
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Towards Verifiable, Generalizable and Efficient Robust
Deep Neural Networks.

Chen LIU

Thèse n° 9128

2022

Présentée le 26 août 2022

Prof. M. Jaggi, président du jury
Prof. S. Süsstrunk, Dr M. Salzmann, directeurs de thèse
Dr R. Tomioka, rapporteur
Prof. F. Tramer, rapporteur
Prof. N. Flammarion, rapporteur

Faculté informatique et communications
Laboratoire d’images et représentation visuelle
Programme doctoral en informatique et communications

Those who understand others are clever,

but those who know themselves are truly wise.

— Laozi

To my parents. . .

Acknowledgments
Spending five years in my twenties concentrating on an interesting topic is the treasure of my

life. This thesis, as well as my whole Ph.D period, would not be completed smoothly without

the help and encouragement from many people. Here, I express my gratitude to all of them.

First, I would like to thank my supervisor Prof. Sabine Süsstrunk. Sabine is the person who

saved my research career when I was at loss before joining her laboratory. She provides

generous support for my research work and enough flexibility on the project topic. In addition

to specific techniques, working with Sabine greatly improves my fundamental research skills,

including how to write academic papers, how to do presentations, and how to supervise

students. Finally, Sabine consistently encourages me whenever my submitted work is rejected

by a conference, which greatly motivates me to polish up my research.

Second, I am grateful to my co-supervisor Dr. Mathieu Salzmann. I am in particular thankful

for all the discussions with Mathieu. Mathieu has broad knowledge in different domains, he

can usually point out the limitations of unreliable methods proposed by me, which greatly

improves the efficiency of my research. Moreover, Mathieu is a perfect paper editor and can

always organize the content in a systematic, logical, and professional way. Checking Mathieu’s

edits always benefits me, including making me realize the limitations of my current work and

enlightening the way to improve it.

Third, many thanks to two senior researchers I have worked with: Dr. Ryota Tomioka from

Microsoft Research Cambridge and Prof. Tong Zhang from Hong Kong University of Science

and Technology. The first year and half of my Ph.D. were supported by Microsoft Research,

Ryota can always provide me with interesting research problems and potential solutions when

my research was at a loss. Discussion with Ryota also makes me realize the difference between

academia and industry. Tong is a famous theoretician in machine learning and I collaborate

with his lab in the last two years of my Ph.D. I have only a few direct discussions with Tong,

but every time Tong can quickly point out the potential improvement of my works, especially

the limitations of the theoretical proofs, even after my double-check.

I would also thank all other jury members of my Ph.D. committee, Prof. Florian Tramèr, Prof.

Martin Jaggi, and Prof. Nicolas Flammarion, for their suggestions and questions during the

oral exam on improving this thesis.

Some works included in my thesis are not possible without my colleagues’ collaboration. I am

thankful to all of them: Dr. Ya-Ping Hsieh, Dr. Tao Lin, Zhichao Huang, Ziqi Zhao, and Fabian

Latorre. Some of them are theoreticians, and some of them are practitioners, but all provide

valuable contributions to the work I participate in. Among them, I would especially thank

i

Acknowledgments

Zhichao for our weekly discussion and brainstorm, and for Tao for the career discussion.

I am very fortunate to be a member of the Image and Visual Representation Lab (IVRL) of EPFL,

where I meet wonderful persons from all over the world: Dr. Ruofan Zhou, Dr. Edo Collins,

Dr. Marjan Shahpaski, Dr. Seungryong Kim, Dr. Hak Gu Kim, Dr. Majed El Helou, Dr. Tong

Zhang, Deblina Bhattacharjee, Bahar Aydemir, Baran Ozaydin, Ehsan Pajouheshgar, Martin

Nicolas Everaert, Yufan Ren, Peter Grönquist and Dongqing Wang. I would especially thank

Tong for our experience of joint supervision on a Master Thesis project, and for Majed for his

genius ideas of motivating students when we two are teaching assistants in the computational

photography course. Moreover, I also thank two secretaries, Francoise Behn and Nicoletta

Isaac, for helping me deal with administrative work.

In addition, I owe my deepest gratitude to my friend both inside and outside EPFL, my Ph.D.

life would not be that happy without them. I would thank Ruofan, who is also my undergrad

classmate and Ph.D. labmate, for helping me settle down in Lausanne. I spent wonderful times

traveling with Tao, Xiaoying, Jing, Xiaoyu, Long, Zijian, Zhongqi, Junxiong, Shengzhao, Lu, and

Sailan in many different countries. I enjoyed lunch chat with Kamalaruban, Teresa, Junhong,

Zilu, and Sitian, for their wisdom and humor. I tried different kinds of restaurants in Lausanne

with Hang, Zhengchao, Jiande, Yao, Yanfei, Fatih, Ali, and Ahmet in the last five years, which is

really amazing. During the COVID pandemic, I am really grateful to Maksym for organizing

adversarial learning workshops when we are all locked down at home. There are also many

other people that lighten my Ph.D. life, the list is just too long to exhaustively put here.

I give my sweetest gratitude to my girlfriend, Qi Dou, for her company throughout my whole

Ph.D. Qi spent one and half years in London as a postdoc, before moving to Hong Kong as a

faculty. Before my final move to Hong Kong after my graduation, we have never resided in

the same country during my Ph.D. However, both of us are devoted and offer encouragement

whenever we meet difficulties, and we are always able to solve them. Time and distance cannot

separate Qi from me, let alone other difficulties. Having Qi with me, my career plan is much

clearer and my life is much more colorful.

Finally, I would like to acknowledge the unconditional support and care from my parents

and the whole family. They always double my happiness, and share my stress and frustration

during my study, without which I am unable to move forward to get my Ph.D. The long-

distance between Lausanne and my hometown, as well as the pandemic, may make the family

reunion difficult in the last few years, but I believe things will get much better in the future.

Lausanne, July 19, 2022 Chen Liu

ii

Abstract
In the last decade, deep neural networks have achieved tremendous success in many fields

of machine learning. However, they are shown vulnerable against adversarial attacks: well-

designed, yet imperceptible, perturbations can make the state-of-the-art deep neural networks

output incorrect results. Understanding adversarial attacks and designing algorithms to make

deep neural networks robust against these attacks are key steps to building reliable artificial

intelligence in real-life applications.

In this thesis, we will first formulate the robust learning problem. Based on the notations

of empirical robustness and verified robustness, we design new algorithms to achieve both

of these types of robustness. Specifically, we investigate the robust learning problem from

the optimization perspectives. Compared with classic empirical risk minimization, we show

the slow convergence and large generalization gap in robust learning. Our theoretical and

numerical analysis indicates that these challenges arise, respectively, from non-smooth loss

landscapes and model’s fitting hard adversarial instances. Our insights shed some light on

designing algorithms for mitigating these challenges.

Robust learning has other challenges, such as large model capacity requirements and high

computational complexity. To solve the model capacity issue, we combine robust learning

with model compression. We design an algorithm to obtain sparse and binary neural networks

and make it robust. To decrease the computational complexity, we accelerate the existing

adversarial training algorithm and preserve its performance stability.

In addition to making models robust, our research provides other benefits. Our methods

demonstrate that robust models, compared with non-robust ones, usually utilize input fea-

tures in a way more similar to the way human beings use them, hence the robust models

are more interpretable. To obtain verified robustness, our methods indicate the geometric

similarity of the decision boundaries near data points. Our approaches towards reliable ar-

tificial intelligence can not only render deep neural networks more robust in safety-critical

applications but also make us better aware of how they work.

Keywords: deep neural networks, adversarial robustness, optimization, efficient learning.

iii

Résumé
Les réseaux de neurones profonds ont connu un énorme succès dans de nombreux domaines

de l’apprentissage automatique. Cependant, ils se montrent vulnérables aux attaques adverses :

des perturbations bien définies, mais imperceptibles, pouvant faire en sorte que les réseaux

de neurones profonds produisent des résultats incorrects. Comprendre ces attaques adverses

et concevoir des algorithmes pour rendre les réseaux de neurones profonds robustes à ces

attaques sont des étapes clés pour construire une intelligence artificielle fiable dans des

applications réelles.

Dans cette thèse, nous formulons d’abord le problème d’apprentissage robuste. Sur la base

de notions de robustesse empirique et de robustesse vérifiée, nous concevons de nouveaux

algorithmes pour atteindre ces deux types de robustesse. Plus précisément, nous étudions

le problème d’apprentissage robuste du point de vue de l’optimisation. Nous démontrons la

convergence lente et les difficultés de généralisation de l’apprentissage robuste par rapport à

la minimisation du risque empirique classique. Notre analyse théorique et numérique indique

que ces défis découlent, respectivement, du manque de régularité de la fonction de coût

minimisée et de l’ajustement du modèle aux exemples d’entraînement adverse difficiles. Nos

observations permette une meilleurs compréhension et facilite la conception d’algorithmes

pour atténuer ces défis.

L’apprentissage robuste présente d’autres difficultés, telles que des exigences de capacité de

modèle importantes et une complexité de calcul élevée. Pour résoudre le problème de capa-

cité du modèle, nous combinons un apprentissage robuste avec la compression du modèle.

Nous concevons un algorithme pour obtenir des réseaux de neurones clairsemés et binaires

et les rendre robuste. Pour réduire la complexité de calcul, nous accélérons l’algorithme

d’entraînement adverse existant et préservons sa stabilité de performance.

En plus de rendre les modèles robustes, nos recherches offrent d’autres avantages. Nos mé-

thodes démontrent que les modèles robustes, par rapport aux modèles non robustes, utilisent

généralement les caractéristiques d’entrée d’une manière plus similaire à la façon dont les

êtres humains les utilisent, ce qui rend les modèles robustes plus interprétables. Pour obtenir

une robustesse vérifiée, nos méthodes indiquent la similarité géométrique des frontières de

décision près des points de données. Nos approches vers une intelligence artificielle fiable

peuvent non seulement rendre les réseaux de neurones profonds plus robustes dans les

applications critiques pour la sécurité, mais aussi nous rendre plus conscients de leur fonc-

tionnement.

v

Résumé

Mots clés : réseaux de neurones profonds, robustesse aux attaques adverses, optimisation.

vi

Contents
Acknowledgments i

Abstract (English/Français) iii

Notation ix

1 Introduction 1

1.1 Problem Formulation . 1

1.2 Extra Benefits of Robustness . 4

1.3 Challenges in Robust Learning . 4

1.4 Summary of Contributions . 6

2 Related Works 9

2.1 Adversarial Attacks . 9

2.2 Verified Robustness . 11

2.3 Empirical Robustness . 12

2.4 Efficient Robust Learning . 13

3 Verified Robustness 15

3.1 Bounding Network’s Output . 15

3.1.1 Linear Approximation . 16

3.1.2 Interval Bound Propagation . 19

3.2 Network Verification . 20

3.2.1 Verification on Non-uniform Bounds . 20

3.2.2 Experiments and Analysis . 22

3.3 Training Provably Robust Networks . 27

3.3.1 Geometric Bounds of Decision Boundaries 27

3.3.2 Finer-grained and Faster Verification . 31

3.3.3 Polyhedral Envelope Regularization . 33

3.3.4 Experiments and Analysis . 35

3.4 Summary and Broader Impact . 44

4 Empirical Robustness 45

4.1 Adversarial Training . 45

4.2 Adversarial Loss Landscape . 47

vii

Contents

4.2.1 Toy Model: Logistic Regression . 47

4.2.2 Theoretical Analysis for General Models 51

4.2.3 Numerical Experiments . 56

4.2.4 Periodic Adversarial Scheduling . 62

4.2.5 Discussion . 65

4.3 Adversarial Overfitting . 66

4.3.1 Measuring Instancewise Difficulty . 67

4.3.2 Empirical Observation . 69

4.3.3 Toy Model: Logistic Regression . 74

4.3.4 Theoretical Analysis for General Models 80

4.3.5 Case Studies . 87

4.4 Summary and Broader Impact . 94

5 Efficient Robust Learning 95

5.1 Robust Subnetwork inside Randomly-initialized Networks 95

5.1.1 Lottery Ticket Hypothesis . 96

5.1.2 Adaptive Pruning . 97

5.1.3 Binary Initialization Scheme . 101

5.1.4 Experimental Results . 104

5.2 Instance-Adaptive Fast Adversarial Training . 113

5.2.1 Fast Adversarial Training and Catastrophic Overfitting 115

5.2.2 Attack by Adaptive Step Size . 116

5.2.3 Convergence Analysis . 118

5.2.4 Experimental Results . 127

5.3 Summary and Broader Impact . 130

6 Conclusion 131

6.1 Summary . 131

6.2 Unsolved Challenges and Future Work . 132

Bibliography 137

Curriculum Vitae 153

viii

Notation
Unless explicitly stated, we use light letters, lowercase bold letters, and uppercase bold letters

to represent scalars,49 vectors, and higher dimensional tensors, respectively.

The table below list the variables and their corresponding meanings globally. For any variable

or expression var , var and var represent its upper bound and lower bound, respectively. ṽar

represents its estimation.

f model
p lp norm
y instance label
K number of categories
L number of layers
M dimension of input instances
N number of training instances
x input instance
ε strength of the adversarial budget
θ model parameters
∆ adversarial perturbation
Φ activation function
D data distribution
L loss function
S adversarial budget
1 indicator function

ix

1 Introduction

Over the last decade, deep neural networks have achieved great success in the advancement

of artificial intelligence, including computer vision [39, 63, 84], natural language process-

ing [10, 147, 170] and reinforcement learning [133, 134]. However, these state-of-the-art

models are shown to be vulnerable against adversarial attacks [101, 142]. Some well-designed

perturbations of the input can make these models output, with very high confidence, incorrect

predictions, but they do not change the semantic meaning of the input hence are imperceptile

to human beings. Modern deep neural networks contain millions of trainable parameters

and are highly non-convex. Due to this black-box nature, it is not clear what causes these

adversarial examples. Therefore, obtaining deep neural networks robust against these attacks

becomes a crucial yet challenging task.

We demonstrate some adversarial examples in different applications in Figure 1.11. These

examples indicate that adversarial examples broadly exist in different applications based

on deep neural networks. Designing methods that train robust neural networks not only

benefits safety-critical applications, such as medical image analysis and auto-driving, but also

advances our understandings about how these models work.

1.1 Problem Formulation

In supervised learning, we are provided N K -category training instances, i.e., data-target pairs{
xi , yi

}N
i=1, sampled from an unknown distribution D. Here, xi ∈RM and yi ∈ {0,1,2, ...,K −1}.

We train a model f parameterized by θ to minimize the empirical risk as follows:

min
θ

1

N

N∑
i=1

L(f (θ,xi), yi) (1.1)

1Images in Figure 1.1 are from the literature and can be found on the Internet. Image (a) is from [53]. Image
(b) is from [4]. Image (c) is from www.bostonherald.com, published on February 25th, 2020. Image (d) is from
www.cse.gatech.edu, published on September 21st, 2018.

1

https://www.bostonherald.com/2020/02/25/ntsb-tesla-autopilot-distracted-driver-caused-fatal-crash/
https://www.cse.gatech.edu/news/611783/erasing-stop-signs-shapeshifter-shows-self-driving-cars-can-still-be-manipulated

Introduction

(a) Image Classification (b) Semantic Analysis

(c) Reinforcement Learning (d) Object Detection

Figure 1.1 – Some examples of adversarial attacks in different applications. (a) Imperceptible
noise makes the image classifiers output the wrong label. (b) Replacing a few words with their
synonyms can flip the predictions. (c) Reinforcement learning algorithms in the auto-driving
system fail to adapt to new environment. (d) Adding new textures to the “stop sign” can fool
the object detection system.

Here, L is the loss function measuring the disparity between the model’s output f (θ,xi) and

the target yi . In a classification problem, yi is the label of the corresponding data xi , and L is

usually the softmax cross-entropy function. Let θ̂ be the result by solving the minimization

problem (1.1); it is evaluated based on a test set consisting of another Nte instances sampled

from the same distribution.

However, the deep neural networks trained by minimizing the empirical risk in (1.1) are not

robust against adversarial attacks at all. To obtain robust models, we need to optimize the

model’s performance on the adversarially perturbed inputs and to minimize the adversarial

empirical risk as follows:

min
θ

1

N

N∑
i=1

max
∆i∈S(ε,xi)

L(f (θ,xi +∆i), yi) (1.2)

Here, the set S(ε,xi) is called the adversarial budget that contains all allowable perturbations

of the input. Ideally, the adversarial budget should include all perturbations that do not

change the semantic meanings of the input. This budget can depend on the input instance

xi and is parameterized by ε which represents the strength of the perturbation. However, it

is difficult to mathematically exactly depict the semantic meanings universally applicable

for different applications [156]. In most of the existing literature [53, 98], the adversarial

2

1.1. Problem Formulation

budget is defined based on an lp norm constraint:
{
∆|‖∆‖p ≤ ε}. Unless explicitly stated,

to represent the adversarial budget for notation simplicity, we use S
(p)
ε := {

∆|‖∆‖p ≤ ε} and

further Sε := {∆|‖∆‖∞ ≤ ε}.

Solving the inner maximization problem of (1.2) exactly is NP-hard in general, especially in

the cases when f is a high-dimensional non-convex function such as a deep neural network.

In this regard, we can approximately solve the min-max problem (1.2) by deriving either the

upper bound or the lower bound of inner maximal. On one hand, we have by definition

∀∆ ∈ S(p)
ε ,L(f (θ,xi +∆), yi) ≤ max∆i∈S(ε,xi)L(f (θ,xi +∆i), yi). Then, we can design powerful

adversarial attack algorithms to find a near-optimal adversarial perturbation ∆ to derive a

lower bound as tight as possible. On the other hand, to derive the upper bound of the inner

maximal, we need the upper bound and the lower bound of the model’s output f (θ,xi +∆i)

for ∆i ∈ S
(p)
ε . If the upper bound of the inner maximal still represents a correct prediction,

we can then guarantee that the model is provably robust for the input instance (xi , yi) given

the adversarial budget S(p)
ε . A tighter bound of the model’s output will enable more input

instances to be verified.

In summary, the adversarial attack problem is to find near-optimal adversarial perturbations

for a tight lower bound of the inner maximal in (1.2); adversarial training uses these generated

adversarial perturbations to solve the outer minimization. We use empirical robust accuracy

to represent the proportion of input instances that are robust against adversarial attacks.

Correspondingly, the robustness verification problem is to find a tight upper bound of the

inner maximal in (1.2); provably robust training minimizes this upper bound to obtain models

that are provably robust. We use verified robust accuracy to represent the proportion of the

input instances that are proven robust under the given adversarial budget. By definition,

empirical robust accuracy and verified robust accuracy are the upper bound and the lower

bound of the true robust accuracy, respectively. Here, true robust accuracy is the proportion

of input instances that are “actually” robust. Mathematically, it is defined as 1
N

∑N
i=1 1(∀∆ ∈

S
(p)
ε , yi = argmax j f (θ,xi +∆) j) where 1 is the indicator function. Calculating the true robust

accuracy is proven NP-hard [154], it is impossible to evaluate the modern deep learning

models by this metric. Therefore, empirical robust accuracy and verified robust accuracy

become two alternative and feasible metrics for robustness evaluation in practice.

In this thesis, we concentrate on adversarial robustness that is significantly different from

robustness against random noises. The latter evaluates the model’s average performance in

the presence of random perturbations. In contrast, we focus more on the model’s worse-case

performance within all allowable perturbations. Formally, improving adversarial robustness

solves a min-max optimization problem (1.2), whereas improving robustness against random

noise does not.

