is too big or too small.

C. Liu, M. Salzmann, S. Sisstrunk (EPFL) Polyhedral Envelope Regularization November 23, 2020



Methodology

Theoretical Robustness Guarantee

VX' € S.(x),Vi € [K], F(8,x')i — F(6,x), <W;x' +b; <0  (10)

Theorem (Theoretical Robustness Guarantee)

Given a classification model f(0,x) : © x R" — RX parameterized by 0
and linear bounds in Equation 10, we assume adversarial budget is defined
based on I, norm: S.(x) = {X'|||x" — x||, < €}, then there is no adversarial
example inside an |, norm ball of radius d centered around x, with

d = minjcik) {€, di}, di = max {0, —‘?@jﬂg’ } where Iy is the dual norm of

2 1 1 _
Ip ,1.€. E—Fa—l

o
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Methodology

Constrained Cases

@ This theorem is too pessimistic, as the attack can not perturb the image out
of domain [0,1]".

@ If we constrain the perturbed images inside [0, 1]", the certified bound
should be larger.
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Methodology

Constrained Cases

@ This theorem is too pessimistic, as the attack can not perturb the image out
of domain [0,1]".

@ If we constrain the perturbed images inside [0, 1]", the certified bound
should be larger.

@ We need to calculate the distance between the clean input x and set
S = Ui {X'|Wix’ + b; > 0} N[0, 1]7, which is the minimum distance to
Si = {X|Wx' +b; >0} N[0,1]" over i € [K].
min x — X[
X/
s.t.0<x <1 (11)
W,'X/ +b; >0
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Methodology

Constrained Cases

min x — X,

s.t0<x' <1 (12)
W,'X/ +b; >0

@ Convex objective with linear constraints.

@ To satisfy W;x’ + b; > 0, the solution to minimize ||x — X'||,, is:

W;x + b; q
i/:X—;WﬂW;P 13
Wil (13)

@ Greedy algorithm to find points satisfying 0 < x’ < 1: check if elements of
X' satisfying the constraint, for those that don't, clip them to 0 or 1 and
keep them fixed in the next iteration.
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Methodology

Algorithm

min x — X,

st0<x <1 (14)
W,'X/ +b; >0
W;x + b; q
)?/:X—;W”W,WP 15
Wil (1%)

@ Given W;, b;, x
@ Frozen dimension S(f) = ¢
@ Calculate X’ based on 15
@ While 0 < ¥’ < 1 not satisfied:
o Update 510 = S u {j|x, < 0} U {j|%] > 1}

@ Clip X = clip(X’, min = 0, max = 1)
@ Update % based on 15 with %;,j € S(") fixed

Return solution ||X" — x||,
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Methodology

Algorithm

Corollary (Optimality Guarantee)
The greedy algorithm is guaranteed to find the optimum of problem 14.

@ We call this method Polyhedral Envelope Certification (PEC).
@ Advantages:

e Almost no overhead.
o Finer-grained certified bounds.
e Fast convergence when searching for optimal bounds by binary search.
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Methodology

Training Method

Given the certified bound d by PEC, we define the Polyhedral Envelope
Regularization (PER) based on hinge-loss.

PER(x,y,0) = max {0, 1-— g} (16)

v
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Methodology

Training Method

Given the certified bound d by PEC, we define the Polyhedral Envelope

Regularization (PER) based on hinge-loss.

0,1- 2
€

J} (16)

v

PER(x,y,0) = max{

@ Training objective of PER: L(f(x,6),y) +YPER(x,y,0)

@ We can combine PER with adversarial training:
L(f(x',0),y) +vPER(X',y, ), where x is found by PGD.

@ We can use sub-sampling to decrease the complexity of PER:
L(f(x,8),y) +~vPER(X,¥,0), where (X, ) is sub-sampled from a mini-batch

(%, ¥)-
November 23, 2020 18 /29
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Experiment

Settings

@ Models: FC1 for MNIST, LeNet for MNIST and CIFAR10.

@ 7 baselines: normal training (plain), PGD adversarial training (at), KW 13
MMR, MMR+at 14, IBP 1>, C-IBP 16.

@ 8 evaluation metric: clean test accuracy (CTE), PGD robust accuracy
(PGD), incomplete certified robust accuracy by Fast-Lin / CROWN (CRE
Lin / CRE CROWN) and by IBP (CRE IBP), complete certified robust
accuracy (CRW MIP) 7, average certified bounds by Fast-Lin ¥/ CROWN
19 (ACB KW / ACB CRO) and IBP (ACB IBP), average certified bounds by
PEC (ACB PEC).

