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Introduction
Existence of Adversarial Example

State-of-the-art deep learning models are vulnerable to adversarial attacks.

Imperceptible attack. 1 Sparse attack. 2 Universal attack 3.

1
”Explaining and harnessing adversarial examples.” ICLR 2014.

2
”One pixel attack for fooling deep neural networks.” IEEE Transactions on Evolutionary Computation (2019).

3
”Universal adversarial perturbations.” CVPR 2017.
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Introduction
Formulation

Definition (Robustness Problem)

Given a classification model f (θ, x) : Θ× RH → RK parameterized by θ, data
points drawn from the distribution (x, y) ∼ D and loss function L, robustness
problem is formulation as follows:

min
θ

E(x,y)∼D max
x′∈Sε(x)

L(f (θ, x′), y) (1)

where Sε(x) is called the adversarial budget.

Sε(x) is often defined by {x′|‖x′ − x‖ ≤ ε}
Attack algorithm solves the inner maximization problem.

Defense algorithm solves the outer minimization problem.
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Introduction
Attack Algorithms

max
‖x−x′‖∞<ε

L(f (θ, x′), y) (2)

Fast Gradient Sign Method (FGSM) 4.

x′ ← x + εsign(OxL(f (θ, x′), y)) (3)

Projected Gradient Descent (PGD) 5 ∼ iterative fast gradient sign method.

x(t+1) ← Π{x′|‖x′−x‖≤ε}

[
x(t) + αsign(OxL(f (θ, x(t)), y))

]
(4)

4
”Explaining and harnessing adversarial examples.” ICLR 2014.

5
”Towards deep learning models resistant to adversarial attacks.” ICLR 2018.
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Introduction
Defense Algorithms

min
θ

max
‖x−x′‖∞<ε

L(f (θ, x′), y) (5)

Empirical defense algorithm: estimate the inner maximization problem by its
lower bound.

Most effective method: PGD adversarial training. 6

Provably defense algorithm: solve the inner maximization problem exactly or
estimate by its upper bound.

Convexize loss function. Linear approximation. Mixed integer
programming. Random input smoothing e.t.c.

Robust certification: the input neighbor region guaranteed to be
adversary-free.

Evaluation metrics:
Clean Accuracy ≥ Empirical Robust Accuracy ≥ Robust Accuracy ≥ Certified Robust Accuracy

6
”Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.” ICML 2018.
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Regularization based on Geometric Envelope
Linear Approximation

Given any nonlinear function σ(x) with bounded input l ≤ x ≤ u, we can
introduce one diagonal matrix D and two vectors m1, m2:

Dx + m1 ≤ σ(x) ≤ Dx + m2

Equivalently, ∀x : l ≤ x ≤ u, we have D,m1,m2 and ∃m : m1 ≤ m ≤ m2,
such that

σ(x) = Dx + m

C. Liu, M. Salzmann, S. Süsstrunk (EPFL) Polyhedral Envelope Regularization November 23, 2020 9 / 29



Regularization based on Geometric Envelope
Model Linearization

Recall the N-layer neural network.

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ...,N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ...,N − 1
(6)

We can linearize the output of each layer.

z(i) = W(i−1)(σ(W(i−2)(...(W(1)(x + m(1)) + b(1))...) + bi−2)) + b(i−1)

= W(i−1)(D(i−1)(W(i−2)(...(W(1)(x + m(1)) + b(1))...) + b(i−2)) + m(i−1)) + b(i−1)

=
(

Πi−1
j=2W

(j)D(j)
)
W(1)x +

i−1∑
h=1

(
Πi−1

j=h+1W
(j)D(j)

)
b(h) +

i−1∑
h=1

(
Πi−1

j=h+1W
(j)D(j)

)
W(h)m(h)

(7)

Bound for {m(h)}i−1
h=1 → bounds for z(i) → bound for m(i)

Iteratively estimate the bounds for {z(i)}Ni=2
7 8

7
”Towards fast computation of certified robustness for relu networks.” ICML 2018

8
”Efficient neural network robustness certification with general activation functions.” NeurIPS 2018
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z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ...,N − 1
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Methodology
Model Linearization

Proposition (Model Linearization)

Given a classification model f (θ, x) : Θ× RH → RK parameterized by θ, a
data point (x, y) and a pre-defined adversarial budget Sε(x),
∃W ∈ RH×K ,b ∈ RK such that

∀x′ ∈ Sε(x), f (θ, x′)− f (θ, x′)y ≤Wx′ + b (8)

Method to calculate W,b: Fast-Lin 9, CROWN 10, IBP-inspired 11.