3

Introduction

1.2 Extra Benefits of Robustness

Apart from obtaining a model resistant to adversarial attacks, robust learning can also provide

other benefits and advance our understandings of how deep neural network works. First, by

making models’ predictions invariant, we implicitly encode some priors in the robust learning.

Specifically, as adversarial budgets (ideally) represent the set of input perturbations that do not

change the inputs’ semantic meanings, robust learning constrains the models to avoid using

features sensitive to such perturbations. In other words, robust learning prevents the models

from using features that do not change the inputs’ semantic meanings hence they focus on

the features strongly correlated with the semantic meanings. In [76], the former are called

non-robust features and the latter are called robust features. By robust learning, we encode

priors indicated by the adversarial budgets to make the models predict more like humans

do. Existing works [76, 95] show that models by robust learning are more interpretable and

explainable, compared with non-robust ones.

In addition, for neural network using ReLU activation function [84] (the most popular activa-

tion function) robust learning also increases the sparsity of intermediate activations [29] thus

facilitates model compression. This is because the ReLU function always outputs the constant

zero when the input is non-positive. Such inactivated neurons are predominant in models

trained by robust learning, because it encourages the models’ output to be invariant to the

perturbation of the input. More inactivated neurons in the intermediate layers means more

sparse intermediate activations.

Finally, robust models are found to have better performance in transfer learning [121]. Com-

pared with normal pre-trained models, those that are adversarially trained against perturba-

tions have better performance when they are fine-tuned by another relevant dataset. Intu-

itively, the robust features learned by robust models are more easily generalized hence make

the model better adapted to the new dataset. Based on this nice property, robust pre-trained

models are better choices for downstream tasks.

1.3 Challenges in Robust Learning

Compared with classic empirical risk minimization in (1.1), robust learning problem (1.2) is

more challenging, because the latter optimizes the worst-case loss objective. The challenges

of obtaining empirical robustness and verified robustness include but are not limited to the

following:

1. Degradation of Clean Accuracy. Although both adversarial training and provably ro-

bust training can make models robust against adversarial attacks, they sacrifice the

performance on clean inputs. It has been theoretically and empirically shown that there

is a clear trade-off between the model’s clean accuracy and its robust accuracy [178]. In

order to make some input instances robust against adversarial attacks, some algorithms

4

1.3. Challenges in Robust Learning

can overly sacrifice the performance on other input instances. We call this phenomenon

over-regularization.

2. Slower Convergence. Adversarial training results in much slower convergence, com-

pared with empirical risk minimization. Such phenomenon arises from both the com-

plexity of single mini-batch updates and the number of updates required for conver-

gence. First, we generate adversarial examples in adversarial training, which dramat-

ically increases the computational complexity for one mini-batch update. Second,

adversarial training needs more mini-batch updates to convergence to the neighbor-

hood of a local minimum, thus further prolonging the training process.

3. Larger Generalization Gap. Robust learning yields a much larger generalization gap

than empirical risk minimization. Sufficiently large models can perfectly fit the training

set, both under empirical risk minimization and robust learning. However, the state-of-

the-art robust accuracy is still below 70% on CIFAR10 test set under the l∞ norm based

adversarial budget with ε= 8/255 [30], compared with near-perfect performance on the

clean test set. In addition, the robust accuracy on the test set can degrade significantly

in the late phase of adversarial training [118]. We call this phenomenon adversarial

overfitting, as it does not occur in empirical risk minimization.

4. Larger Model Capacity Requirements. By adjusting the width and the depth of the

models, we can compare the performance in clean accuracy and robust accuracy for

models of different capacities. Comprehensive results [98, 166] have shown that robust

learning needs a larger model capacity to achieve competitive performance than empir-

ical risk minimization. By decreasing the capacity of small models, robust learning first

fails to converge, whereas empirical risk minimization still obtains non-trivial perfor-

mance. By increasing the capacity of large models, the performance of empirical risk

minimization will first saturate, yet the performance of robust learning still improves.

5. More Training Data Needs. The pioneering work in 2018 [126] theoretically concludes

that the sample complexity of robust learning is significantly higher than that of empiri-

cal risk minimization, irrespective of the model architecture and the training algorithm.

Using extra data [18], data augmentation [114] or generated synthetic data [57] can

greatly improve the robustness of the model.

Compared with solving one of the points above, it is even more challenging to jointly mitigate

multiple points, because solving the challenge above might worsen the other issues. For

example, to achieve a better trade-off between the clean accuracy and the robust accuracy,

some algorithms use more training data and larger models. To compress the large model while

preserving robustness, many algorithms introduce significant computational overhead. In

summary, the existing methods are still far away from overcoming the challenges in robust

learning comprehensively, there is still much room for improvement.

5

Introduction

1.4 Summary of Contributions

In the previous sections, we have demonstrated the motivation, formulation, benefits and the

challenges of robust learning. In Chapter 2, we conduct comprehensive literature reviews in

several aspects of the problem we study. In the subsequent three sections, we will focus on

each aspect of the themes in this thesis, namely verifiable, generalizable and efficient. At the

end, we summarize these works and list some of the unsolved problems in this field.

In Chapter 3, we study verified robustness based on the geometric properties of the model’s

decision boundary. We are, to the best of our knowledge, the first to introduce methods for

verifying non-uniform adversary-free regions with larger volumes than the uniform ones.

The algorithms for verifying non-uniform bounds are also tools for studying the geometric

properties of the model’s decision boundaries. In this regard, we can distinguish robust input

features from non-robust ones, based on their respective verified adversary-free bounds. We

find that the robust and non-robust features of the robust models are much more aligned with

human perception, hence robust models are easily interpretable. In addition to verification,

we can use the linear approximation of the model’s output to bound the adversary-free region

by a polyhedral envelope. By introducing a regularization scheme for enlarging the polyhedral

envelope, we can train provably robust models. To the best of our knowledge, we are also the

first to introduce differentiable approximation of the input’s distance to the decision boundary

for general neural network models. Extensive experimental results indicate that our methods

can mitigate the over-regularization issue: our trained model can achieve much better clean

accuracy with competitive robust accuracy compared with baselines.

In Chapter 4, we focus on empirical robustness, especially adversarial training, the most

popular and effective method for achieving empirical robustness. We study, in particular, the

two challenges of adversarial training: slow convergence and large generalization gap. Our

investigations are theoretically grounded, from linear toy models to general nonlinear models,

and they are validated by the numerical experiments. For slow convergence, we study the loss

landscape of adversarial training. In particular, we prove that adversarial attacks make the loss

landscape in the parameter space non-smooth. Non-smooth loss landscapes causes more

scattered gradients and slower convergence. We also study the connectivity of the local minima

in the adversarial loss landscape. Our results indicate these local minima in the adversarial

cases are less connected and more diverse than the non-adversarial cases. Using our findings

on the adversarial loss landscape, we propose a warm-up strategy in the adversarial budget to

avoid convergence failure and a periodic scheduler to ensemble more diverse minima. For

large generalization gaps, we study the adversarial overfitting phenomenon from the aspect of

training instances. We conclude that adversarial overfitting occurs when the models fit hard

adversarial training instances, from both theoretical and empirical perspectives. We find our

theory can explain the success of existing methods that mitigate adversarial overfitting and

improve the generalization: they all implicitly avoid fitting hard adversarial training instances.

In Chapter 5, we study how to improve the efficiency of robust learning. We focus on model

6

1.4. Summary of Contributions

compression and training acceleration. For model compression, we extend the Lottery Ticket

Hypothesis [57] to the adversarial cases. We design novel pruning strategies and an initializa-

tion scheme for discovering robust sub-networks inside a randomly-initialized binary network.

We show competitive performance in both clean accuracy and robust accuracy, even when

comparing with other methods that train full-precision networks. For accelerated adversarial

training, we propose an instance-wise adaptive step size in order to solve the catastrophic

overfitting issue [158]. Theoretically, it has faster convergence, when the magnitudes of the in-

put gradients has large variances. Empirically, we show that it achieves better and more stable

performance with almost no computational overhead, compared with existing accelerated

adversarial training methods.

In summary, we highlight the contributions of this thesis in the points listed below:

• Verified Robustness

– First method for verifying non-uniform adversary-free volumes.

– New method for distinguishing robust input features from non-robust ones.

– Bounds of the decision boundary by a geometry-inspired polyhedral envelope.

– First method to obtain a differentiable estimate of the distance between the input

and the model’s decision boundary for networks of general activation functions.

– A regularization scheme to improve provably robust training and mitigate over-

regularization (i.e., with better accuracy on the clean inputs).

• Empirical Robustness

– First to point out the non-smooth nature of the adversarial loss landscape.

– Convergence analysis of adversarial training.

– Demonstration of weaker connectivities of local minima in the adversarial loss

landscape.

– A periodic training scheme to improve the performance of adversarial training.

– Theoretical and empirical analyses of adversarial overfitting, showing adversarial

overfitting arises from fitting hard adversarial training instances.

– Case study of existing methods, showing ones that successfully mitigate adversarial

overfitting implicitly avoid fitting hard adversarial instances.

• Efficiency of Robust Learning

– Novel pruning strategy and initialization schemes for obtaining robust sub-networks

from randomly-initialized binary networks.

– Instance-wise adaptive step size for stable and improved fast adversarial training.

7

2 Related Works

Over the last few years, there have been many works that propose methods for improving

the robustness of deep neural networks. Some of these works, however, have been proved

invalid in the presence of more powerful and adaptive adversarial attack algorithms. There is

an “armed race” between the attack and the defense side of the robust learning problem. In

this chapter, we comprehensively review the related works of both sides. Using the challenges

found by these works, we also include those that improving the efficiency of robust learning.

2.1 Adversarial Attacks

The robustness properties have been well studied on traditional machine learning models

for years, such as support vector machine (SVM) [119, 168]. The robust learning problem

for these models can usually be formulated in the form of their trainable parameters, which

greatly facilitates our finding solutions that use optimization techniques.

The existence of adversarial examples for deep neural network models was first pointed out

in [14]. Due to the high complexity and non-convexity of deep neural networks, to construct

adversarial examples, we need to use numerical methods, instead of analytical ones like in the

previous works. [53] proposes Fast Gradient Sign Method (FGSM) to find adversarial examples

in the case of l∞ adversarial budget Sε:

∆= εsign
(
OxL(f (θ,x), y)

)
(2.1)

Here, sign is the element-wise sign function that returns −1 for negative numbers and +1 oth-

erwise. The value of the perturbation ∆ by the FGSM method is the optimality for maximizing

the first order Taylor expansion of L(f (θ,x+∆), y) 'L(f (θ,x), y)+〈∆,OxL(f (θ,x), y)〉 under

the constrain ‖∆‖∞ ≤ ε. In this regard, we can generalize the FGSM to general lp adversarial

budget S(p)
ε .

As the deep neural networks are usually highly non-convex models, the FGSM can over-

estimate the linearity of the models. Therefore, [87] introduced Iterative Fast Gradient Sign

9

Related Works

Method (IFGSM). In IFGSM, we also consider the l∞ adversarial budget Sε and iteratively

update the perturbation by the following update rule:

∆←ΠSε

[
∆+αsign

(
O∆L(f (θ,x+∆), y)

)]
(2.2)

Here, α ≤ ε is the step size used in each iteration, and ΠSε represents projecting into the

adversarial budget Sε. In [98], the Projected Gradient Descent (PGD) method further improves

IFGSM by random initialization and multiple restarts. PGD randomly initializes ∆within the

adversarial budget and runs IFGSM, based on several random starting points of ∆; a robust

model should give the correct prediction for all these random starts. PGD is considered one of

the strongest attacks that use the first-order information [98].

In addition to the methods directly using the gradient of the loss objective, [17] proposes

CW attack that converts adversarial budget constraints to a regularization item and achieves

impressive performance under l2 adversarial budget. DeepFool in [102] generates adversarial

perturbations by iteratively estimating the distance of the perturbed inputs to the model’s

decision boundary. Similarly, the Fast Adaptive Boundary (FAB) attack in [32] estimates optimal

adversarial examples, based on the linear approximation of the model’s decision boundary.

Furthermore, [101] finds it is possible to construct universal adversarial perturbations, across

different input instances that make the undefended models give incorrect predictions.

All the attacks above belong to untargeted attacks. In other words, we make the models output

the incorrect predictions; they can be any predictions other than the correct ones. In con-

trast, targeted attacks [174] aim to make the models predict the specific predictions. Formally,

untargeted attacks maximize the loss objective on the correct label y : max
∆∈S(p)

ε
L(f (θ,x+

∆), y); whereas, targeted attacks minimize the loss objective on the targeted label ytarget [86]:

min
∆∈S(p)

ε
L(f (θ,x+∆), ytarget). For K -category classification problem, the untargeted attack

problem can be decomposed into K −1 targeted attack sub-problems: each sub-problem uses

one of the K −1 incorrect labels. Such multi-targeted attacks can boost the performance over

single untarget attacks [33].

So far, all the methods introduced need the gradient of the loss objective. This is the white

box setting, where the attacker has the access to all the details of the model, and these attack

methods are called white-box attacks. In many cases, the attackers might not have access to

the details of the model hence have to use black-box attack methods to generate adversarial

perturbations. Using the information that the attackers have access to, black-box attack

methods include those based on the model’s output probability [2, 5, 12, 60, 74, 100], those

based on the model’s output label [1, 15, 24, 59] and those without access to the model’s

behavior [25, 41, 72].

Most of existing attacks focus on l2 and l∞ adversarial budgets, because they have clear

mathematical formulations and are convex. Unfortunately, there is currently no universal

adversarial attack framework for arbitrary adversarial budgets. Different adversarial budgets

usually mean different methods, such as those for sparse attacks [34, 99] and Wasserstein

10

2.2. Verified Robustness

attacks [159].

The adversarial attack algorithm is crucial for evaluating the robustness of the models, because

weak adversarial attacks overestimate the model’s performance and give a false sense of

robustness. To boost the strength of the adversarial attacks, AutoAttack [33] ensembles four

attack methods of different categories to comprehensively evaluate the model’s robustness. It

is broadly used to reliably benchmark the performance of different defense algorithms [30].

2.2 Verified Robustness

Verified robustness enables us to guarantee an adversary-free region in the neighborhood of a

given input instance by estimating the upper bound of the inner maximization problem in

(1.2). Training deep neural networks to minimize this upper bound generates provably robust

models. For robustness verification, we find a tighter upper bound of the inner maximal in

(1.2) to verify more input instances. For training provably robust models, we need to find an

appropriate loss objective function, not necessarily a tight bound, to facilitate training. Both

problems are challenging for deep neural networks, because they are composed of many layers

representing different functions, and because the nonlinear functions render their outputs

highly non-convex functions of the inputs.

To obtain robustness guarantees, there are two categories of verifiers: complete verifiers and

incomplete verifiers. Complete verifiers can either guarantee the absence of adversarial pertur-

bations or find one, within the adversarial budget, to fool the model. These verifiers include

methods based on Satisfiability Modulo Theories (SMT) [80] and based on Mixed Integer Pro-

gramming (MIP) [143, 164]. However, complete verification is proven NP-hard [154], and all

these methods have super-linear complexity. Therefore, as a complete verifier is used only

for small models, we have to use an incomplete verifier for large models. Incomplete verifiers

are much faster in deriving the bound of the models’ outputs by approximations but, unlike

with complete verifiers, once the incomplete verifier fails to verify it, we cannot guarantee the

input instances are vulnerable within the adversarial budget. Different incomplete verifiers

utilize different techniques to bound the models’ outputs, including the linear approximation

of the nonlinear activation function [9, 154, 157, 160, 167, 180], layerwise interval bound prop-

agation [55, 179], semi-definite programming [111, 112], symbolic interval analysis [151] and

abstract transformers [48, 136, 137]. Randomized smoothing [27, 169] is also broadly used as

an incomplete verifier. Different from other methods, this method is probabilistic and can

generate, by using Monte Carlo sampling, a robustness guarantee with high probability.

To train deep neural networks that are provably robust, [157] solves the outer minimization

problem of (1.2) by its dual problem. Interval Bound Propagation (IBP) in [55] and CROWN-IBP

in [179] directly minimize the upper bound of the inner maximal of (1.2). These methods

are later improved by acceleration [132, 152] and more favorable loss landscape [90]. [123]

theoretically discusses the inherent limitations of these linear programming (LP) based meth-

ods. In addition, [29, 94] use geometric methods to calculate the distance between the input

11

Related Works

instance and the decision boundary in the input space. By introducing regularization schemes

to encourage larger distances, we can obtain provably robust models. For methods based on

randomized smoothing, [27] boost provable robustness by training against Gaussian noises.

[122] improve the performance by direct adversarial training on the randomized smoothed

model.

Although verified robustness can provide theoretical guarantees and thus suitable for highly

safety-critical applications, the algorithm scalability is the major drawback. For deep neural

network with millions of parameters, complete verifiers become infeasible, and the output

bounds given the incomplete verifiers are increasingly looser with the increase of the network

depth. Improving the efficiency of these methods and scaling them to adapt to the industry-

sized models would be interesting yet challenging.

2.3 Empirical Robustness

Empirical robustness measures the performance of the models under the state-of-the-art

adversarial attacks. Although models with strong empirical robustness performance can have

poor verified robustness, empirical robustness, as the upper bound of true robustness, still

has meaningful implications of models’ performance under adversarial attacks in practice.

Many techniques have been proposed to improve the models’ empirical robustness, including

input denoising [61, 124, 140], randomized layers [36, 162, 165], special loss objectives [19, 108],

manipulating intermediate features [103] and test-time adaptation [23, 131, 173]. Most of

these methods, however, are later shown to use obfuscated gradient and gradient masking,

instead of achieving true robustness [7, 31, 33]. In other words, these models are robust only

against some specific types of attacks and vulnerable under a strong and adaptive attack. As

a result, adversarial training [98] and its variants [3, 18, 65, 85, 161, 177] become the most

popular methods that remain unbroken. In adversarial training, we first generate adversarial

perturbations, usually by PGD [98], then, by using these perturbations, we optimize model

parameters.

Despite effective, adversarial training is more challenging in many aspects. First, adversarially

trained models usually have performance on the clean inputs worse than their counterparts

trained on clean inputs, i.e., there is a trade-off between clean accuracy and robustness [178].

Furthermore, adversarial training converges more slowly [93] and needs longer training du-

rations. The n step PGD attack needs n forward-backward passes of the network, hence the

computational complexity of adversarial training using n step PGD attacks is n +1 times the

classic empirical risk minimization with the same number of epochs. Moreover, the generaliza-

tion gap of adversarial training is much larger [118], the performance on the test set degrades

significantly in the late phase of training. To address this issue, we can use early stopping

or parameter smoothing [21]. Last but not least, compared with performance on clean data,

to achieve competitive performance empirical robustness, adversarial training needs more

training data and a higher model capacity. Generating more synthetic data [57, 115] will

12

2.4. Efficient Robust Learning

greatly improve the performance. When the model is small enough, adversarial training can

fail to converge, whereas empirical risk minimization can still generate non-trivial models [98];

as the model becomes increasingly larger, the performance on clean inputs first saturates

but the performance on adversarially-perturbed inputs still improves. All these challenges

in adversarial training prevents it from large-scale deployment on large models and large

datasets.

2.4 Efficient Robust Learning

In Chapter 1.3, we identify several challenges in robust learning. There are several efforts to

overcome them and to make robust learning more efficient. Most of these works focus on

empirical robustness, although verified robustness has similar issues.