13"Pn::vable defenses against adversarial examples via the convex outer adversarial polytope.” ICML 2018.

14"Provable robustness of relu networks via maximization of linear regions.” AISTATS 2019.

15"On the effectiveness of interval bound propagation for training verifiably robust models.” ICCV 2019.
" Towards stable and efficient training of verifiably robust neural networks.” ICLR 2020.

17, Training for faster adversarial robustness verification via inducing reLU stability.” ICLR 2019.

18, Towards fast computation of certified robustness for relu networks.” ICML 2018

Efficient neural network robustness certification with general activation functions.” NeurlPS 2018.
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Experiment

Results for ReLU Network

Methods CTE PGD CRE Lin  CRE IBP  CRE MIP ACB Lin  ACB IBP  ACB PEC
(%) (%) (%) (%) (%)
MNIST - FCL, ReLU, Lo, ¢ = 0.1
plain 199 9837 10000 100.00 10000 00000 00000  0.0000
at 142 9.00 97.94 100.00 10000 00021 00000  0.0099
KW 226 8.59 1291 69.20 10.90 0.0871 0.0308 0.0928
1BP 165 9.67 87.27 15.20 1236 00127 00848 00705
C-IBP 198 950 6739 1445 1139 00326 00855 00800
MMR 211 17.82 3375 99.88 2490 00663 0.0001 0.0832
MMR+at 2.04 10.39 17.64 95.09 14.10 0.0824 0.0049 0.0905
C-PER 1.60 745 171 92.89 769 00883 00071 00935
C-PER+at 1.81 173 12.90 99.90 8.22 0.0871 0.0001 0.0925
LPER 1.60 628 11.96 9333 810 00880 00067  0.0934
I-PER+at 154 715 13.96 98.55 848 00868 00014 0.0927
MNIST - CNN, ReLU, luc, ¢ = 0.1
plain 128 85.75 10000 10000 10000 00000 00000  0.0000
at 102 475 9191 10000 10000 00081 00000  0.0189
KW 121 303 444 10000 440 00956 00000  0.0971
1BP 151 443 23.89 813 523 0.0761 0.0919 0.0872
C-IBP 185 428 10.72 691 483 00893 00931 00928
MMR 165 607 1156 100.00 610 00884 00000 00928
MMR+at 119 3.35 9.49 100.00 360 0095 00000  0.0939
C-PER 144 344 513 100.00 362 00949 00000  0.0965
C-PER+at 0.50 202 4385 100.00 221 00952 00000 00969
LPER 103 240 464 99.55 252 00954 00004  0.0967
LPER+at 048 129 4.61 99.94 147 00954 00001 00971
CIFAR10 - CNN, ReLU, lo, € = 2/255
plain 2462 86.29 10000 100.00 10000 00000 00000  0.0000
at 27.04 4853 85.36 100.00 8850 00011 00000  0.0015
KW 3927 46.60 5381 99.98 48.00 00036 00000  0.0040
BP 4674 5638 61.81 67.58 5880 00030 00025 00034
CIBP 5832 63.56 66.28 69.10 6544 00026 00024 00029
MMR 34.59 57.17 69.28 100.00 61.00 0.0024 0.0000 0.0032
MMR+at 3536 4927 59.91 100.00 5420 00031 00000  0.0037
C-PER 3921 5098 5745 99.98 5270 00033 00000 00038
C-PER+at 28.87 4355 5659 100.00 4843 00034 00000  0.0040
I-PER 29.34 51.54 64.34 99.98 54.87 0.0028 0.0000 0.0036
L-PER+at 26,66 4335 57.72 100.00 4787 00033 0.0000 _ 0.0040

TABLE I: Full results of 11 training schemes and 8 evaluation schemes for ReLU networks under L., attacks. The best and the second best
results among provably robust training methods (plain and at excluded) are bold. In addition, the best results are underlined.