We can further bound Wx′ + b ≤ v,∀x′ ∈ Sε(x). If L is softmax cross
entropy loss, then we have maxx′∈Sε(x) L(f (θ, x′), y) ≤ L(v, y). Minimizing
the RHS allows us to train provable models (KW 12).

9
”Towards fast computation of certified robustness for relu networks.” ICML 2018

10
”Efficient neural network robustness certification with general activation functions.” NeurIPS 2018

11
”On the effectiveness of interval bound propagation for training verifiably robust models.” 2018

12
”Provable defenses against adversarial examples via the convex outer adversarial polytope” ICML 2018.
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Methodology
Geometric Interpretation

∀x′ ∈ Sε(x), f (θ, x′)− f (θ, x′)y ≤Wx′ + b (9)

If x′ ∈ Sε(x) ∩ {x′|∀i ,Wix′ + bi ≤ 0}, then x′ is guaranteed to have the
same prediction as x.

{x′|∀i ,Wix′ + bi ≤ 0} forms a polyhedron in RH space and is an envelope
of the model’s decision boundary.

Geometric interpretation: when ε is too big or too small.
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C. Liu, M. Salzmann, S. Süsstrunk (EPFL) Polyhedral Envelope Regularization November 23, 2020 12 / 29



Methodology
Geometric Interpretation

∀x′ ∈ Sε(x),∀i ∈ [K ], f (θ, x′)i − f (θ, x′)y ≤Wix
′ + bi ≤ 0 (9)

If x′ ∈ Sε(x) ∩ {x′|∀i ,Wix′ + bi ≤ 0}, then x′ is guaranteed to have the
same prediction as x.

{x′|∀i ,Wix′ + bi ≤ 0} forms a polyhedron in RH space and is an envelope
of the model’s decision boundary.

Geometric interpretation: when ε is too big or too small.

C. Liu, M. Salzmann, S. Süsstrunk (EPFL) Polyhedral Envelope Regularization November 23, 2020 12 / 29



Methodology
Theoretical Robustness Guarantee

∀x′ ∈ Sε(x),∀i ∈ [K ], f (θ, x′)i − f (θ, x′)y ≤Wix
′ + bi ≤ 0 (10)

Theorem (Theoretical Robustness Guarantee)

Given a classification model f (θ, x) : Θ× RH → RK parameterized by θ
and linear bounds in Equation 10, we assume adversarial budget is defined
based on lp norm: Sε(x) = {x′|‖x′ − x‖p ≤ ε}, then there is no adversarial
example inside an lp norm ball of radius d centered around x, with

d = mini∈[K ] {ε, di}, di = max
{

0,−Wix+bi
‖Wi‖q

}
, where lq is the dual norm of

lp ,i.e. 1
p + 1

q = 1.
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Methodology
Constrained Cases

This theorem is too pessimistic, as the attack can not perturb the image out
of domain [0, 1]H .

If we constrain the perturbed images inside [0, 1]H , the certified bound
should be larger.

We need to calculate the distance between the clean input x and set
S = ∪i∈[K ]{x′|Wix′ + bi > 0} ∩ [0, 1]H , which is the minimum distance to

Si = {x′|Wix′ + bi > 0} ∩ [0, 1]H over i ∈ [K ].

min
x′
‖x− x′‖p

s.t.0 ≤ x′ ≤ 1

Wix
′ + bi > 0

(11)
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Methodology
Constrained Cases

min
x′
‖x− x′‖p

s.t.0 ≤ x′ ≤ 1

Wix
′ + bi > 0

(12)

Convex objective with linear constraints.