The first line of works concentrate on accelerating adversarial training. To accelerate the

parameter convergence in training, [130] uses batch replaying to update model parameters in

each step of PGD. [158] further accelerates the training by using 1-step PGD and parameters

of mixed precision. This method, however, sacrifices the training stability and can suffer from

catastrophic overfitting. In other words, the models can suddenly overfit to the weak attack,

which we use during training, hence it can fail to achieve true robustness. To avoid catas-

trophic overfitting, [6] proposes gradient alignment. [182] demonstrates that the adversarial

perturbations are transferable between two consecutive epochs during training. In this regard,

the authors proposes to initialize the perturbation by the one in the last epoch to accelerate

and to stabilize adversarial training by using 1-step PGD. They show no catastrophic overfitting

using this method.

The other line of works, to construct light-weighted but robust models, combine robust learn-

ing with model compression, including network pruning and quantization. [172] proposes

alternating direction method of multipliers (ADMM) to alternatively update model parameters

and the pruning mask. [58] extends this method to include other model compression tech-

niques, such as quantization. Furthermore, [127] proposes HYDRA, a three-phase method for

obtaining compressed yet robust models. The three phases include pre-training, score-based

pruning, and fine-tuning.

In the next three chapters, we will study verified robustness, empirical robustness, and efficient

robust learning. We will introduce some baseline methods in detail before introducing our

proposed methods.

13

3 Verified Robustness

Using the robust learning formulation of (1.2), we can verify whether an input instance is

robust against adversarial attacks within the adversarial budget by estimating the upper bound

of the inner maximal. Tighter upper bounds lead to better verifiers, whereas smooth bounds

can facilitate us to train provably robust neural networks [90]. In this chapter, we first review

two categories of methods that estimate the bounds of the model’s outputs. We then present

two of our works: in the first one, we propose more general verifiers; and in the second, we

focus on improving training provably robust neural networks.

The contents of this chapter are mainly from the following two papers. I am the primary

contributior of both papers.

• Chen Liu, Ryota Tomioka, Volkan Cevher. “On Certifying Non-uniform Bounds against

Adversarial Attacks.” International Conference on Machine Learning 2019.

• Chen Liu, Mathieu Salzmann, Sabine, Süsstrunk. “Training Provably Robust Models

by Polyhedral Envelope Regularization.” IEEE Transactions on Neural Networks and

Learning Systems 2021.

3.1 Bounding Network’s Output

To obtain the upper bound of the inner maximization in problem (1.2), we first need to

estimate the lower and the upper bound of the model’s output. For K -category classification

problem, we derive the upper bound o and the lower bound o of the model’s output f (θ,x)

given the adversarial budget S(p)
ε , then, we can obtain the upper bound of the loss objective.

This is formulated by the following inequality for the input instance (x, y):

if ∀∆ ∈ S(p)
ε , o ≤ f (θ,x+∆) ≤ o; then max

∆∈S(p)
ε

L(f (θ,x+∆)) ≤L(o(wor st), y),

where o(wor st)
i =

oi if i = y

oi if i 6= y

(3.1)

15

Verified Robustness

(3.1) indicates that we can derive the upper bound of the loss objective under attack by

plugging in the lower bound of output logits for the correct label and the upper bound of the

rest. Therefore, the tightness of the bounds o, o determines the tightness of the upper bound

of max
∆∈S(p)

ε
L(f (θ,x+∆)).

In the following sections, we will introduce two popular methods we use to bound the output

logits: linear approximation and interval bound propagation. For notation simplicity, we con-

sider the feed forward layer here. The methods can be straightforwardly extended to general

neural network architectures that can be represented by a directed acyclic graph (DAG) [95, 167].

Specifically, we consider an L-layer neural network parameterized by
{

W(i),b(i)
}L

i=1:

z(i+1) = W(i)ẑ(i) +b(i) i = 1,2, ...,L−1

ẑ(i) =Φ(z(i)) i = 2,3, ...,L−1
(3.2)

whereΦ(·) is the activation function, ẑ(1) := x is the input. In addition,
{

z(i)
}L

i=2 and
{

ẑ(i)
}L−1

i=2

represent the pre-activations and post-activations of each layer, respectively.

3.1.1 Linear Approximation

Linear approximation (LA) is proposed in Fast-Lin [154] for ReLU networks, it is then ex-

tended to general activation functions in CROWN [180]. Here, we mainly discuss the linear

approximations that we will use later.

Since Φ(·) is an element-wise function, we consider the scalar case: the input x ∈ R. For

an activation functionΦ(·) that is nonlinear and monotonically increasing, and the input x

bounded by x ≤ x ≤ x, we can use two linear functions with the same slope to boundΦ(x) by

the following inequality.

∀x ≤ x ≤ x, d x +a ≤Φ(x) ≤ d x +a (3.3)

Here, the coefficient d , a and a all depend on the value of x, x and ultimately the adversarial

budget and the model parameters. They are chosen in a way such that the gap a − a is

minimized.

As shown in Figure 3.1, for ReLU functionΦ(x) = max(0, x), which is convex, we set the value

of d , a and a as follows:

d =


0 x ≤ x ≤ 0

x
x−x x < 0 < x

1 0 ≤ x ≤ x

; a = 0; a =


0 x ≤ x ≤ 0

− xx
x−x x < 0 < x

0 0 ≤ x ≤ x

. (3.4)

Unlike the ReLU function, the sigmoid functionΦ(x) = 1
1+e−x and tanh functionΦ(x) = e2x−1

e2x+1

16

3.1. Bounding Network’s Output

−6 −3 0 3 6−3

0

3

6

(a) x ≤ x ≤ 0

−6 −3 0 3 6−3

0

3

6

(b) x < 0 < x

−6 −3 0 3 6−3

0

3

6

(c) 0 ≤ x ≤ x

Figure 3.1 – Linear approximation of the ReLU function in all scenarios. Both the upper and
the lower bounds are represented by red dashed lines.

are not convex. However, these two functions are convex when x ≤ x ≤ 0 and concave when

0 ≤ x ≤ x (left and right sub-figures of Figure 3.2). Therefore, we can easily obtain a tight linear

approximation in these cases. When x ≤ 0 ≤ x, we do not use the binary search to obtain a

tight linear approximation as in [180], because the results will not have an analytical form in

this way. We need an analytical form of d , a and a in order to use them for training model

parameters. Instead, we first calculate the slope between the two ends, i.e., d = Φ(x)−Φ(x)
x−x . Then,

we bound the function by two tangent lines of the same slope as d . As shown in Figure 3.2,

whenΦ is sigmoid or tanh function, we can calculate d , a and a as follows:

d = Φ(x)−Φ(x)

x −x
; a =

Φ(t1)− t1d x ≤ x ≤ 0
xΦ(x)−xΦ(x)

x−x 0 ≤ x ≤ x
; a =


xΦ(x)−xΦ(x)

x−x x ≤ x ≤ 0

Φ(t2)− t2d 0 < x
(3.5)

The coefficients t1 < 0 < t2 are the position of tangent points on both sides of the origin. The

definitions of t1 and t2 for different activation functions are provided in Table 3.1.

σ Sigmoid Tanh

t1 − log −(2d−1)+p1−4d
2d

1
2 log −(d−2)−2

p
1−d

d

t2 − log −(2d−1)−p1−4d
2d

1
2 log −(d−2)+2

p
1−d

d

Table 3.1 – Definition of t1 and t2 for different activation functions.

Now, we consider the matrix form and the i th layer of the neural network. Based on the

formulation of (3.2), we consider the bound of the pre-activation z(i) ≤ z(i) ≤ z(i), the post-

activation ẑ(i) can then be bounded by D(i)z(i)+a(i) ≤Φ(z(i)) ≤ D(i)z(i)+a(i) based on the linear

approximation introduced above. Here, D(i) is a diagonal matrix, a(i) and a(i) are both bias

vectors. Equivalent to the bounds, we have the following claim:

∀z(i) : z(i) ≤ z(i) ≤ z(i),∃a(i) : a(i) ≤ a(i) ≤ a(i)s.t .Φ(z(i)) = D(i)z(i) +a(i) (3.6)

(3.6) demonstrates that given the bound of the input, we can replace the nonlinear activation

17

Verified Robustness

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(a) x ≤ x ≤ 0

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(b) x < 0 < x

−6 −3 0 3 6−0.5

0.0

0.5

1.0

1.5

(c) 0 ≤ x ≤ x

Figure 3.2 – Linear approximation of the Sigmoid function in all scenarios. Both the upper and
the lower bounds are represented by red dashed lines.

function by a linear alternative with a bounded bias term. For an L-layer neural network

defined in (3.2), we can iteratively bound the intermediate activation, and finally bound the

output logits z(L) := f (θ,x+∆) as follows:

z(L) = W(L−1)(Φ(W(L−2)(...(W(1)(x+∆)+b(1))...)+bL−2))+b(L−1)

= W(L−1)(D(i−1)(W(i−2)(...(W(1)(x+∆)+b(1))...)+b(i−2))+a(i−1))+b(i−1)

=
(
ΠL−1

j=2 W(j)D(j)
)

W(1)∆+
L−1∑
i=2

(
ΠL−1

j=i+1W(j)D(j)
)

W(i)a(i)

+
(
ΠL−1

j=2 W(j)D(j)
)

W(1)x+
L−1∑
i=1

(
Π:−1

j=i+1W(j)D(j)
)

b(i)

(3.7)

Algorithm 3.1: Bound the output logits by linear approximation.

1: Input: parameters
{

W(i),b(i)
}L−1

i=1 , input instance x, adversarial budget S(p)
ε .

2: z(2) = W(1)x+b(1) −ε‖W(1)‖:,q ; z(2) = W(1)x+b(1) +ε‖W(1)‖:,q .
3: for k = 2, ...,L−1 do
4: Calculate D(k), a(k) and a(k) based on z(k), z(k) and (3.6).

5: z̃(k+1) =
(
Πk

j=2W(j)D(j)
)

W(1)x+∑k
i=1

(
Π:−1

j=i+1W(j)D(j)
)

b(i).

6: W̃(i) =
(
Πk

j=i+1W(j)D(j)
)

W(i) for i = 1,2, ...,k.

7: z(k+1) = z̃(k+1) −ε‖W̃(1)‖:,q +∑k
i=2

(
|W̃(i)|+a(i) +|W̃(i)|−a(i)

)
.

8: z(k+1) = z̃(k+1) +ε‖W̃(1)‖:,q +∑k
i=2

(
|W̃(i)|−a(i) +|W̃(i)|+a(i)

)
.

9: end for
10: Output z(L) and z(L).

The right hand side of Equation (3.7) is a linear function of ∆ and
{

a(i)
}L−1

i=1 . Based on the

constraints ‖∆‖p ≤ ε and a(i) ≤ a(i) ≤ a(i), we can then bound the value of the output logits

z(L), a.k.a, f (θ,x+∆). We then summarize the linear approximation as Algorithm 3.1. |W| is

the element-wise absolute value of W; |W|−, |W|+ are the negative elements and the positive

elements of the matrix W, respectively; ‖W‖:,q calculate the lq norm of each row in the matrix

18

3.1. Bounding Network’s Output

W where lq is the dual norm of lp , i.e., 1
p + 1

q = 1.

The approximation error of Algorithm 3.1 mainly arises from approximating the nonlinear

activation functions by linear functions. Since Algorithm 3.1 estimates the bounds of the

intermediate activations by contributions of all its preceding layers, it needs O(L2) matrix

multiplications for one input instances. This makes the linear approximation method much

more computationally expensive than the normal feed forward pass, which consumes O(L)

matrix multiplications. The interval bound propagation introduced in the following section

can mitigate the computational complexity issue.

3.1.2 Interval Bound Propagation

Interval bound propagation (IBP) [55] is an efficient method to obtain the bounds of neural

network’s output. Unlike linear approximation, IBP estimate the bounds of intermediate

activation only based on its immediate previous layer. Thanks to the monotonicity of the

activation functionΦ(·), we can bound z(i+1), z(i+1) by the following equations:

z(i+1) = |W(i)|+Φ(z(i))+|W(i)|−Φ(z(i))+b(i)

z(i+1) = |W(i)|−Φ(z(i))+|W(i)|+Φ(z(i))+b(i)
(3.8)

For the input layer, we have z(2) = W(1)x+b(1)−ε‖W(1)‖:,q and z(2) = W(1)x+b(1)+ε‖W(1)‖:,q un-

der the adversarial budget S(p)
ε . Then, we can iteratively calculate the bounds of intermediate

activations by (3.8) until we obtain the bounds z(L), z(L) of the output logits z(L).

We provide the pseudo-code of IBP as Algorithm 3.2 below. It is clear that IBP needs only O(L)

matrix multiplications for one input instances, comparable to the feed forward pass.

Algorithm 3.2: Bound the output logits by interval bound propagation.

1: Input: parameters
{

W(i),b(i)
}L−1

i=1 , input instance x, adversarial budget S(p)
ε .

2: z(2) = W(1)x+b(1) −ε‖W(1)‖:,q .

3: z(2) = W(1)x+b(1) +ε‖W(1)‖:,q .
4: for k = 2, ...,L−1 do
5: z(i+1) = |W(i)|+Φ(z(i))+|W(i)|−Φ(z(i))+b(i).
6: z(i+1) = |W(i)|−Φ(z(i))+|W(i)|+Φ(z(i))+b(i).
7: end for
8: Output z(L) and z(L).

Compared with linear approximation, IBP is faster and thus has better scalability. In terms of

bound tightness, IBP does not make any approximations of the activation function. However,

for linear layers, the IBP bounds are calculated only based on the immediate preceding

layer, this “coarse bound” makes the approximation error accumulate much faster than

linear approximation with the increase of the network depth L. To conclude, the linear

approximation and IBP are complementary to each other. Either one is not guaranteed to give

19

Verified Robustness

a better bound than the other.

When the loss function L is the softmax cross-entropy function, what matters is the margin

between the logits corresponding to the correct label and the ones corresponding to the

incorrect labels. That is L(o, y) = L(o−oy , y), we can then define o−oy := W(out)o where

W(out) = I−1y is a matrix depending on the label y . Here, I is the identity matrix, and 1y is the

matrix where the elements in y-th column are 1 and otherwise 0. To obtain a tighter bound of

the loss objective, we can then merge the matrix W(out) with the linear operation in the last

layer. This is called elision of the last layer. It is applicable not only for IBP but also for linear

approximation methods introduced in Section 3.1.1.

3.2 Network Verification

We now study the robustness verification problem. In contrast to the methods in Section 2.2

that seek verified regions bounded uniformly along all features of the input instance, we

consider non-uniform bounds and use it to study the decision boundaries of the neural

networks. In this section, we first introduce the motivation and methods on verifying non-

uniform bounds. In addition, we show that the non-uniform bounds not only covers much

larger volumes than uniform bounds but also can distinguish non-robust features from robust

ones. The latter can facilitate us to analyze the model’s decision boundary and interpretability.

3.2.1 Verification on Non-uniform Bounds

As pointed out in [145], input features have different levels of robustness. We consider each

dimension of the input instances as one feature and would like identify which features are

non-robust features. Intuitively, non-robust features are what the model relies on to make

prediction, because changes in these features are more likely to change the model’s prediction.

That is to say, identifying non-robust features is also identifying key features for the model

to make prediction. By comparing these key features with human perception, we can better

understand the behavior of different deep neural network models and check if they are

interpretable.

We identify non-robust features by verifying a non-uniform adversary-free neighborhood of

the input instance, because non-robust features should have smaller perturbation tolerance

than robust ones. All previous works on robustness verification [154, 160, 180] aim to find

the largest uniform bounds of the adversary-free region, we are the first to extend this to the

non-uniform case.

We need a different mathematical definition of the adversarial budget for non-uniform bounds.

Since the adversarial budget S(p)
ε corresponding to a uniform bound can be formulated as

S
(p)
ε = {

∆= εv|‖v‖p ≤ 1
}
, we can parameterize the lp norm based non-uniform bounds S(p)

~ε

by a vector~ε ∈RM with the same dimension as the input instance: S(p)
~ε

= {
∆=~ε¯v|‖v‖p ≤ 1

}
20

3.2. Network Verification

where ¯ is the element-wise multiplication.

Now, we would like to find the certified region S
(p)
~ε

of the largest volume, measured byΠi~εi , in

which the model outputs consistent label. Formally, for an input instance x with label y , the

problem we focus on is formulated below:

min
~ε

{
−∑

i
log~εi

}
z(L)

y −z(L)
j ≥ δ j = 0,1,...,K −1; j 6= c

(3.9)

As a common practice, we minimize the negative logarithm ofΠi~εi because it is convex and

more stable numerically. z(L) and z(L) are the lower bound and the upper bound calculated by

Algorithm 3.1 in Section 3.1.1. δ is a small positive constant to make sure the lower bound of

the output logits of the true label is strictly higher than the upper bound of others.

We then reformulate the problem as follows:

min
~ε,c≥0

{
−∑

i
log~εi

}
z(L)

y −z(L)
j 6=y −δ= c

(3.10)

Here, z(L)
j 6=y ∈RK−1 is the concatenation of the upper bound of all output logits except the one

corresponding to the correct label y . c(≥ 0) ∈ RK−1 is a slack variable that ensures the non-

negativity of the term on the left hand side. For notation simplicity, we define d := z(L)
y −z(L)

j 6=y−δ.

d is a function of~ε, because both z(L) and z(L) depend on~ε.

We can further rewrite the problem (3.10) into a min-max problem using augmented La-

grangian method [66, 110] by introducing the dual variable λ ∈ RK−1 and the coefficient

ρ ∈R+. The dual problem to solve is below:

max
λ

min
~ε,c≥0

(
−∑

i
log~εi

)
+〈λ,d−c〉+ ρ

2
‖d−c‖2

2 (3.11)

The inner minimization problem is a quadratic form of c, so the optimal c has the analytical

solution: c = max(0,d+ 1
ρλ). Plug this solution in the problem (3.11), and we can then optimize

~ε by gradient descent. We provide the pseudo-code as Algorithm 3.3 below.

Similar to penalty methods, the coefficient {ρ(i)}M
i=1 in Algorithm 3.3 is a non-decreasing

sequence to enforce the constraint d = c. However, the Lagrange multiplier term 〈λ,d−c〉
makes it unnecessary to increase ρ(i) to +∞. Actually, ρ(i) can stop at a relatively small value

here to solve the problem, which avoids numerical instability caused by ill-conditioning.

The minimization in line 5 of Algorithm 3.3 is solved by gradient methods, such as SGD and

21

Verified Robustness

Algorithm 3.3: Optimizing~ε

1: Input: Parameters {W(i),b(i)}L−1
i=1 , original bounds~ε0, iterations Ni ter , augmented

coefficient {ρ(i)}Ni ter

i=1 , decaying factor η.
2: Initialization:~ε=~ε0, λ= 0
3: for i = 1,2, ..., Ni ter do
4: c = max(0,d+ 1

ρλ)
5: Update~ε by minimizing (3.11) with optimal c plugged in.
6: λ=λ+ρ(i)(d−c)
7: end for
8: while d ≥ 0 is not satisfied do
9: ~ε= η~ε

10: end while
11: Output:~ε

Adam [81]. In practice, gradient explosion might happen when~ε is small or ρ(i) is big. To avoid

overshooting, we apply gradient rescaling to constrain the l2 norm of the gradient. The term

logεi in problem 3.11 implicitly constrains εi to be positive, so we reparametrize εi = ζ2
i and

optimize vector ζ instead.