, M. Salzmann, S. S



Experiment

Results for Non-ReLU Network

Methods CTE PGD CRE CRO _ CRE IBP ACB CRO _ ACB IBP _ ACB PEC
(%) (%) (%) (%)
MNIST - FCI1, Sigmoid, lo, € = 0.1
plain 2.04 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 178 10.05 98.52 100.00 0.0015 0.0000 0.0055
IBP 2.06 1058 44.14 13.65 0.0559 0.0863 0.0846
C-IBP 2.88 9.83 26.04 1251 0.0740 0.0875 0.0886
C-PER 197 755 12,15 84.76 0.0879 00152 0.0930
C-PER+at 2.16 7.12 11.87 88.06 0.0881 00119 0.0927
I-PER 215 835 1279 86.99 0.0872 00130 0.0926
I-PER+at 245 8.05 12.36 88.94 0.0876 00111 0.0923
MNIST - FC1, Tanh, [, € = 0.1
plain 2.00 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 128 8.89 99.98 100.00 0.0000 0.0000 0.0001
IBP 2.04 9.84 31.81 13.02 0.0682 0.0870 0.0864
C-IBP 275 9.57 20.10 11.80 0.0799 0.0882 0.0894
C-PER 2.19 771 11.55 57.81 0.0885 0.0422 0.0934
C-PER+at 230 7.45 11.39 56.74 0.0886 0.0433 0.0930
I-PER 221 8.51 1223 55.53 0.0878 0.0445 0.0929
I-PER+at 2.46 7.87 12.04 66.04 0.0880 00340 0.0929

TABLE II: Full results of 8 training schemes and 7 evaluation schemes for sigmoid and tanh networks under /o, attacks. The best results
among provably robust training methods (plain and at excluded) are bold and underlined.
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Experiment

Iterations used for Searching Optimal €

— PEC

@ To search for the optimal certified 010 — kw/fasetn
bound ¢, Fast-Lin / CROWN adjust oo
their target by binary search.

0.06

@ PEC has a finer-grained certified 8o
bound, so needs fewer iterations
than baselines.

Certified Bound

0.02

0.00

0.00 0.05 0.10 0.15 0.20
Value of ¢
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Experiment

Iterations used for Searching Optimal €

Methods : MNIST-FC1, ReLU, I | MNIST-CNN, ReLU, [, I CIFAR10-CNN, ReLU, [,
! Tiin Teec % | Tuw Teec %f | Tin Trec -rr’;ﬁq
plain | 9.85 0.8207 : 10.56  0.8804 : 933 0.9331
at ! 10.77 0.8972 1139 09489 9.12 0.9128
KwW : 8.48 0.7066 11.61 0.9674 8.43 0.8432
MMR I 12 8.04 0.6703 12 10.68  0.8897 10 8.05 0.8053
MMR+at 7.68 0.6402 | 1122 09351 8.45 0.8450
C-PER | 9.34 0.7780 1 11.17 09305 8.61 0.8606
C-PER+at ! 9.38 0.7816 ! 11.74 09784 ! 8.68 0.8681

TABLE IV: Number of steps of bound calculation for the optimal € in Fast-Lin (Tpin) and PEC (Tpgc) for ReLU networks under I attacks.
Note that Ty, is a constant for different models given the original interval [e, €.
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Analysis

Computational Complexity

@ Consider a N-layer network with m, k, n as input, output and hidden
dimensions. (n >> k, m)

@ overhead of PEC / PER: O(km) (Negligible compared with model
linearization)

Methods Complexity
PGD O(Nn?)
Fast-Lin / CROWN O(N?n3)
KW O(N*n3)
MMR / MMR+at O(Nn*m)
IBP O(Nn?)
C-IBP O(Nn®)

I-PER / I-PER+at O(Nn?m)
C-PER / C-PER+at O(N?n?)
TABLE V: Complexity of different hods on an N-layer neural
network model with k-di i output and i i input.

Each hidden layer has n neurons.
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Analysis

Prevent Over-regularization
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Figure 6: Parameter value distributions of CIFAR10 models trained against [ and I attacks. The Euclidiean

norm of parameter for KW, MMR+at, PER+at model against [ attack is 18.08, 38.36 and 94.63 respectively.
For models against /5 attack, the corresponding Euclidiean norm is 71.34, 62.97 and 141.77 respectively.
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Analysis

Prevent Over-regularization

1g¢ Optimal Bound Distribution for CIFAR10 Model against L. Attack 1p¢ Optimal Bound Distribution for CIFAR10 Model against [, Attack
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Figure 7: The distribution of optimal certified bounds of CIFAR10 models trained against [, and I attacks.
The target bounds are marked as a red vertical line. (2/255 for I, cases and 0.1 for I2 cases.)
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© Conclusion
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Conclusion

@ Contributions

o Geometric interpretation of certified bounds.

o Certification method with finer-grained certified bounds. (PEC)

o Geometric inspired training method for provable robust model. (PER)
@ Limitations

o Scalability to bigger models.
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Thank You!
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