To satisfy Wix′ + bi > 0, the solution to minimize ‖x− x′‖p is:

x̃′ = x− Wix + bi
‖Wi‖qq

Wi|Wi |
q
p (13)

Greedy algorithm to find points satisfying 0 ≤ x′ ≤ 1: check if elements of
x̃′ satisfying the constraint, for those that don’t, clip them to 0 or 1 and
keep them fixed in the next iteration.
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Methodology
Algorithm

min
x′
‖x− x′‖p

s.t.0 ≤ x′ ≤ 1

Wix
′ + bi > 0

(14)

x̃′ = x− Wix + bi
‖Wi‖qq

Wi|Wi |
q
p (15)

Given Wi , bi , x

Frozen dimension S(f ) = ∅
Calculate x̃′ based on 15

While 0 ≤ x̃′ ≤ 1 not satisfied:

Update S(f ) = S(f ) ∪ {j |x̃′j < 0} ∪ {j |x̃′j > 1}
Clip x̃′ = clip(x̃′,min = 0,max = 1)
Update x̃′ based on 15 with x̃j , j ∈ S(f ) fixed

Return solution ‖x̃′ − x‖p
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Methodology
Algorithm

Corollary (Optimality Guarantee)

The greedy algorithm is guaranteed to find the optimum of problem 14.

We call this method Polyhedral Envelope Certification (PEC).

Advantages:

Almost no overhead.
Finer-grained certified bounds.
Fast convergence when searching for optimal bounds by binary search.
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Methodology
Training Method

Definition

Given the certified bound d̃ by PEC, we define the Polyhedral Envelope
Regularization (PER) based on hinge-loss.

PER(x, y , θ) = max

{
0, 1− d̃

ε

}
(16)

Training objective of PER: L(f (x, θ), y) + γPER(x, y , θ)

We can combine PER with adversarial training:
L(f (x′, θ), y) + γPER(x′, y , θ), where x′ is found by PGD.

We can use sub-sampling to decrease the complexity of PER:
L(f (x, θ), y) + γPER(x̄, ȳ , θ), where (x̄, ȳ) is sub-sampled from a mini-batch
(x, y).
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Experiment
Settings

Models: FC1 for MNIST, LeNet for MNIST and CIFAR10.

7 baselines: normal training (plain), PGD adversarial training (at), KW 13,
MMR, MMR+at 14, IBP 15, C-IBP 16.

8 evaluation metric: clean test accuracy (CTE), PGD robust accuracy
(PGD), incomplete certified robust accuracy by Fast-Lin / CROWN (CRE
Lin / CRE CROWN) and by IBP (CRE IBP), complete certified robust
accuracy (CRW MIP) 17, average certified bounds by Fast-Lin 18/ CROWN
19 (ACB KW / ACB CRO) and IBP (ACB IBP), average certified bounds by
PEC (ACB PEC).

13
”Provable defenses against adversarial examples via the convex outer adversarial polytope.” ICML 2018.

14
”Provable robustness of relu networks via maximization of linear regions.” AISTATS 2019.

15
”On the effectiveness of interval bound propagation for training verifiably robust models.” ICCV 2019.

16
”Towards stable and efficient training of verifiably robust neural networks.” ICLR 2020.

17
”Training for faster adversarial robustness verification via inducing reLU stability.” ICLR 2019.

18
”Towards fast computation of certified robustness for relu networks.” ICML 2018

19
”Efficient neural network robustness certification with general activation functions.” NeurIPS 2018.
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Experiment
Results for ReLU Network
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Experiment
Results for Non-ReLU Network
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Experiment
Iterations used for Searching Optimal ε

To search for the optimal certified
bound ε, Fast-Lin / CROWN adjust
their target by binary search.

PEC has a finer-grained certified
bound, so needs fewer iterations
than baselines.
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C. Liu, M. Salzmann, S. Süsstrunk (EPFL) Polyhedral Envelope Regularization November 23, 2020 24 / 29



Analysis
Computational Complexity

Consider a N-layer network with m, k , n as input, output and hidden
dimensions. (n >> k ,m)

overhead of PEC / PER: O(km) (Negligible compared with model
linearization)
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Analysis
Prevent Over-regularization
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Conclusion

Contributions

Geometric interpretation of certified bounds.
Certification method with finer-grained certified bounds. (PEC)
Geometric inspired training method for provable robust model. (PER)

Limitations

Scalability to bigger models.
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Thank You!
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