The last while-loop in line 8 of Algorithm 3.3 is to ensure the output~ε meets the hard con-

straints z(L)
y −z(L)

j 6=y −δ≥ 0. The decaying factor η is close to 1 and is set 0.99 in practice. When

ρ(i) is large, the while-loop would break after very few iterations.

3.2.2 Experiments and Analysis

We validate our method of verifying non-uniform bounds in this section. In addition, we

analyze and compare the robust models with their non-robust counterparts. The code are

publicly available. 1

Comparison between Uniform and Non-uniform Bounds

Algorithm 3.3 enables us to efficiently find a verified adversary-free non-uniform bound S
(p)
~ε

.

By letting~ε= ε1 where 1 is an all-one vector, we can use Algorithm 3.3 to optimize the scalar ε,

and we will obtain a uniform bound.

Our first experiment is on a 2D synthetic data. We generate 10 random 2D data points in the

space of [−1,1]2 labeled {0,1, ...,9} as seeds. Another 10000 random points in [−1,1]2 are then

generated and assigned the same label as the closest seeds. 90% of these data instances are for

training and the rest are for testing.

We use a ReLU fully-connected neural network with two hidden layers of 10 neurons. Since

1https://github.com/liuchen11/CertifyNonuniformBounds

22

https://github.com/liuchen11/CertifyNonuniformBounds

3.2. Network Verification

1 0 1
1

0

1

1

2

3

4

5

6

7
8

9

10

11

12
13

14

15

1617

18

19

20

1

2

3

4

5

6

7
8

9

10

11

12
13

14

15

1617

18

19

20

Figure 3.3 – A simple example on the synthetic data. 20 points with their uniform (yellow) and
non-uniform (blue) bounds are shown above. Black lines are real decision boundaries.

the decision boundaries of this model are piece-wise linear in this case, the model is shown to

have enough capacity and achieve an accuracy of more than 99.9% in the test set.

Figure 3.3 demonstrates the results of uniform (yellow) and non-uniform (blue) bounds with

20 random points in each category. We can clearly see the bounds calculated by our algorithm

are reasonably tight and areas covered by non-uniform bounds are larger than those of uniform

bounds. Although the larger volumes do not necessarily mean the bounds are larger for both

features, bounds of some feature are extended in compensation for the other. In some cases,

the non-uniform bounds can be significantly larger than uniform bounds (e.g. point 12, 14).

This typically means considerable difference in robustness between two input features.

Then, we run our algorithm on real datasets, including MNIST [89], Fashion-MNIST [163]

and SVHN [104]. They are benchmarks for image classification and contain tens of thousand

images. MNIST and Fashion-MNIST are 28×28 gray-scale images, while SVHN are 32×32

colored images. Unless specified, all pixel values of these images are normalized in the range

of [−1,1].

We study both robust models and non-robust models. Specifically, we obtain non-robust mod-

els by empirical risk minimization in (1.1) and robust models by PGD adversarial training [98].

For the latter, we use l∞ based adversarial budget with ε= 0.1. All the models are feed forward

networks with three hidden layers. For MNIST, the number of hidden neurons in each layer

are 100, 300 and 500; Fashion MNIST and SVHN models have 1024 neurons in each hidden

layer. To evaluate the volume of the verified regions, we use the geometric average of bounds

among all features, which is εavg =
(
ΠM

i=1~εi
)1/M

. For uniform bounds S(p)
ε , εavg = ε.

23

Verified Robustness

Dataset Hidden
Neurons

Model
Type

Test Accuracy
(%)

Uniform
εavg

Non-uniform
εavg

Ratio

MNIST

100
Vanilla 99.2 0.0295 0.0349 1.183
Robust 98.1 0.0692 0.1678 2.425

300
Vanilla 98.0 0.0309 0.0350 1.133
Robust 98.9 0.0507 0.1404 2.769

500
Vanilla 98.5 0.0319 0.0360 1.129
Robust 98.8 0.0436 0.1167 2.677

Fashion MNIST 1024
Vanilla 90.4 0.0134 0.0141 1.052
Robust 88.4 0.0208 0.0306 1.468

SVHN 1024
Vanilla 84.3 0.0022 0.0072 3.273
Robust 78.2 0.0054 0.0281 5.204

Table 3.2 – Average uniform and non-uniform bounds in the test sets. Hidden neurons means
the number of neurons in each hidden layer. Test accuracy is the accuracy on the clean test set.
The ratio is the values of εavg for the non-uniform bounds over the ones for uniform bounds.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bound

0

20

40

60

80

100

120

140

pi
xe

ls

normal
robust

(a) MNIST

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
bound

0

20

40

60

80

100

120

140

pi
xe

ls

normal
robust

(b) Fashion-MNIST

0.00 0.02 0.04 0.06 0.08 0.10
bound

0

200

400

600

800

pi
xe

ls

normal
robust

(c) SVHN

Figure 3.4 – The distributions of bounds per feature for normal and robust models among
different datasets in a randomly picked image when we are verifying by non-uniform bounds.

We report our results on the test set of each dataset under different settings in Table 3.2. It

clearly shows that the non-uniform bounds can verify a larger regions compared with their

uniform counterparts. In addition, We notice that the ratio of εavg for non-uniform bounds

over the one for uniform bounds is significantly larger in the cases of robust models. Figure 3.4

demonstrates the distributions of bounds per feature for normal and robust models among

different datasets in a randomly picked image when we are verifying by non-uniform bounds

Compared with the vanilla models, the bounds of some features for the robust models can be

much larger than the size of the adversarial budget used during training. This observation

means the decision boundary of the robust model is almost aligned in some dimensions cor-

responding to some features, which makes it possible for our algorithm to extend the bounds

of those features without sacrificing the bounds of the others much. It also implies robust

models tend to drop irrelevant features and rely on fewer features when making predictions.

24

3.2. Network Verification

Figure 3.5 – An example of bounding maps of images of digit ‘1’ and ‘7’. For bounding maps,
lighter pixels indicate a smaller bound. (Left) The original images, (Middle) Bounding map of
a normal model. (Right) Bounding map of a robust model.

Non-uniform Bounds and Model Interpretability

Given an input instance and a neural network model, we obtain a non-uniform bound param-

eterized by~ε ∈ RM by Algorithm 3.3. Unlike synthetic data, we cannot visualize the bounds

as in Figure 3.3 for high dimensional input instances. However, we can visualize~ε just like

images and call them bounding maps.

To study the properties of bounding maps, we take a simple example of binary classification:

to distinguish digit ‘1’ from ‘7’ in MNIST dataset. We use the model with 100 neurons in each

hidden layer and visualize the bounding maps of both models for two example images in

Figure 3.5.

As shown in Figure 3.5, for the vanilla model, the bounding maps are noisy and can hardly

reveal the patterns of the input instances. However, for the robust model, the bounding maps

can capture some intrinsic characteristics of the input instances. In the case of digit ‘1’ and

‘7’, people typically distinguish them by the horizontal stroke which digit ‘7’ has and ‘1’ does

not. This corresponds to the relatively smaller bounds of features in the middle above of the

images. It indicates the decision boundaries are closer to the data points in the directions of

these features and the model puts more weight on these features to make predictions. On the

contrary, both digit ‘1’ and ‘7’ have a vertical stroke, we can correspondingly see a dark clear

vertical stroke in the bounding maps of the robust model.

We need to mention similar property of robust models is found in [145] but from a more

microscopic perspective. [145] visualizes the gradients of the model’s loss function w.r.t the

input data and finds that the gradients for robust models are significantly more interpretable,

while the gradients for normal models are generally noise. Our investigations are more on a

macroscopic level, our non-uniform bounds explore the shape of model’s decision boundary

25

Verified Robustness

Dataset Hidden
Neurons

Model
Type

Mean
Cosine

Minimum
Cosine

MNIST

100
Vanilla 0.9548 0.2304
Robust 0.9957 0.9155

300
Vanilla 0.9774 0.5038
Robust 0.9964 0.9104

500
Vanilla 0.9874 0.6367
Robust 0.9941 0.8920

Fashion MNIST 1024
Vanilla 0.9805 0.5652
Robust 0.9752 0.7166

SVHN 1024
Vanilla 0.9836 0.7129
Robust 0.9952 0.9339

Table 3.3 – Mean and minimum cosine similarity of~ε among the dataset for different models.

but we have the same claim: robust models are more interpretable.

In addition, in Figure 3.5, we notice similar patterns of bounding maps found for the same

model but different input instances. Therefore, we calculate the cosine similarity of~ε for two

images, since the direction of~ε indicates the shape of non-uniform bounds. For all models

presented in Table 3.2, we report the average and minimum values of cosine similarity among

all input instance pairs in Table 3.3. It is clear that the values of~ε for different images but the

same model are highly correlated, which indicates the geometric similarity of non-uniform

bounds. 2 What’s more, such correlation is even stronger in the cases of robust models.

The high correlation means some features are consistently more robust than the other features.

For a given model, the values of~ε for most input instances are almost collinear, so the direction

of~ε can be regarded as a quantitative and data-agnostic metric measuring the robustness of

input features. It is also beneficial to use this direction for initialization, i.e.,~ε0 in Algorithm 3.3,

when we estimate the non-uniform bound for a new data point.

Since the shape of the non-uniform bound reveals the decision boundary, high correlation of~ε

also indicates the uniformity of the direction of the decision boundary. That is to say, in an M

dimensional input space, there exists a subspace X of dimensionality M ′ ¿ M that contains

most directions of decision boundary around the data manifold. This is consistent with what

[101] points out.

An extreme example is the classifier whose decision boundary is linear, the non-uniform

bound of the largest volume for any input data has exactly the same shape. That is to say,

the values of~ε for any input data point are exactly collinear and M = 1 in this case. Our

experimental results show the stronger correlation of~ε in the cases of robust models. This

implies the most directions of a robust model’s decision boundary can be obtained in a

subspace of even lower dimensionality than a non-robust model. That is to say, the decision

boundary of a robust model should be simpler in some sense.

2For two random vectors uniformly distributed in [0,1]784, the expectation of cosine similarity between them is
around 0.75. The expectation decreases for random vectors in higher dimensions.

26

3.3. Training Provably Robust Networks

3.3 Training Provably Robust Networks

Section 3.2 explores the model’s decision boundaries by verifying a non-uniform bounds. In

this section, we will utilize geometric properties of the decision boundaries to train provably

robust networks [94]. We first introduce a polyhedral envelope to bound the decision bound-

aries, which enables us to calculate a lower bound of the input instances’ distance to the

decision boundaries. This lower bound, which is differentiable w.r.t. the model parameters,

can not only accelerate the verification but also construct a regularization scheme to train

provably robust networks. In addition, our methods are generally applicable and shown to

achieve provable robustness without sacrificing the clean accuracy too much.

3.3.1 Geometric Bounds of Decision Boundaries

Based on the linear approximation introduced in Section 3.1.1, we can derive the bounds of

the output of the neural network given an adversarial budget. If we consider the constraints

of ∆ and
{

aL−1
i=2

}
in Equation (3.7), we can derive two linear functions of the input instance x

representing the upper and the lower bounds of the model’s outputs z(L).

In Section 3.1.1, we point out the issue of high computational complexity of the linear approxi-

mation. Alternatively, we can derive the linear bounds of the model’s output based on interval

bound propagation (IBP) introduced in Section 3.1.2. We first use IBP (Algorithm 3.2) to

estimate the lower and the upper bound of each intermediate layers. For nonlinear activation

functions, we can then linearize them by (3.3). By replacing the these nonlinear functions

by their linear alternatives, we can finally obtain two linear functions of the input instances

representing the upper and the lower bound of the model’s outputs. It is straightforward that

this method have the same computational complexity as IBP in terms of matrix multiplication.

We call the linear bounds by these two methods LA-inspired bounds and IBP-inspired bounds,

respectively.

Recall that correctly classifying the input instance (x, y) means z(L)
y − z(L)

i > 0 for ∀i 6= y , we

use the elision of the last layer introduced in Section 3.1.2 to derive the linear lower bound of

z(L)
y −z(L)

i as follows:

z(L)
y −z(L)

i ≥ z(L)
y −z(L)

i := Ui x+pi . (3.12)

Here, U and p are calculated either by LA-inspired bounds or IBP-inspired bounds. Based on

this linear bound, if we have ∀i 6= y , Ui x+pi > 0, then we have ∀i 6= y , z(L)
y −z(L)

i > 0, which

is exactly the conditions for correct classification. That is to say ∀i 6= y , Ui x+pi > 0 is the

sufficient condition for robustness verification. This sufficient condition represents of K −1

hyperplanes in the input space. Within the adversarial budget, these hyperplanes provide a

polyhedral envelope of the true decision boundaries.

To facilitate analysis, we use di y to represent the distance between the input instance x and the

hyperplane Ui x+pi > 0. Furthermore, we use dy := mini 6=y di y to denote the distance between

27

Verified Robustness

the input instance x and the polyhedral envelope’s boundary. Note that these distances can be

defined on arbitrary lp norm and dy = 0 if the sufficient condition is not satisfied. Consider

that the linear bounds in (3.12) are based on the adversarial budget S(p)
ε , we can conclude

that there is no adversarial examples that change the model’s prediction in the intersection of

the polyhedral envelope and the set of allowable perturbed inputs defined by the adversarial

budget.

The lemma below formalizes the vanilla case of our robustness certification, when there are

no additional constraints on the input.

Lemma 3.1 Given a model f and an input instance (x, y), let U and p in (3.12) be calculated

using a predefined adversarial budget S(p)
ε . Then, there is no adversarial example inside an

lp norm ball of radius d centered around x, with d = min
{
ε,dy

}
, where di y = max

{
0, Ui x+pi

‖Ui ‖q

}
,

dy = mini 6=y di y . lq is the dual norm of the lp norm, i.e., 1
p + 1

q = 1.

Proof: Let x′ = x+∆ be a point that breaks condition (3.12). Then,

Ui (x+∆)+pi < 0

⇐⇒ Ui∆ < −Ui x−pi

=⇒ −‖Ui‖q‖∆‖p < −Ui x−pi

⇐⇒ ‖∆‖p > Ui x+pi

‖Ui‖q

(3.13)

The =⇒ comes from Hölder’s inequality. (3.13) indicates that a perturbation of lp norm

over di c = max
{

0, Ui x+pi

‖Ui ‖q

}
is needed to break the sufficient condition of z(L)

y −z(L)
i > 0. Based

on the assumption of adversarial budget S(p)
ε when linearizing the model, the lp norm of a

perturbation to produce an adversarial example is at least min
{
ε,dy

}
. �

In many applications, the input is constrained in a hypercube
[
r (mi n),r (max)

]M
. For example,

for images with normalized pixel intensities, an attacker will not perturb the image outside

the hypercube [0,1]M . Such constraint on the attacker allows us to ignore the regions outside

the allowable input space, even if they are inside the adversarial budget S(p)
ε . That is to say,

when the input instance has additional constraints, we need to adjust the algorithm to verify a

larger adversary-free region.

To obtain robustness guarantees in this scenario, we need to recalculate di c , which is now the

distance between the input and the hyperplanes in (3.12) within the hypercube [r (mi n),r (max)]M .

The value of di c is then the solution of the following optimization problem:

min
∆

‖∆‖p

s.t . a∆+b ≤ 0, ∆(mi n) ≤∆≤∆(max)
(3.14)

28

3.3. Training Provably Robust Networks

where, to simplify the notation, we define a = Ui , b = Ui x+pi ,∆(mi n) = r (mi n)−x and∆(max) =
r (max) −x. When b ≤ 0, the minimum is obviously 0 as the optimal ∆ is an all-zero vector. In

this case, either we cannot certify the input at all, or even the clean input is misclassified.

When b > 0, by Hölder’s inequality, a∆+b ≥−‖∆‖p‖a‖q +b, with equality reached when ∆p

and aq are collinear. Based on this, the optimal ∆ of minimum lp norm to satisfy a∆+b ≤ 0 is

∆̂(i) =− b

‖a‖q
q

sign(ai) |ai |
q
p , (3.15)

where sign(·) is the sign function which returns +1 for positive numbers and −1 for negative

numbers.

∆̂(i) in Equation 3.15 provides the optimal ∆ satisfying a∆+b ≤ 0. To satisfy the constaint

∆(mi n) ≤∆≤∆(max), we can use the greedy algorithm that approaches this goal progressively.

That is, we first calculate the optimal ∆̂(i) based on Equation (3.15) and check if the constraint

∆(mi n) ≤∆≤∆(max) is satisfied. For the elements in ∆̂(i) where it is not, we clip their values

within
[
∆(mi n),∆(max)

]
and keep them fixed. We then optimize the remaining elements in the

next iteration and repeat this process until the constraint is satisfied for all elements. The

pseudo-code is provided as Algorithm 3.4 below.

Algorithm 3.4: Greedy algorithm to solve Problem (3.14).

Input: x, a, b, ∆(mi n), ∆(max) in (3.14) and maximum number of iterations I (max)

Set of fixed elements S(f) =∅
Iteration number k = 0
Calculate ∆̂(i) according to Equation (3.15)
while ∆(mi n) ≤ ∆̂≤∆(max) not satisfied and k < I (max) do

Violated entries S(v) =
{

j

∣∣∣∣∆̂(i)
j <∆(mi n)

j or ∆̂(i)
j >∆(max)

j

}
∆̂(i)

j = clip
(
∆̂ j ,min =∆(mi n)

j ,max =∆(max)
j

)
, j ∈ S(v)

S(f) = S(f) ∪S(v)

Update ∆̂(i) according to (3.15) with elements in S(f) fixed
Update k = k +1

end while
Output: di y = ‖∆̂(i)‖p

The following theorem guarantees the optimality of Algorithm 3.4’s output given a sufficient

large I (max).

Theorem 3.1 If the maximum number of iterations I (max) in Algorithm 3.4 is large enough to

satisfy ∆(mi n) ≤ ∆̂(i) ≤∆(max) in Problem equation 3.14, then the output ‖∆̂(i)‖p is the optimum

of Problem (3.14), i.e., di c .

Proof: We use the primal-dual method to solve the optimization problem (3.14), which is a

convex optimization problem with linear constraints.

29

Verified Robustness

It is clear that there exists an image inside the allowable pixel space for which the model

predicts the wrong label. That is, the constrained problem (3.14) is strictly feasible:

∃∆ s.t . a∆+b < 0,∆(mi n) <∆<∆(max) . (3.16)

Thus, this convex optimization problem satisfies Slater’s Condition, i.e., strong duality holds.

We then rewrite the primal problem as

min
∆(mi n)≤∆≤∆(max)

‖∆‖p
p

s.t . a∆+b ≤ 0
(3.17)

We minimize ‖∆‖p
p instead of directly ‖∆‖p in order to decouple all elements in vector ∆.

In addition, we consider ∆(mi n) ≤ ∆ ≤ ∆(max) as the domain of ∆ instead of constraints for

simplicity. We write the dual problem of (3.17) by introducing a coefficient of relaxation λ ∈R+:

max
λ≥0

min
∆(mi n)≤∆≤∆(max)

g (∆,λ) := ‖∆‖p
p +λ(a∆+b) (3.18)

To solve the inner minimization problem, we set the gradient ∂g (∆,λ)
∂∆ j

= sign(∆ j)p|∆ j |p−1 +λa j

to be zero and obtain ∆ j =−sign(a j)
∣∣∣λa j

p

∣∣∣ 1
p−1

. Based on the convexity of function g (∆,λ) w.r.t.

∆, we can obtain the optimal ∆̃(i)
j in the domain:

∆̃(i)
j = clip

(
−sign(a j)

∣∣∣∣λa j

p

∣∣∣∣
1

p−1

,min =∆(mi n)
j ,max =∆(max)

j

)
. (3.19)

Based on strong duality, we can say that the optimal ∆̃(i) is chosen by setting a proper value of

λ. Fortunately, ‖∆̃(i)‖p increases monotonically with λ, so the smallest λ corresponds to the

optimum.

As we can see, the expression of ∆̂(i) in (3.15) is consistent with ∆̃(i) in (3.19) if λ is set properly.3

The greedy algorithm in Algorithm 3.4 describes the process of gradually increasing λ to find

the smallest value satisfying the constraint a∆+b ≤ 0. With the increase of λ, the elements in

vector∆ remain unchanged when they reach either∆(mi n) or∆(max), so we keep such elements

fixed and optimize the others.

�

In Algorithm 3.4, if I (max) is set so small that the while-loop breaks with ∆(mi n) ≤ ∆̂≤∆(max)

3The power term
q
p = 1

p−1 when 1
p + 1

q = 1

30

3.3. Training Provably Robust Networks

unsatisfied, then the output of Algorithm 3.4 is the upper bound of Problem (3.14), and thus we

eventually get a suboptimal but still valid robustness guarantee. [32] solves the same problem

when designing an attack and points out Algorithm 3.4 will converge in O(M log M) time. We

observed I (max) = 20 to be sufficient to satisfy the condition in Theorem 3.1. In practice, the

while-loop breaks within 5 iterations in most cases, which means Algorithm 3.4 introduces

very little overhead.

3.3.2 Finer-grained and Faster Verification

Based on Lemma 3.1, when ε< dy , our proposed method has the same robustness guarantees

as KW [157], Fast-Lin [154] and CROWN [180] if the underlying linear bounds are calculated

in the same way. When 0 < dy < ε, KW / Fast-Lin / CROWN cannot certify the data point at

all, while our method still gives non-trivial robustness guarantees thanks to the geometric

interpretability of the polyhedral envelope. Figure 3.6 compares the certified bounds of KW /

Fast-Lin4 and our method on a randomly picked input for different values of ε in the predefined

adversarial budget. We name our method, demonstrated as Algorithm 3.4, Polyhedral Envelope

Certification (PEC). We can clearly see the two-phase behavior of both methods in Figure 3.6.

In the second phase, unlike KW / Fast-Lin, PEC still provides a non-trivial certification bound.

0.00 0.05 0.10 0.15 0.20
Value of ε

0.00

0.02

0.04

0.06

0.08

0.10

C
er

ti
fi

ed
B

ou
nd

PEC

KW/Fast-Lin

Figure 3.6 – Certified l∞-based bound of a randomly picked input instance by our method
(PEC) and KW / Fast-Lin for different values of ε. The model is the ‘FC1’ model on MNIST
trained by ‘MMR+at’ in [29].

Figure 3.7 shows a 2D sketch of the two phases mentioned above. When ε is smaller than a

threshold, as in the left half of the figure, the linear bounds in (3.12) are tight but only valid in

a small region S
(p)
ε . Therefore, the certified robustness is ε at most. When ε is bigger than this

threshold, the linear bounds are valid in a larger region but becomes inevitably loose. This is

4In the case of ReLU networks, Fast-Lin and KW are algorithmically the same and yield the same robustness
certification.

31

Verified Robustness

Figure 3.7 – 2D sketch of decision boundary (dark blue bold lines), hyperplane defined by
(3.12) (light blue lines), adversarial budget (red dotted circle), polyhedral envelope (green bold
lines) inside the adversarial budget. The distance between the input data and the hyperplanes
is depicted by a yellow dashed circle. The left and right half correspond to the cases when dy

is bigger and smaller than ε, respectively.

because the value of di y monotonically decreases with the increase of ε for all linear bounds of

the model’s output. This is depicted in the right half of the figure, where the distances between

the input and the hyperplanes are smaller. The certified robustness is then dy . The hyperplane

segments inside the adversarial budget (green bold lines) never exceed the decision boundary

(dark blue bold lines), by definition of the polyhedral envelope. As a result, to obtain the

largest verified adversary-free regions, we need to find the optimal value of ε given the input.

In Figure 3.6, this is the x-axis value of the ’peak’ in the curves. In the sketches of Figure 3.7,

this is when the polyhedral envelope is tangent to the adversarial budget. Finding the optimal

value of ε given to the input is tricky, but we show that our method (PEC) will accelerate the

search for it.

Algorithm 3.5: Search for optimal value of ε

Input: x, ε, ε, ε∆
Set the bounds of ε: εup = ε, εlow = ε
while εup −εlow > ε∆ do
εtr y = 1

2 (εlow +εup)
Calculate the radius εcer t of the verified adversary-free region by Algorithm 3.4.
Update lower bound: εl ow = max{εl ow ,εcer t }
if εtr y > εcer t then

Update upper bound: εup = εtr y

end if
end while
Output: the optimal value of ε: 1

2 (εl ow +εup)

To search for the optimal value of ε, [157] uses Newton’s method, which is an expensive second-

order method. [154, 180] use binary search to improve efficiency. Thanks to the non-trivial

certified bounds in the second phase, our proposed PEC can further accelerate their strategy.

32

3.3. Training Provably Robust Networks

During the search, when the algorithm fails to fully verify the value guess ε̃, the binary search

strategy used in Fast-Lin / CROWN can only conclude that the optimal value is smaller than ε̃.

By contrast, in addition to this upper bound of the optimal value, PEC may output a non-trivial

verified bound dy , in which case we can also conclude that the optimal value is larger than

dy . The tighter lower bound on the optimal value makes PEC need fewer steps to reach the

required optimal value precision and thus accelerates the search.

The pseudo code for finding the optimal ε is provided as Algorithm 3.5. ε∆, ε, ε represent

the precision requirement, the original estimate of the lower bound and of the upper bound,

respectively. Typically, ε is set to 0 and ε is set to a large value corresponding to a perceptible

the image perturbation.

3.3.3 Polyhedral Envelope Regularization

Now, we have calculated the verified bounds d := min{ε,dy } of adversary-free region based on

Algorithm 3.4. Since d is differentiable w.r.t. the model parameters θ, we can incorporate our

verification method during training so as to obtain provably robust models as in [29]. To this

end, we design a regularization term that encourages larger values of d .

We first introduce the signed distance d̂i y : when di y > 0, d̂i y = di y ; otherwise, d̂i y is a negative

number whose absolute value is the distance between the input instance and the polyhedral

envelope. In the latter case, there is no verified adversary-free region or even the clean input

instance itself is misclassified. d̂i y can be calculated by a greedy algorithm similar to the one

in Algorithm 3.4.

Now, we sort
{
d̂i y

}K
i=1,i 6=y as d̂ j1 y ≤ d̂ j2 y ≤ ... ≤ d̂ jK−2 y ≤ d̂ jK−1 y and then define the Polyhedral

Envelope Regularization (PER) term, based on the smallest C distances, as:

PER(x,α,β,C) =β
C∑

i=1
max

(
0,1− d̂ ji y

α

)
. (3.20)

Note that, following [29], to accelerate training, we take into account the smallest C > 1

distances, and in practice, we set C = 4 as in [29]. When d̂ ji y ≥α, the distance is considered

large enough, so the corresponding term is zero and will not contribute to the gradient of the

model parameters. This avoids over-regularization and allows us to maintain accuracy on

clean input instances. In practice, we do not activate PER in the early training stages, when

the model is not well trained and the corresponding polyhedral envelope is meaningless. Such

a ‘warm up’ trick is commonly used in deep learning practice [54].

We can further incorporate PER with adversarial training in a similar way to [29]. Here,

the distance d̂ ji y in Equation (3.20) is calculated between the polyhedral envelope and the

adversarial example generated by PGD [98] instead of the clean input instance. Note that,

33

Verified Robustness

the polyhedral envelope is the same in both cases because it only depends on the adversarial

budget S(p)
ε . We call this method PER+at.

Calculating the polyhedral envelope is expensive in terms of both computation and memory,

because of the need to obtain linear bounds of the output logits z(L). To prevent such a

prohibitive computational and memory overhead, we use the stochastic robust approximation

in [150]. For a mini-batch of size B , we only calculate the PER or PER+at regularization term

for B ′ < B instances randomly sub-sampled from this mini-batch. Each instances in the

mini-batch has the same probability to be sampled. [101] empirically observed the geometric

correlation of high-dimensional decision boundaries near the data manifold. Although this

finding is based on regularly trained models, we find it also holds for models trained by PER /

PER+at: in practice, a B ′ much smaller than B provides a good approximation of the full-batch

regularization.

We summarize the full pipeline of PER+at as Algorithm 3.6 as follows:

Algorithm 3.6: Full pipeline of PER+at method

1: Input: D, α, β, ε, C , B , B ′
2: Sample (X,y) from the dataset D.
3: Subsample (Xs ,ys) from the minibatch.
4: Calculate U and p in Equation (3.12) for (Xs ,ys) given ε.
5: Generate adversarial examples (X′,y′) of the whole mini-batch, including the subsamples.
6: Calculate PER regularization term based on Equation (3.20).
7: The final loss is 1

2 (L(X,y)+L(X′,y′))+PER(X′
s ,α,β,C).

8: Back-propagation and update model parameters.

Consider U and p in Equation (3.12) can be calculated by either LA-inspired method or IBP-

inspired method introduced in Section 3.1, we call the corresponding PER methods L-PER,

I-PER, and PER+at methods L-PER+at, I-PER+at, respectively.

We now compare the computational complexity of our proposed methods with existing works

on an L-layer neural network model with K -dimensional output and M-dimensional input.

For simplicity, let each hidden layer have n neurons and usually n À max{K , M } is satisfied. In

this context, the FLOP complexity of PGD [98] with h iterations is O(Ln2h) ∼O(Ln2), because

typically h ¿ n. Among the methods that train provably robust networks, the LA-inspired

algorithm such as Fast-Lin [154] / CROWN [180] needs O(L2n3) FLOPS to obtain the linear

bounds of the output logits. However, the complexity can be reduced to O(LMn2) at the

cost of bound tightness when we use the IBP-inspired algorithm. Note that the IBP-inspired

algorithm also calculates the linear bound of the output logits and is thus different from

IBP [55], whose complexity is O(Ln2), i.e., the same as a forward propagation. To update

the model parameters, KW needs a back-propagation which costs O(Ln2) FLOPs. Therefore

the complexity of KW [157] is also O(L2n3), with the linear approximation dominating the

complexity. In CROWN-IBP [179], the bounds of all intermediate layers are estimated by

IBP, which costs O(Ln2) FLOPs. The last layer’s bound is then estimated in the same way as

CROWN, which costs O(Ln3) FLOPs, dominating the complexity of CROWN-IBP. For MMR [29],

34

3.3. Training Provably Robust Networks

Methods Complexity
PGD [98] O(Ln2)
Fast-Lin [154] / CROWN [180] O(L2n3)
KW [157] O(L2n3)
MMR / MMR+at [29] O(LMn2)
IBP [55] O(Ln2)
CROWN-IBP [179] O(Ln3)
I-PER / I-PER+at (Ours) O(LMn2)
L-PER / L-PER+at (Ours) O(L2n3)

Table 3.4 – Complexity of different methods on an L-layer neural network model with K -
dimensional output and M-dimensional input. Each hidden layer has n neurons.

the complexity to calculate the expression of the input’s linear region is O(LMn2). MMR

then calculates the distances between the input and O(Ln) hyper-planes, costing O(LMn).

Altogether, the complexity of MMR is O(LMn2). MMR+at has the same complexity as MMR,

because the overhead of adversarial training can be ignored.

Among our methods, the complexity of LA-inspired L-PER is O(L2n3). Like MMR and KW,

the overhead of distance calculation and back-propagation can be ignored. Similarly, the

complexity of I-PER is dominated by the IBP-inspired bound of the output logits, which is

O(LMn2). Note that L-PER has the same complexity as Fast-Lin, CROWN and KW, and the

complexity of I-PER is smaller than that of CROWN-IBP because M ¿ n. L-PER+at and I-

PER+at have the same complexity as L-PER and I-PER, respectively, since the overhead of

adversarial training is negligible. Table 3.4 summarizes the complexity of all methods.

3.3.4 Experiments and Analysis

We validate our proposed methods by experiments in this section, including L-PER, L-PER+at,

I-PER and I-PER+at. We focus on popular benchmarks: MNIST [89] and CIFAR10 [83]. All of

our experiments can be completed on a single NVDIA TITAN XP GPU machine with 12GB

memory within several hours. Codes and checkpoints are publicly available. 5

Training and Verifying ReLU Networks

We first demonstrate the benefits of our approach over existing training and certification

methods under the same computational complexity. To this end, we use the same model

architectures as in [29, 157]: FC1, which is a fully-connected network with one hidden layer of

1024 neurons; and CNN, which has two convolutional layers followed by two fully-connected

layers. For this set of experiments, all activation functions are ReLU.

When it comes to training, we consider 7 baselines, including plain training (plain), adversarial

5https://github.com/liuchen11/PolyEnvelope

35

https://github.com/liuchen11/PolyEnvelope

Verified Robustness

training (AT) [98], KW [157], IBP [55], CROWN-IBP [179], MMR and MMR plus adversarial

training (MMR + at) [29]. We compare them with our proposed methods: L-PER, L-PER+at

when using linear approximation to derive the output bounds for PER and PER+at, respectively;

I-PER, I-PER+at when using IBP-inspired linear bounds of the output. We do not compare

randomized smoothing [27, 122] or layerwise training [9]. This is because the verified bounds

of randomized smoothing are not exact but probabilistic, and layerwise training has significant

computational overhead.6 For fair comparison, we use the same adversarial budget in both

the training and the test phases.

To evaluate the models’ performance on the test set, we first report the clean test error (CTE)

and the empirical robust error against PGD attack (PGD). Based on the discussions in Sec-

tion 3.3.2, KW, Fast-Lin and our proposed PEC (Algorithm 3.4) have the same certified robust

error, which is the proportion of the input data whose certified regions are smaller than the

adversarial budget. Therefore, for these three methods, we report the certified robust error as

CRE Lin. We also report the certified robust error by IBP [55] as CRE IBP. For l∞ robustness, we

use a complete certifier called MIPVerify [143] to calculate the exact robust error, denoted by

CRE MIP. 7 In addition, we calculate the average certified bound obtained by Fast-Lin / KW

(ACB Lin)8, IBP (ACB IBP) and PEC (ACB PEC). Note that the average certified bound here

is from the one-shot certifier, i.e., without searching for the optimal adversarial budget. We

do not report the certified bound obtained by MMR [29], because, in practice, it only gives

trivial results. As a matter of fact, [29] emphasize their training method and report certification

results using only KW and MIP.

We use the same adversarial budgets and model architectures as [29] and thus directly down-

load the KW, MMR and MMR+at models from the checkpoints provided online.9 For IBP

and CROWN-IBP, we use the same hyper-parameter settings as [179] except that we align

the training duration to other methods and the use stochastic robustness approximation of

Section 3.3.3 to reduce the computational and memory consumption. For CNN models, we

use the warm up trick consisting of performing adversarial training before adding our PER or

PER+at regularization term. The running time overhead of pre-training is negligible compared

with computing the regularization term.

In all experiments, we use the Adam optimizer [81] with an initial learning rate of 10−3 and

train all models for 100 epochs with a mini-batch of 100 instances. For CNN models, we

decrease the learning rate to 10−4 for the last 10 epochs. When we train CNN models on

MNIST, we only calculate the polyhedral envelope of 20 instances subsampled from each

mini-batch. When we train CNN models on CIFAR10, this subsampling number is 10. These

settings make our algorithm possible to be trained on a GPU with 12 GB memory. For PER

6 For CNN models, [9] trains 200 epochs for each layer and 800 epochs in total, while the other baselines use
only 100 epochs. If we reduce the training epochs of each layer to 25 epochs, the model does not converge well.
For FC1 models, [9] is the same as KW, because there is only one hidden layer.

7MIPVerify is available on https://github.com/vtjeng/MIPVerify.jl
8Fast-Lin and KW is algorithmically the same in ReLU networks
9https://github.com/max-andr/provable-robustness-max-linear-regions.

36

https://github.com/vtjeng/MIPVerify.jl
https://github.com/max-andr/provable-robustness-max-linear-regions

3.3. Training Provably Robust Networks

and PER+at, the value of C in Equation 3.20 is always 4. We search in the logarithmic scale for

the value of β and in the linear scale for the value of α. For ε, we ensure that its values in the

end of training are close to the ones used in the adversarial budget S(p)
ε . We compare constant

values with an exponential growth scheme for ε but always use constant values for α and β.

The optimal values we found for different settings are provided in Table 3.5.

Task α β ε

MNIST
0.15 0.1

initial value 0.0064
FC1, l∞ ×2 every 20 epochs

MNIST
0.15

PER: 0.3
0.1

CNN, l∞ PER+at: 0.03

CIFAR10
0.1

PER: 0.0003
0.008

CNN, l∞ PER+at: 0.001

MNIST
0.45 1.0

initial value 0.02
FC1, l2 ×2 every 20 epochs

MNIST
0.45 1.0 0.3

CNN, l2

CIFAR10
0.15

PER: 0.3
0.1

CNN, l2 PER+at: 1.0

Table 3.5 – Values of α, β and ε for different experiments.

We constrain the attacker to perturb the images within [0,1]M . The full results for l∞ attacks

and l2 attacks are summarized in Table 3.6 and Table 3.7, respectively. For l∞ attacks, our

proposed methods achieve the best verified accuracy, calculated by the complete certifier

(CRE MIP), in all cases. For l2 attacks, they also achieve the best estimated verified accuracy,

calculated by the Fast-Lin / KW / PEC certifier (CRE Lin), in all cases. In addition, the perfor-

mance of I-PER and I-PER+at is on par with that of L-PER and L-PER+at, which illustrates that

our framework is not sensitive to the tightness of the underlying method for outputs’ linear

bounds and thus generally applicable.

As observed in previous work [111], different incomplete certifiers are complementary. For

example, IBP is only able to certify IBP-trained models and has worse certification results

on other models. For the training methods other than IBP and CROWN-IBP, we notice big

gaps between the true robustness (CRE MIP) and the IBP certified robustness (CRE IBP).

This is because IBP and CROWN-IBP solve a different optimization problem from the other

methods. Specifically, IBP and CROWN-IBP do not make any approximation of the activa-

tion function, they only utilize the monotonicity of the activation function to propagate the

bounds. However, all the other methods use linear approximations to bound the outputs of

the activation functions. We also note that the stochastic robustness approximation greatly

hurts the performance of IBP and CROWN-IBP on CIFAR10. However, the result reported

in [179] without stochastic robustness approximation on the same architecture is still worse

37

Verified Robustness

than our method.10 Consistently with Section 3.3.2, our geometry-inspired PEC has better

average certified bounds than Fast-Lin / KW given the same adversarial budget. For example,

on the CIFAR10 model against l∞ attack, 10%−20% of the test points are not certified by

Fast-Lin / KW but have non-trivial bounds with PEC.

Methods CTE
(%)

PGD
(%)

CRE Lin
(%)

CRE IBP
(%)

CRE MIP
(%)

ACB
Lin

ACB
IBP

ACB
PEC

MNIST - FC1, ReLU, l∞, ε= 0.1

plain 1.99 98.37 100.00 100.00 100.00 0.0000 0.0000 0.0000
AT 1.42 9.00 97.94 100.00 100.00 0.0021 0.0000 0.0099
KW 2.26 8.59 12.91 69.20 10.90 0.0871 0.0308 0.0928
IBP 1.65 9.67 87.27 15.20 12.36 0.0127 0.0848 0.0705
CROWN-IBP 1.98 9.50 67.39 14.45 11.39 0.0326 0.0855 0.0800
MMR 2.11 17.82 33.75 99.88 24.90 0.0663 0.0001 0.0832
MMR+at 2.04 10.39 17.64 95.09 14.10 0.0824 0.0049 0.0905
L-PER 1.60 7.45 11.71 92.89 7.69 0.0883 0.0071 0.0935
L-PER+at 1.81 7.73 12.90 99.90 8.22 0.0871 0.0001 0.0925
I-PER 1.60 6.28 11.96 93.33 8.10 0.0880 0.0067 0.0934
I-PER+at 1.54 7.15 13.96 98.55 8.48 0.0868 0.0014 0.0927

MNIST - CNN, ReLU, l∞, ε= 0.1

plain 1.28 85.75 100.00 100.00 100.00 0.0000 0.0000 0.0000
AT 1.02 4.75 91.91 100.00 100.00 0.0081 0.0000 0.0189
KW 1.21 3.03 4.44 100.00 4.40 0.0956 0.0000 0.0971
IBP 1.51 4.43 23.89 8.13 5.23 0.0761 0.0919 0.0872
CROWN-IBP 1.85 4.28 10.72 6.91 4.83 0.0893 0.0931 0.0928
MMR 1.65 6.07 11.56 100.00 6.10 0.0884 0.0000 0.0928
MMR+at 1.19 3.35 9.49 100.00 3.60 0.0905 0.0000 0.0939
L-PER 1.44 3.44 5.13 100.00 3.62 0.0949 0.0000 0.0965
L-PER+at 0.50 2.02 4.85 100.00 2.21 0.0952 0.0000 0.0969
I-PER 1.03 2.40 4.64 99.55 2.52 0.0954 0.0004 0.0967
I-PER+at 0.48 1.29 4.61 99.94 1.47 0.0954 0.0001 0.0971

CIFAR10 - CNN, ReLU, l∞, ε= 2/255

plain 24.62 86.29 100.00 100.00 100.00 0.0000 0.0000 0.0000
AT 27.04 48.53 85.36 100.00 88.50 0.0011 0.0000 0.0015
KW 39.27 46.60 53.81 99.98 48.00 0.0036 0.0000 0.0040
IBP 46.74 56.38 61.81 67.58 58.80 0.0030 0.0025 0.0034
CROWN-IBP 58.32 63.56 66.28 69.10 65.44 0.0026 0.0024 0.0029
MMR 34.59 57.17 69.28 100.00 61.00 0.0024 0.0000 0.0032
MMR+at 35.36 49.27 59.91 100.00 54.20 0.0031 0.0000 0.0037
L-PER 39.21 50.98 57.45 99.98 52.70 0.0033 0.0000 0.0038
L-PER+at 28.87 43.55 56.59 100.00 48.43 0.0034 0.0000 0.0040
I-PER 29.34 51.54 64.34 99.98 54.87 0.0028 0.0000 0.0036
I-PER+at 26.66 43.35 57.72 100.00 47.87 0.0033 0.0000 0.0040

Table 3.6 – Full results of 11 training schemes and 8 evaluation schemes for ReLU networks
under l∞ attacks. The best and the second best results among provably robust training
methods (plain and AT excluded) are bold. In addition, the best results are underlined.

10The DM-small model in [179] yields a certified robust error of 52.57% on CIFAR10 when ε= 2/255.

38

3.3. Training Provably Robust Networks

Method
CTE PGD CRE Lin CRE IBP ACB ACB ACB
(%) (%) (%) (%) Lin IBP PEC

MNIST - FC1, ReLU, l2, ε= 0.3

plain 1.99 9.81 40.97 99.30 0.1771 0.0021 0.2300
AT 1.35 2.99 14.85 99.23 0.2555 0.0023 0.2684
KW 1.23 2.70 4.91 41.55 0.2853 0.1754 0.2892
IBP 1.36 2.90 6.87 9.01 0.2794 0.2730 0.2876
CROWN-IBP 1.26 2.80 6.36 8.73 0.2809 0.2738 0.2884
MMR 2.40 5.88 7.76 99.55 0.2767 0.0013 0.2845
MMR+at 1.77 3.76 5.68 99.86 0.2830 0.0004 0.2880
L-PER 1.26 2.44 5.35 59.17 0.2840 0.1225 0.2888
L-PER+at 0.67 1.40 4.84 64.79 0.2855 0.1056 0.2910
I-PER 1.21 2.59 5.34 54.13 0.2840 0.1376 0.2888
I-PER+at 0.74 1.46 7.81 72.85 0.2766 0.0814 0.2860

MNIST - CNN, ReLU, l2, ε= 0.3

plain 1.28 4.93 100.00 100.00 0.0000 0.0000 0.0000
AT 1.12 2.50 100.00 100.00 0.0000 0.0000 0.0000
KW 1.11 2.05 5.84 100.00 0.2825 0.0000 0.2861
IBP 2.37 3.85 51.12 11.73 0.1534 0.2648 0.1669
CROWN-IBP 2.89 4.44 31.62 12.29 0.2051 0.2631 0.2178
MMR 2.57 5.49 10.03 100.00 0.2699 0.0000 0.2788
MMR+at 1.73 3.22 9.46 100.00 0.2716 0.0000 0.2780
L-PER 1.02 1.87 5.04 100.00 0.2849 0.0000 0.2882
L-PER+at 0.43 0.91 5.43 100.00 0.2837 0.0000 0.2878
I-PER 1.11 2.16 6.37 100.00 0.2809 0.0000 0.2851
I-PER+at 0.52 1.12 7.89 100.00 0.2763 0.0000 0.2812

CIFAR10 - CNN, ReLU, l2, ε= 0.1

plain 23.29 47.39 100.00 100.00 0.0000 0.0000 0.0000
AT 25.84 35.81 99.96 100.00 0.0000 0.0000 0.0000
KW 40.24 43.87 48.98 100.00 0.0510 0.0000 0.0533
IBP 57.90 60.03 64.78 78.13 0.0352 0.0219 0.0366
CROWN-IBP 71.21 72.51 76.23 80.97 0.0238 0.0190 0.0256
MMR 40.93 50.57 57.07 100.00 0.0429 0.0000 0.0480
MMR+at 37.78 43.98 53.33 100.00 0.0467 0.0000 0.0502
L-PER 34.10 52.54 63.42 100.00 0.0369 0.0000 0.0465
L-PER+at 25.76 33.47 46.74 100.00 0.0533 0.0000 0.0580
I-PER 33.94 43.06 56.80 100.00 0.0432 0.0000 0.0484
I-PER+at 24.85 31.32 47.28 100.00 0.0528 0.0000 0.0572

Table 3.7 – Full results of 11 training schemes and 7 evaluation schemes for ReLU networks
under l2 attacks. The best and the second best results among provably robust training methods
(plain and at excluded) are bold. In addition, the best results are underlined.

When compared with KW, our methods, especially PER+at, have much better clean test

accuracy. In other words, a model trained by L-PER+at or I-PER+at is not as over-regularized as

other training methods for provable robustness. Figure 3.8 shows the distribution of parameter

values of KW, MMR+at, L-PER+at models on CIFAR10 against l∞ attacks and l2 attacks. As we

can see, the parameters of L-PER+at models have much larger norms than KW and MMR+at,

39

Verified Robustness

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

Values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
u

m
b

er
of

P
ar

am
et

er
s

×104 Weight Distribution on CIFAR10 model against l∞ Attack

KW

MMR+at

PER+at

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

Values

0

1

2

3

4

5

6

N
u

m
b

er
of

P
ar

am
et

er
s

×103 Weight Distribution on CIFAR10 model against l2 Attack

KW

MMR+at

PER+at

Figure 3.8 – Parameter value distributions of CIFAR10 models trained against l∞ attacks (left)
and l2 attacks. The parameters of models trained by PER+at have larger magnitude.

whose parameters are more sparse. The norms of the model parameters indicate the model

capacity [106, 105], so L-PER+at models better preserve the model capacity.

The better performance of (L/I)-PER+at over (L/I)-PER, and of MMR+at over MMR, evidences

the benefits of augmenting the training data with the adversarial examples. However, this

strategy is only compatible with methods that rely on estimating the distance between the

input instance and the decision boundary, and thus cannot be combined with methods such

as KW. Adding a loss term on the adversarial examples to the loss objective of KW yields a

performance between adversarial training and KW. For example, if we optimize the sum of

loss objectives of KW and PGD for a CNN model on MNIST against l∞ adversarial attacks, the

robust error against PGD of the resulting model is 3.64%, the provably robust error by Fast-Lin

(CRE Lin) is 8.12%. In other words, such combinations only lead to mixed performance and

are weaker than KW in terms of provable robustness.

Training and Verifying Non-ReLU Networks

Some of previous methods such as MMR and MMR+at [29] utilize the piece-wise linear

property of ReLU function and thus can only be applied on ReLU networks. By contrast,

our methods are generally applicable to any activation functions. To validate our method’s

applicability to non-ReLU networks, we replace the ReLU function in FC1 models with either

sigmoid or tanh functions.

In this context, MMR and MMR+at are no longer applicable. While KW [160] claims that

their methods apply to non-ReLU networks, their main contribution is rather the extension

of KW to a broader set of network architectures, and their public code11 does not support

non-ReLU activations. For evaluation, MIPVerify does not support sigmoid or tanh functions

neither, since it works only on ReLU networks. In addition, we replace Fast-Lin and KW with

CROWN [180], their extension to general activation functions, and thus report its certified

11Repository: https://github.com/locuslab/convex_adversarial

40

https://github.com/locuslab/convex_adversarial

3.3. Training Provably Robust Networks

Methods CTE
(%)

PGD
(%)

CRE CRO
(%)

CRE IBP
(%)

ACB CRO ACB IBP ACB PEC

MNIST - FC1, Sigmoid, l∞, ε= 0.1

plain 2.04 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 1.78 10.05 98.52 100.00 0.0015 0.0000 0.0055
IBP 2.06 10.58 44.14 13.65 0.0559 0.0863 0.0846
CROWN-IBP 2.88 9.83 26.04 12.51 0.0740 0.0875 0.0886
L-PER 1.97 7.55 12.15 84.76 0.0879 0.0152 0.0930
L-PER+at 2.16 7.12 11.87 88.06 0.0881 0.0119 0.0927
I-PER 2.15 8.35 12.79 86.99 0.0872 0.0130 0.0926
I-PER+at 2.45 8.05 12.36 88.94 0.0876 0.0111 0.0923

MNIST - FC1, Tanh, l∞, ε= 0.1

plain 2.00 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 1.28 8.89 99.98 100.00 0.0000 0.0000 0.0001
IBP 2.04 9.84 31.81 13.02 0.0682 0.0870 0.0864
CROWN-IBP 2.75 9.57 20.10 11.80 0.0799 0.0882 0.0894
L-PER 2.19 7.71 11.55 57.81 0.0885 0.0422 0.0934
L-PER+at 2.30 7.45 11.39 56.74 0.0886 0.0433 0.0930
I-PER 2.21 8.51 12.23 55.53 0.0878 0.0445 0.0929
I-PER+at 2.46 7.87 12.04 66.04 0.0880 0.0340 0.0929

MNIST - FC1, Sigmoid, l2, ε= 0.3

plain 2.01 10.25 30.78 94.82 0.2077 0.0155 0.2539
at 1.65 3.48 7.50 85.84 0.2775 0.0422 0.2839
IBP 1.40 3.07 6.43 9.13 0.2807 0.2726 0.2873
C-IBP 1.51 3.24 6.36 8.73 0.2709 0.2738 0.2872
L-PER 1.36 2.58 6.12 73.71 0.2816 0.0789 0.2867
L-PER+at 0.46 1.03 5.26 68.94 0.2842 0.0932 0.2905
I-PER 1.19 2.59 6.05 70.18 0.2818 0.0895 0.2871
I-PER+at 0.49 1.16 5.03 65.79 0.2849 0.1026 0.2907

MNIST - FC1, Tanh, l2, ε= 0.3

plain 1.94 16.46 61.66 99.64 0.1150 0.0011 0.1789
at 1.36 3.02 12.35 97.66 0.2630 0.0070 0.2735
IBP 1.57 3.17 7.21 10.44 0.2784 0.2688 0.2851
C-IBP 1.50 3.14 6.64 9.53 0.2801 0.2714 0.2861
L-PER 1.31 2.47 5.53 55.17 0.2834 0.1345 0.2880
L-PER+at 0.58 1.30 5.89 54.88 0.2823 0.1354 0.2885
I-PER 1.38 2.85 5.90 45.31 0.2823 0.1641 0.2874
I-PER+at 0.55 1.17 5.57 53.73 0.2833 0.1388 0.2890

Table 3.8 – Full results of 8 training schemes and 7 evaluation schemes for sigmoid and tanh
networks under l∞ attacks and l2 attacks. The best results among provably robust training
methods (plain and at excluded) are bold and underlined.

robust error (CRE CRO) and average certified bound (ACB CRO). During training, we utilize the

linear bounds derived in Section 3.1, which is slightly different from the ones in CROWN. This

is becausewe need an analytical form of the linear bounds in order to calculate their gradients

w.r.t. the model parameters. When we verify models using CROWN, we use exactly the same

41

Verified Robustness

bounds as in CROWN, because it is tighter numerically.

The results on both l∞ cases and l2 cases are shown in Table 3.8. Similar to the ReLU networks

in the previous section, our proposed methods have the best performance in all cases, in terms

of both certified robust error and average certified bound. IBP can only certify IBP-trained

models well and has significantly worse results on other models.

Search for Optimal Adversarial Budget

To obtain the biggest verified bound, we need to search for the optimal value of ε, i.e., the peak

in Figure 3.6. KW [157] uses Newton’s method to solve a constrained optimization problem,

which is an expensive second-order method. Fast-Lin and CROWN [154, 180] apply a binary

search strategy to find the optimal ε. Based on Figure 3.6, the optimal adversarial budget for a

data point is also its optimal verified bound.

To validate the claim in Section 3.3.2 that PEC can find the optimal adversarial budget faster

than Fast-Lin / CROWN by Algorithm 3.5, we compare the average number of iterations needed

to find the optimal value given a predefined precision requirement ε∆. Using ε and ε to define

the initial lower and upper estimates of the optimal value, we then need dlog2
ε−ε
ε∆

e steps of

bound calculations to obtain the optimal value by binary search in Fast-Lin / CROWN. By

contrast, the number of bound calculations needed by PEC is smaller and depends on the

model to certify, because the partial certified bounds obtained by PEC indicate tighter lower

bounds of the optimal adversarial budget.

We show the results on both l∞ and l2 cases in Table 3.9. For l∞ cases, the original interval [ε,ε]

is [0,0.4] for MNIST and [0,0.1] for CIFAR10. For l2 cases, the original interval [ε,ε] is [0,1.2] for

MNIST and [0,0.4] for CIFAR10. In Fast-Lin / CROWN, the number of bound calculation do not

depend on the model and is a constant. Note that, because PEC has almost no computational

overhead compared with Fast-Lin and CROWN,12 the number of iterations reflects the running

time to obtain the optimal certified bounds. Altogether, our results in Table 3.9 show that PEC

can save approximately 25% of the running time for FC1 models and 10% of the running time

for CNN models.

Figure 3.9 shows the distribution of the optimal certified bounds for CIFAR10 models obtained

by KW, MMR+at and C-PER+at against l∞ attacks and l2 attacks on the test set. We use vertical

red lines to represent the target bounds (2/255 in the l∞ case and 0.1 in the l2 case), so the

area on the right of this line represents the certified robust accuracy. Compared with KW,

the mass of C-PER+at is more concentrated on a narrower range on the right of the red line.

This evidences that there are significantly fewer points that have unnecessarily large certified

bounds for the L-PER+at model than for the KW one. This is because PER+at encourages

12We run one-iteration PEC and Fast-Lin to certify CIFAR10-CNN models by L-PER+at for 10 times. To process the
entire test set on a single GPU machine, in l∞ cases, the mean and standard deviation of run time is 217.51±1.95
seconds for Fast-Lin and 219.16±3.23 seconds for PEC; in l2 cases, it is 236.95±1.64 for Fast-Lin and 239.41±1.92
for PEC. Therefore the difference can be ignored.

42

3.3. Training Provably Robust Networks

Methods MNIST-FC1, l∞ MNIST-CNN, l∞ CIFAR10-CNN, l∞
TLin TPEC

TPEC
TLin

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

plain

12

9.85 0.8207

12

10.56 0.8804

10

9.33 0.9331
at 10.77 0.8972 11.39 0.9489 9.12 0.9128
KW 8.48 0.7066 11.61 0.9674 8.43 0.8432
MMR 8.04 0.6703 10.68 0.8897 8.05 0.8053
MMR+at 7.68 0.6402 11.22 0.9351 8.45 0.8450
L-PER 9.34 0.7780 11.17 0.9305 8.61 0.8606
L-PER+at 9.38 0.7816 11.74 0.9784 8.68 0.8681

Methods MNIST-FC1, l2 MNIST-CNN, l2 CIFAR10-CNN, l2

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

plain

14

9.68 0.6914

14

13.64 0.9742

12

11.73 0.9775
at 10.44 0.7457 13.76 0.9829 11.67 0.9725
KW 7.72 0.5514 12.63 0.9021 10.23 0.8525
MMR 5.86 0.4186 8.52 0.6086 9.05 0.7542
MMR+at 5.91 0.4221 12.13 0.8664 10.33 0.8608
L-PER 11.47 0.8194 13.75 0.9819 9.13 0.7609
L-PER+at 11.34 0.8100 13.72 0.9796 10.71 0.8926

Table 3.9 – Number of bound calculation needed for the optimal ε in Fast-Lin (TLin) and PEC
(TPEC) for ReLU networks under l∞ attacks and l2 attacks. Note that TLin is a constant for
different models given the original interval [ε,ε].

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

Values

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
u

m
b

er
o

f
T

es
t

P
o

in
ts

×102 Optimal Bound Distribution for CIFAR10 Model against l∞ Attack

KW

MMR+at

PER+at

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Values

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

N
u

m
b

er
o

f
T

es
t

P
o

in
ts

×102 Optimal Bound Distribution for CIFAR10 Model against l2 Attack

KW

MMR+at

PER+at

Figure 3.9 – Distribution of optimal certified bounds of CIFAR10 models trained against l∞
attacks (left) and l2 attacks (right). The target bounds (2/255 on the left, 0.1 on the right) are
marked as red vertical lines.

robustness via a hinge-loss term. When d̂i c ≥α, the regularizer in Equation (3.20) is a constant

zero and does not contribute to the parameter gradient. However, KW first estimates the

bound of the worst case output logits and calculates the softmax cross-entropy loss on that.

Under this training objective function, each data point is encouraged to make the lower bound

of the true label’s output logit bigger and the upper bound of false ones smaller, even if the

current model is sufficiently robust at this point. This phenomenon also helps to explain why

43

Verified Robustness

KW tends to over-regulate the model while our methods do not, indicated in Figure 3.8.

We have also tried to replace the cross-entropy loss with the hinge loss in the objective of KW,

but do not observe any improvement over the original KW. KW directly minimizes the gap

between the logits of the true and false label, but the logits’ magnitude for different instances

differs, which makes it difficult or even impossible to set a unified threshold in the hinge

loss. By contrast, in PER, we apply the hinge loss to the certified bound directly, which is

normalized, easier to interpret and thus makes it much easier to set the threshold in the hinge

loss. In practice, the value of α in Equation 3.20 is set 1.5 times the target adversarial budget.

3.4 Summary and Broader Impact

In this chapter, we focus on the robust verification problem. We study, in particular, the

problem from the geometric perspective. In Section 3.2, we extend the existing verification

method for verifying a non-uniform adversary-free region with a much larger volume than the

uniform counterpart. In Section 3.3, we estimate the distance between the decision boundary

and the input instance, and we propose a regularization framework for training provably

robust neural networks.

Both of our works deepen our understandings about the geometry of the neural networks’

decision boundaries. For verifying non-uniform bounds, it helps us to distinguish non-

robust features from robust ones, and helps us further analyze the model’s behavior and

interpretability. Non-uniform bounds also enrich the definition of the adversarial budget,

because features with high verified bounds are robust features, and because perturbing such

features of a higher magnitude does not change the semantic meanings of the input instances.

There are already some preliminary works [43] that study robustness against such non-uniform

adversarial budgets. For polyhedral envelope regularization, it is the first geometry-inspired

method for training provably robust neural networks with general activation functions. Our

regularization framework can train models with robustness guarantees without sacrificing the

performance on the clean input instances too much. The hinge-loss form of regularization,

the key to avoid over-regularization, is different from most existing methods for provable

robustness, and it is certainly worth further exploration.

Although verified robustness comes with a theoretical guarantee, the scalability is the key

barrier to verifying industry-sized models. There are two major issues: (1) the complexity of

some methods is significantly higher than the standard forward or backward passes, such as

complete verifier and the methods based on linear approximation; (2) the bounds of some

methods becomes inevitably looser with the increase of network’s depth, including most

incomplete verifiers. Consequently, for large-scale models, researchers are more interested in

empirical robustness, which will be discussed in the next chapter.

44

4 Empirical Robustness

Following the discussion in Section 1.1, empirical robustness, which is the proportion of

input instances robust against the state-of-the-art attacks, indicates the upper bound of the

model’s true robustness. Among the methods for achieving empirical robustness, adversarial

training [98] is the most popular one in practice. However, compared with empirical risk

minimization, adversarial training is much more challenging. In this chapter, we study the

two challenges in adversarial training: slow convergence and large generalization gap. Before

we discuss these phenomena in depth, we first briefly review what adversarial training is and

how it is different from traditional empirical risk minimization.

The contents of this chapter are mainly from the following two papers. I am the primary

contributor of both papers.

• Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, Sabine Süsstrunk. “On the Loss

Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them.”

Neural Information Processing Systems 2020.

• Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, Sabine Süsstrunk. “On the

Impact of Hard Adversarial Instances on Overfitting in Adversarial Training.” Preprint.

4.1 Adversarial Training

Adversarial training in [98] alternatively solves the inner maximization and outer minimization

problem in 1.2. It first generates adversarial examples x′, usually by PGD, and then optimize

model parameters θ based on these adversarial examples. [7] studies 9 existing methods that

claim to achieve robustness, adversarial training is the only one that withstand the strong

adaptive attacks and does not suffer from gradient masking. After that, adversarial training

becomes the de facto method in practice to achieve empirical robustness.

There are many variants that improve the original adversarial training. TRADES [178] gen-

erates adversarial perturbations by solving max
∆∈S(p)

ε
D(f (θ,x)|| f (θ,x+∆)) where D is the

45

Empirical Robustness

metric measuring the distributional distance, such as Kullback–Leibler (KL) divergence. The

optimization objective of TRADES is L(f (θ,x), y)+λmax
∆∈S(p)

ε
D(f (θ,x)|| f (θ,x+∆)) where

the coefficient λ balances the trade-off between the clean accuracy and the robust accuracy.

MART [153] improves TRADES by regularizing input instances that are misclassified. Adversar-

ial weight perturbation [161] improves the performance by adversarially perturbing the model

parameters θ to encourage convergence to a flat minima in the model parameter space. [114]

achieves the state-of-the-art performance by model weight averaging and heuristics-driven

data augmentation such as Cutout, CutMix [175].

Figure 4.1 demonstrates the learning curves of vanilla training (empirical risk minimization)

and adversarial training on a 18-layer Residual Network (RN18) in [98] on CIFAR10. For

vanilla training, we report the error and loss value on the clean input instances; for adversarial

training, we report them on the adversarially perturbed input instances under l∞ adversarial

budget with ε= 8/255. We can clearly see that adversarial training converges much slower

on the training set than vanilla training. In addition, adversarial training has a much larger

generalization gap, and its performance on the test set sees significant decay in the late phase

of training.

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Vanilla Training
Adversarial Training

0 50 100 150 200
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Vanilla Training
Adversarial Training

Figure 4.1 – Learning curves in error (left) and loss (right) of vanilla training and adversarial
training. Dashed lines and solid lines represent the training set and the test set, respectively.

Slow convergence means higher computational cost for training. In this regard, there are a se-

ries of works that accelerate adversarial training [130, 158]. The overfitting issue of adversarial

training is first discussed in [118] and it proposes early stopping as the most effective solution.

In addition, knowledge distillation, model smoothing [21], instance-adaptive adversarial bud-

get [8] and self-adaptive training [71] are shown successful to mitigate adversarial overfitting.

Despite effective, the fundamental reasons that cause slow convergence and severe overfitting

have not been investigated yet. In the following sections, we will take a closer look at these

two phenomenons by rigorous theoretical analysis and comprehensive empirical observation.

46

4.2. Adversarial Loss Landscape

4.2 Adversarial Loss Landscape

Different behavior of vanilla training and adversarial training indicates discrepancies in the

underlying optimization landscapes. The loss landscape of vanilla training has been exten-

sively studies in existing literatures[40, 44, 47, 49, 91], such an analysis in adversarial training

remains unaddressed. Our work [93] presented in this section is the first one to investigate the

properties of loss landscape in the context of adversarial training.

To simplify the notation, we focus on lp norm based adversarial budget S(p)
ε and reparameter-

ize the problem of robust learning in (1.2) as follows:

min
θ

Lε(θ) := 1

N

N∑
i=1

gε(θ,xi) where gε(θ,xi) := max
∆i∈S(p)

ε (xi)
L(f(θ,xi +∆i),yi) . (4.1)

Here, we use Lε and gε to represent the adversarial loss function for the whole dataset and

a specific instance, respectively. In this regard, L0 and g0 are the corresponding vanilla loss

functions. We discard the label yi and the superscript (p) for simplicity unless ambiguous.

In the following sections, we will start our analysis with a toy linear model and then generalize

our findings to general nonlinear models. In addition to theoretical analysis, we also provide

empirical results to confirm our claims.

4.2.1 Toy Model: Logistic Regression

Binary Classification

We start our analysis in logistic regression with the simplest case: binary classification, i.e.,

K = 2. In this case, the model parameter is a vector θ = {w}, w ∈ RM , so the logit function

f (w,x) = [
wT x,−wT x

]
. If we use +1 and −1 to label both classes, then the vanilla loss function

for a data set
{
(xi , yi)

}N
i=1 is L0(w) = 1

N

∑N
i=1 log

(
1+e−yi wT xi

)
. Under the adversarial budget

S
(p)
ε , the corresponding adversarial loss function is Lε(w) = 1

N

∑N
i=1 log

(
1+e−yi wT xi+ε‖w‖q

)
,

where lq is the dual norm of lp . Since the magnitude of w does not change the results of the

classifier, we can assume ‖w‖q = 1 without loss of generality. As a result, the adversarial loss

function is:

Lε(w) = 1

N

N∑
i=1

log
(
1+e−yi wT xi+ε

)
. (4.2)

The following theorem describes the properties of Lε(w) for different values of ε.

Theorem 4.1 If the dataset {(xi , yi)}N
i=1 is linearly separable under the adversarial budget Sε̂,

then for any unit vector m ∈RM and values ε1, ε2 such that ε1 ≤ ε2 ≤ ε̂, we have mTO2
wLε1 (w)m ≤

mTO2
wLε2 (w)m. More specifically, both the largest and smallest eigenvalue ofO2

wLε1 (w) are no

greater than those ofO2
wLε2 (w).

47

Empirical Robustness

Since mTO2
wLε(w)m is the curvature of Lε(w) in the direction of m, Theorem 4.1 shows that

the curvature ofLε(w) increases with ε in any direction if the whole dataset is linearly separable.

For an individual data point x, if ∀∆ ∈ Sε̂, x+∆ is correctly classified, then the curvature of

gε(w,x) also increases with ε in any direction as long as ε≤ ε̂. The assumption for an individual

point here is much weaker than the one in Theorem 4.1. If the overwhelming majority of

the data points are correctly classified under the adversarial budget Sε̂, the conclusion of

Theorem 4.1 still holds in practice. To prove Theorem 4.1, we first prove the following lemma:

Lemma 4.1 Given a vector set {xi }N
i=1 and scalar sets {ai }N

i=1, {bi }N
i=1, we define A =∑N

i=1 ai xi xT
i

and B =∑N
i=1 bi xi xT

i . If, ∀i , ai ≥ bi , then ∀m ∈RM , mT Am ≥ mT Bm. In addition, the largest

and the smallest eigenvalues of A is no smaller than those of B.

Proof: Because ∀ i , ai ≥ bi , we have ∀m
∑N

i=1(ai −bi)(xT
i m)2 ≥ 0, which can be re-organized

into mT Am ≥ mT Bm. Consider A, B are both symmetric matrices, we have the following for

their largest eigenvalues λ1(A), λ1(B).

max
‖m‖2=1

mT Am = max
‖m‖2=1

N∑
i=1

ai (xT
i m)2 . max

‖m‖2=1
mT Bm = max

‖m‖2=1

N∑
i=1

bi (xT
i m)2 . (4.3)

Let mB ∈ argmax‖m‖2=1
∑N

i=1 bi (xT
i m)2, then we have:

λ1(B) =
N∑

i=1
bi (xT

i mB)2 ≤
N∑

i=1
ai (xT

i mB)2 ≤ max
‖m‖2=1

N∑
i=1

ai (xT
i m)2 =λ1(A) . (4.4)

We can use the similar way to prove the claim about the smallest eigenvalue, the smallest eigen-

value of A and B are λM (A) = min‖m‖2=1
∑N

i=1 ai (xT
i m)2 and λM (B) = min‖m‖2=1

∑N
i=1 bi (xT

i m)2,

respectively. Let mA ∈ argmin‖m‖2=1
∑N

i=1 ai (xT
i m)2, then we have:

λm(A) =
N∑

i=1
ai (xT

i mA)2 ≥
N∑

i=1
bi (xT

i mA)2 ≥ min
‖m‖2=1

N∑
i=1

bi (xT
i m)2 =λm(B) . (4.5)

�

Now, we go back to prove Theorem 4.1.

Proof: We first calculate the first and second derivatives of Lε(w) as:

OwLε(w) = 1

N

N∑
i=1

− 1

1+e yi wT xi−ε yi xi ,

O2
wLε(w) = 1

N

N∑
i=1

e yi wT xi−ε

(1+e yi wT xi−ε)2
y2

i xi xT
i = 1

N

N∑
i=1

e yi wT xi−ε

(1+e yi wT xi−ε)2
xi xT

i .

(4.6)

48

4.2. Adversarial Loss Landscape

The second equality of O2
wLε(w) is satisfied because yi is either +1 or −1. The dataset{

(xi , yi)
}N

i=1 is linearly separable under adversarial budget S(p)
ε̂

, so, ∀i , yi wT xi ≥ ε̂. When

ε≤ ε̂, e yi wT xi−ε > 1 and monotonically decreases with ε. As a result, e yi wT xi −ε

(1+e yi wT xi −ε)2
monotonically

increases with ε in the range [0, ε̂].

Based on Lemma 4.1, ∀m ∈RM , mTO2
wLε(w)m increases with ε, and so do the largest and the

smallest eigenvalues of the Hessian matrixO2
wLε(w). �

Multi-class Classification

For logistic regression for multi-class classification, i.e., K ≥ 3. We parameterize the model

by θ = {W} , W := {wi }K
i=1 ∈RM×K and use f (W) = [

wT
1 x,wT

2 x, ...,wT
K x

]
to represent the model’s

output. Therefore, the vanilla loss is convex as g0(W,x) = log(1+∑
j 6=y exp(w j−wy)T x).

In the adversarial case, although gε(W,x) is also convex, it is no longer smooth everywhere. It

is then difficult to write a unified expression of gε(W,x). So we start with the version space Vε

of gε(W,x) defined as Vε :=
{

W
∣∣∣(wi −wy)(x+∆) ≤ 0,∀i ∈ {0,1, ...,K −1},∆ ∈ S(p)

ε

}
.

By definition, Vε is the smallest convex closed set containing all solutions robust under the

adversarial budget S(p)
ε . The proposition below states that the version space Vε shrinks with

larger values of ε.

Proposition 4.1 Given the definition of the version space Vε, then Vε2 ⊆Vε1 when ε1 ≤ ε2.

Proposition 4.1 is easy to prove, since gε1 (W,x) ≤ gε2 (W,x) for ε1 ≤ ε2, and it is clear that

∀W ∈Vε, gε(W,x) ≤ logK . This shows that the set of solutions for each individual data point

becomes smaller as ε increases.

In addition to Vε, we define Tε :=
{

W
∣∣∣0 ∈ argminγgε(γW,x)

}
. Tε is the set of all directions in

which the optimal point is the origin; that is, the corresponding models in this direction are all

no better than a constant classifier. Tε is the complement space of Vε in binary classification.

However, this is not true anymore when K ≥ 3. Although we cannot write the set Tε in roster

notation, we show in the theorem below that Tε becomes larger as ε increases.

Theorem 4.2 Given the definition of Tε, then Tε2 ⊆Tε1 when ε1 ≥ ε2. In addition, ∃ε such that

∀ε≥ ε,Tε =RM×K . In this case, 0 ∈ argminWgε(W,x).

Theorem 4.2 indicates that when the adversarial budget is large enough, the optimal point

is the original point 0. In this case, we will get a constant classifier, and training completely

fails. Although Theorem 4.2 is based on the linear models, we have the same observation in

the nonlinear cases. We prove Theorem 4.2 below, where we also provide a lower bound for ε.

49

Empirical Robustness

Proof: Based on the convexity of gε(W,x), for any W ∈Tε, the statement 0 ∈ argminγgε(γW,x)

is equivalent to the following statement:

∀γ̂> 0, gε(γ̂W,x) ≥ gε(0,x) and gε(−γ̂W,x) ≥ gε(0,x) . (4.7)

Note that gε(0,x) ≡ logK , which means that the loss objective is independent of both the input

instance x and the adversarial budgetS(p)
ε when W = 0. Given ε1 ≥ ε2, we have, ∀x,W, gε1 (W,x) ≥

gε2 (W,x). Therefore, for an arbitrary W ∈Tε2 , we have the following inequality:

∀γ̂> 0, gε1 (γ̂W,x) ≥ gε2 (γ̂W,x) ≥ gε2 (0,x) = gε1 (0,x) . (4.8)

The first inequality is based on ε1 ≥ ε2, the second one is based on (4.7) and the last one arises

from the fact that, ∀ε, gε(0,x) is a constant. Similarly, we also have gε1 (−γ̂W,x) ≥ gε1 (0,x).

Therefore, we have W ∈Tε1 , which means Tε2 ⊆Tε1 .

To prove the second half of Theorem 4.2, one barrier is that we do not have an analytical form

for gε(W,x). Instead, we introduce a lower bound gε(W,x) of gε(W,x), which has an analytical

form. We consider the perturbation∆= ε (wm−wy)
q
p

‖wm−wy‖
q
p
q

1, where m = argmax j‖w j −wy‖q . It can be

verified that ∆ ∈ S(p)
ε , so we let gε(W,x) = g (W,x+∆), which is a valid lower bound of gε(W,x).

Then, the analytical expression of gε(W,x) can be written as:

gε(W,x) = log

1+exp(wm−wy)x+ε‖wm−wy‖q + ∑
j 6=y, j 6=m

exp

(w j−wy)x+ε(w j−wy)
(wm−wy)

q
p

‖wm−wy ‖
q
p
q

 . (4.9)

Since m = argmax j‖w j −wy‖q , then (w j −wy)
(wm−wy)

q
p

‖wm−wy‖
q
p
q

≤ ‖wm −wy‖q . As a result, if ε is large

enough, the second term inside the logarithm of (4.9) will dominate the summation and

limε→∞ gε(W,x) =∞. More specifically, we can find ε= log(K−1)−(wm−wy)x
‖wm−wy‖q

, such that, ∀ε> ε, W,

then gε(W,x) ≥ logK = gε(0,x).

Now, ∀W ∈ RM×K , γ̂ > 0,ε ≥ ε, we have gε(γ̂W,x) ≥ g
ε
(γ̂W,x) ≥ gε(0,x). Similarly, we have

gε(−γ̂W,x) ≥ gε(0,x). As a result, we have, ∀W ∈ RM×K , gε(W,x) ≥ gε(0,x), which means 0 ∈
argminWgε(W,x). Based on (4.7), we have Tε =RM×K .

�

Lε(W) is the average of gε(W,x) over the dataset, so Theorem 4.2 and Proposition 4.1 still apply

if we replace gε with Lε in the definition of Vε and Tε. For nonlinear models like deep neural

1lq is the dual norm of lp , i.e., 1
p + 1

q = 1

50

4.2. Adversarial Loss Landscape

networks, these conclusions will not hold because gε(θ,x) is no longer convex. Nevertheless,

our experiments in Section 4.2.3 evidence the same phenomena as indicated by the theoretical

analysis above. That is to say, larger ε makes it harder for the optimizer to escape the initial

suboptimal region. In some cases, adversarial training fails completely, and we obtain a

constant classifier in the end.

4.2.2 Theoretical Analysis for General Models

For deep nonlinear neural networks, we cannot write the analytical form of gε(θ,x) or Lε(θ,x).

To analyze such models, we follow [138] and assume the smoothness of the function g0.

Assumption 4.1 The vanilla loss function g0 satisfies the following Lipschitzian smoothness

conditions:
‖g0(θ1,x)− g0(θ2,x)‖ ≤ Lθ‖θ1 −θ2‖ ,

‖Oθg0(θ1,x)−Oθg0(θ2,x)‖ ≤ Lθθ‖θ1 −θ2‖ ,

‖Oθg0(θ,x1)−Oθg0(θ,x2)‖ ≤ Lθx‖x1 −x2‖p .

(4.10)

Assumption 4.1 indicates the first-order smoothness and second-order smoothness of the

vanilla loss function g0. Now, we study the smoothness of the adversarial loss function Lε(θ).

Proposition 4.2 If Assumption 4.1 holds, then we have 2

‖Lε(θ1)−Lε(θ2)‖ ≤ Lθ‖θ1 −θ2‖ ,

‖OθLε(θ1)−OθLε(θ2)‖ ≤ Lθθ‖θ1 −θ2‖+2εLθx .
(4.11)

Proof: Consider Lε(θ) is the average of gε(θ,x) over the dataset. Therefore, to prove Proposi-

tion 4.2, we only need to prove the following inequality for any data point x:

‖gε(θ1,x)− gε(θ2,x)‖ ≤ Lθ‖θ1 −θ2‖ ,

‖Oθgε(θ1,x)−Oθgε(θ2,x)‖ ≤ Lθθ‖θ1 −θ2‖+2εLθx .
(4.12)

To prove the first inequality, we introduce the adversarial perturbations for parameter θ1 and

θ2:

∆1 = argmax
∆∈S(p)

ε
g0(x+∆,θ1) , ∆2 = argmax

∆∈S(p)
ε

g0(x+∆,θ2) . (4.13)

Therefore, gε(θ1,x) = g0(θ1,x+∆1) and gε(θ2,x) = g0(θ2,x+∆2).

2Strictly speaking, Lε(θ) is not differentiable at some point, soOθLε(θ) might be ill-defined. In this paper, we
useOθLε(θ) for simplicity. Nevertheless, the inequality holds for any subgradient v ∈ ∂θLε(θ).

51

Empirical Robustness

By definition, we have g0(θ1,x+∆1) ≥ g0(θ1,x+∆2) and g0(θ2,x+∆2) ≥ g0(θ2,x+∆1). As a

result, ‖gε(θ1,x)− gε(θ2),x‖ = ‖g0(θ1,x+∆1)− g0(θ2,x+∆2)‖.

If g0(θ1,x+∆1)− g0(θ2,x+∆2) ≤ 0, we have:

‖gε(θ1,x)− gε(θ2,x)‖ = g0(θ2,x+∆2)− g0(θ1,x+∆1)

≤ g0(θ2,x+∆2)− g0(θ1,x+∆2) ≤ Lθ‖θ1 −θ2‖ .
(4.14)

Similarly, if g (θ1,x+∆1)− g (θ2,x+∆2) ≥ 0, we have:

‖gε(θ1,x)− gε(θ2,x)‖ = g0(θ1,x+∆1)− g0(θ2,x+∆2)

≤ g0(θ1,x+∆1)− g0(θ2,x+∆1) ≤ Lθ‖θ1 −θ2‖ .
(4.15)

The first inequality in (4.12) is then proved. The bound is tight, and equality is achieved when,

for example, ∆1 =∆2.

The second inequality in (4.12) is more straightforward. We have:

‖Oθgε(θ1,x)−Oθgε(θ2,x)‖
= ‖Oθg0(θ1,x+∆1)−Oθg0(θ2,x+∆2)‖
= ‖Oθg0(θ1,x+∆1)−Oθg0(θ2,x+∆1)+Oθg0(θ2,x+∆1)−Oθg0(θ2,x+∆2)‖
≤ ‖Oθg0(θ1,x+∆1)−Oθg0(θ2,x+∆1)‖+‖Oθg0(θ2,x+∆1)−Oθg0(θ2,x+∆2)‖
≤ Lθθ‖θ1 −θ2‖+Lθx‖∆1 −∆2‖p

≤ Lθθ‖θ1 −θ2‖+2εLθx .
(4.16)

The last inequality in (4.16) is satisfied because both ∆1 and ∆2 belong to S
(p)
ε . This bound is

tight, and equality is reached only when ‖∆1 −∆2‖p = 2ε.

�

Proposition 4.2 shows that the first-order smoothness of the objective function is preserved for

the adversarial case, but the second-order smoothness is not. This unsatisfying property arises

from the maximization operator defined in the functions gε and Lε. For function gε(θ,x), the

non-smooth points are those where the optimal adversarial perturbation ∆ changes abruptly

in a sufficiently small neighborhood. Formally, we use θ1 and∆1 to represent the model param-

eters and the corresponding optimal adversarial perturbation. We assume different gradients

of the model parameters for different input instances. If there exists a positive number a > 0

such that, ∀δ> 0, we can find θ2 ∈ {θ|‖θ−θ1‖ ≤ δ}, and the corresponding optimal adversarial

perturbation ∆2 satisfies ‖∆1 −∆2‖p > a, then limθ→θ1Oθgε(θ,x) 6= Oθgε(θ1,x). Lε(θ) is the

52

4.2. Adversarial Loss Landscape

aggregation of gε(θ,x) over the dataset, so its non-smooth points in the parameter space are

the union of the non-smooth points for each data sample. In addition, as the 2εLθx term in

the second inequality of (4.11) indicates, the adversarial examples can change more under a

larger adversarial budget. As a result, the (sub)gradientsOθLε(θ) can change more abruptly in

the neighborhood of the parameter space. That is, the (sub)gradients are more scattered in

the adversarial loss landscape. We provide a sketch illustrating the phenomenon in Figure 4.2

below.

−2 −1 0 1 2
Value of Model Parameters

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
ss

Vanilla
Adversarial

−2 −1 0 1 2
Value of Model Parameters

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
ss

Vanilla
Adversarial

Figure 4.2 – 2D sketch diagram showing the vanilla and the adversarial loss landscape. The
clean input data x is 1.0 and loss function g0(θ, x) = log(1+exp(θx)). The landscape is shown
in the parameter interval θ ∈ [−2,2] under the small adversarial budget (left, ε= 0.6) and the
large adversarial budget (right, ε= 1.2). Function gε(θ, x) is not smooth at θ = 0.

The non-smoothness nature of the adversarial loss landscape makes the optimization by

stochastic gradient descent (SGD) more difficult. We study the convergence property in the

following theorem, which explains why adversarial training converges slower.

Theorem 4.3 Let Assumption 4.1 hold, the stochastic gradientOθL̂ε(θt) be unbiased and have

bounded variance, and the SGD update θt+1 = θt −αtOθL̂ε(θt) use a constant step size αt =
α= 1

Lθθ
p

T
for T iterations. Given the trajectory of the parameters during optimization {θt }T

t=1,

then we can bound the asymptotic probability of large gradients for a sufficient large value of T

as:

∀γ≥ 2,P (‖OθLε(θt)‖ > γεLθx) < 4

γ2 −2γ+4
. (4.17)

Proof: Let σ2 to denote the variance of stochastic gradientOθL̂ε(θ). Based on the assumption

thatOθL̂ε(θ) is unbiased, we have:

E[OθL̂ε(θ)] =OθLε(θ) ,

E‖OθL̂ε(θ)‖2 = ‖OθLε(θ)‖2 +σ2 .
(4.18)

Proposition 4.2 shows thatLε(θ) is continuous. Therefore, we introduce θ̃t (u) = θt+u(θt+1−θt)

and derive an upper bound of Lε(θt+1)−Lε(θt) by first order Taylor expansion and using the

53

Empirical Robustness

update rule θt+1 = θt −αtOθL̂ε(θt). This yields:

Lε(θt+1)−Lε(θt) =
∫ 1

0
〈θt+1 −θt ,OθLε(θ̃t (u))〉du

=
∫ 1

0
〈−αtOθL̂ε(θt),OθLε(θ̃t (u))〉du

=
∫ 1

0
〈−αtOθL̂ε(θt),OθLε(θ̃t (u))−OθLε(θt)〉du +〈−αtOθL̂ε(θt),OθLε(θt)〉

≤
∫ 1

0
αt‖OθL̂ε(θt)‖‖OθLε(θ̃t (u))−OθLε(θt)‖du −αt 〈OθL̂ε(θt),OθLε(θt)〉

≤
∫ 1

0
αt‖OθL̂ε(θt)‖(Lθθ‖θ̃t (u)−θt‖+2εLθx)du −αt 〈OθL̂ε(θt),OθLε(θt)〉

= 1

2
α2

t Lθθ‖OθL̂ε(θt)‖2 +2εLεxαt‖OθL̂ε(θt)‖−αt 〈OθL̂ε(θt),OθLε(θt)〉 .

(4.19)

Here, the first inequality comes from Hölder’s Inequality; the second one follows the conclu-

sion of Proposition 4.2.

By taking the expectation over the noise introduced by SGD, we have

E[Lε(θt+1)]−E[Lε(θt)] ≤ 1

2
α2

t Lθθ(‖OθLε(θt)‖2 +σ2)+2εLθxαt‖OθLε(θt)‖−αt‖OθLε(θt)‖2

=
(

1

2
α2

t Lθθ−αt

)
‖OθLε(θt)‖2 +2εLθxαt‖OθLε(θt)‖+ 1

2
α2

tσ
2Lθθ

≤−1

2
αt‖OθLε(θt)‖2 +2εLθxαt‖OθLε(θt)‖+ 1

2
α2

tσ
2Lθθ .

(4.20)

We use the approximation E‖OθL̂ε(θ)‖ ' ‖OθLε(θ)‖ because the variance arises mainly from

the term ‖OθL̂ε(θt)‖2. The last inequality is based on the fact that αt =α= 1
Lθθ

p
T

, so αt Lθθ =
1p
T
≤ 1. Let us now sum (4.20) over t ∈ {0,1, ...,T −1}, then we obtain:

T∑
t=0

[
1

2
αt‖OθLε(θt)‖2 −2εLθxαt‖OθLε(θt)‖

]
≤Lε(θ0)−E[Lε(θT)]+ T

2
α2

tσ
2Lθθ

≤Lε(θ0)−Lε(θ
∗)+ T

2
α2

tσ
2Lθθ .

(4.21)

We use θ∗ to denote the global minimum since Lε(θ) is lower bounded. By introducing

αt =α= 1
Lθθ

p
T

into the formulation, we obtain:

1

T

T∑
t=0

[
1

2
‖OθLε(θt)‖2 −2εLθx‖OθLε(θt)‖

]
≤ 1

αT

[
Lε(θ0)−Lε(θ

∗)
]+ 1

2
ασ2Lθθ

= 1p
T

[
Lθθ(Lε(θ0)−Lε(θ

∗))+ 1

2
σ2

]
.

(4.22)

54

4.2. Adversarial Loss Landscape

Since the right hand side of (4.22) converges to 0 as T →+∞, we have

lim
T→+∞

1

T

T∑
t=0

[
1

2
‖OθLε(θt)‖2 −2εLθx‖OθLε(θt)‖

]
≤ 0 . (4.23)

Let us define h(θt) = 1
2‖OθLε(θt)‖2−2εLθx‖OθLε(θt)‖ for notation simplicity. Then, inequality

(4.23) shows that Et [h(θt)] ≤ 0 when T is large enough.

Let ‖OθLε(θt)‖ = γεLθx, then we have h(θt) = (1
2γ

2 −2γ
)
ε2L2

θx. h(θt) is monotonically increas-

ing when θt ≥ 2εLθx, so when γ≥ 2, h(θt) ≥ (1
2γ

2 −2γ
)
ε2L2

θx. Considering h(θt) ≥−2ε2L2
θx, we

then have

Et [h(θt)] >−2ε2L2
θx(1−P (‖OθLε(θt)‖ > γεLθx))+

(
1

2
γ2 −2γ

)
ε2L2

θxP (‖OθLε(θt)‖ > γεLθx) .

(4.24)

Finally, by rearranging (4.24) and using Et [h(θt)] ≤ 0, we obtain

∀γ> 2, P (‖OθLε(θt)‖ > γεLθx) < 4

γ2 −2γ+4
. (4.25)

�

In vanilla training, ε= 0 and L0(θ) is smooth. In this regard, (4.17) in Theorem 4.3 implies that

limt→+∞ ‖Oθg0(θt)‖ = 0 almost surely. This is consistent with the fact that SGD converges to a

critical point with non-convex smooth functions. By contrast, in adversarial training, i.e., ε> 0,

we cannot guarantee convergence to a critical point any more. Instead, the gradients are non-

vanishing, and we can only bound the probability of obtaining gradients whose magnitude

is larger than 2εLθx. For a fixed value of C := γεLθx larger than 2εLθx, the inequality (4.17)

indicates that the probability P (‖OθLε(θt)‖ >C) increases quadratically with ε.

In deep learning practice, activation functions like sigmoid, tanh and ELU [26] satisfy the

second-order smoothness in Assumption 4.1, but the most popular ReLU function does not.

Nevertheless, adversarial training still causes gradient scattering and makes the optimization

more difficult. That is, the bound of ‖OθLε(θ1)−OθLε(θ2)‖ still increases with ε, and the

parameter gradients change abruptly in the adversarial loss landscape. The following corollary

indicates that even for non-smooth ReLU networks, adversarial training still converges slower

with the increase of ε.

Corollary 4.1 We assume that the function g0 satisfies the following conditions:

‖g0(θ1,x)− g0(θ2,x)‖ ≤ Lθ‖θ1 −θ2‖ ,

‖Oθg0(θ1,x)−Oθg0(θ2,x)‖ ≤ Lθθ‖θ1 −θ2‖+Dθθ ,

‖Oθg (θ,x1)−Oθg (θ,x2)‖ ≤ Lθx‖x1 −x2‖p +Dθx .

(4.26)

In addition, the stochastic gradientOθL̂ε(θt) is unbiased and have bounded variance. The SGD

55

Empirical Robustness

update θt+1 = θt −αtOθL̂ε(θt) use a constant step size αt =α= 1
Lθθ

p
T

for T iterations. Given

the trajectory of the parameters during optimization {θt }T
t=1, then we can bound the asymptotic

probability of large gradients for a sufficient large value of T as

∀γ≥ 2,P

(
‖OθLε(θt)‖ > γ

(
εLθx +

1

2
Dθθ+

1

2
Dθx

))
< 4

γ2 −2γ+4
. (4.27)

Corollary 4.1 can be proved in the same way as Theorem 4.3.

The second-order Lipchitz constant indicates the magnitude of the gradient change for a unit

change in parameters. Therefore, it is a good quantitative metric of gradient scattering. In

practice, we are more interested in the effective local Lipschitz constant, which only considers

the neighborhood of the current parameters, than in the global Lipschitz constant. In this case,

the effective local second-order Lipschitz constant can be estimated by the top eigenvalues of

the Hessian matrixO2
θ
Lε(θ).

4.2.3 Numerical Experiments

In this section, we conduct experiments on MNIST [89] and CIFAR10 [104] to empirically

validate the theorems in Section 4.2.1 and Section 4.2.2. Unless specified, we use LeNet [88] on

MNIST, VGG [135] and ResNet18 [63] on CIFAR10. We provide the details in Table 4.1 and use

a factor w to control the width of the network. Unless specified, the LeNet models on MNIST

have a width factor of 16, the VGG and ResNet18 models on CIFAR10 have a width factor of 8.

Name Architecture
MNIST, LeNet Conv(2w), Conv(4w), FC(196w , 64w), FC(64w , 10)

CIFAR, VGG
Conv(4w) × 2, M, Conv(8w) × 2, M, Conv(16w) × 3, M
Conv(32w) × 3, M, Conv(32w) × 3, M, A, FC(32w , 10)

CIFAR, ResNet18 ResNet18 in [63] is denoted of width 16

Table 4.1 – Network architectures. Conv, FC, M and A represent convolutional layers, fully-
connected layers, max-pooling layers and average pooling layers, respectively. The parameter
of the convolutional layers indicates the number of output channels. The parameters of the
fully-connected layers indicates the number of input and output neurons. The kernel sizes of
the max-pooling layers and average pooling layers are always 2. w is the width factor.

We concentrate on l∞ adversarial budget and use PGD attacks in adversarial training. For

MNIST, we set the step size of PGD to 0.01 and the number of iterations to ε/0.01+10. For

CIFAR10, we set the number of PGD iterations to 10 and the step size to ε/4.

Gradient Analysis

In Section 4.2.1, we have shown that the training algorithm will get stuck at the origin and yield

a constant classifier for linear models under large ε. For deep nonlinear models, the initial

56

4.2. Adversarial Loss Landscape

value of the parameters is close to the origin under most popular initialization schemes [52, 62].

Although Theorem 4.2 is not applicable here, we are still interested in investigating how

effective gradient-based optimization is at escaping from the suboptimal initial parameters.

To this end, we track the norm of the stochastic gradient ‖OθL̂ε(θ)‖, the robust error Eε(θ) in

the training set and the distance from the initial point ‖θ−θ0‖ during the first 500 mini-batch

updates for LeNet models on MNIST and the first 2000 mini-batch updates for ResNet18

models on CIFAR10. Figure 4.3 evidences a clear difference between the models trained

with different values of ε. When ε is small, the gradient magnitude is larger, and the model

parameters move faster. Correspondingly, the training error decreases faster, which means

that the model quickly escapes the initial suboptimal region. By contrast, when ε is large,

the gradients are small, and the model gets stuck in the initial region. This implies that the

loss landscape under a large adversarial budget impedes the escape from initial suboptimal

plateaus in the early stage of training.

0 100 200 300 400 500
Batch Index

10−1

100

No
rm

ε =0
ε =0.1
ε =0.2
ε =0.3
ε =0.4

(a) ‖OθL̂ε(θ)‖, MNIST.

0 100 200 300 400 500
Batch Index

0

20

40

60

80

100

Er
ro

r(%
)

ε =0
ε =0.1
ε =0.2
ε =0.3
ε =0.4

(b) Eε(θ), MNIST.

0 100 200 300 400 500
Batch Index

0

2

4

6

8

Di
st

an
ce

ε =0
ε =0.1
ε =0.2
ε =0.3
ε =0.4

(c) ‖θ−θ0‖, MNIST.

0 500 1000 1500 2000
Batch Index

100

101

No
rm

ε =0
ε =2/255
ε =4/255
ε =8/255

(d) ‖OθL̂ε(θ)‖, CIFAR10.

0 500 1000 1500 2000
Batch Index

40

60

80

Er
ro

r(%
)

ε =0
ε =2 / 255
ε =4 / 255
ε =8 / 255

(e) Eε(θ), CIFAR10.

0 500 1000 1500 2000
Batch Index

0

10

20

30

40

Di
st

an
ce

ε =0
ε =2/255
ε =4/255
ε =8/255

(f) ‖θ−θ0‖, CIFAR10.

Figure 4.3 – Norm of the stochastic gradient ‖OθL̂ε(θ)‖, robust training error Eε(θ), and
distance from the initial point ‖θ− θ0‖ in the early phase of training. We report first 500
updates for MNIST models and first 2000 updates for CIFAR10 models.

For ReLU networks, adversarially-trained models have been found to have sparser weights

and intermediate activations [29], i.e., they have more dead neurons. Dead neurons are

implicitly favored by adversarial training, because the output of dead neurons is always zero

and independent of the input perturbation. Note that training fails when all the neurons in

one layer are dead for all training instances. The model is then effectively broken into two

parts by this dead layer: the preceding layers will no longer be trained because the gradients

are all blocked; the following layers do not depend on the input and thus give constant outputs.

In essence, training is then stuck in a parameter space that only includes constant classifiers.

57

Empirical Robustness

In practice, this usually happens when the model has small width and the value of ε is large.

Theorem 4.3 indicates that the gradients are non-vanishing in adversarial training and more

likely to have large magnitude under large values of ε. This is validated by Figure 4.4, in

which we report the norm of the stochastic gradient ‖OθL̂ε(θ)‖ in the last 500 mini-batch

updates for MNIST models and the last 2000 mini-batch updates for CIFAR10 models. In

vanilla training, i.e., ε= 0, the gradient is almost zero in the end, indicating that the optimizer

finds a critical point. In this case ‖OθL̂ε(θ)‖ is dominated by the variance introduced by

stochasticity. However, ‖OθL̂ε(θ)‖ increases with ε. When ε is larger, ‖OθL̂ε(θ)‖ is also larger

and non-vanishing, indicating that the model is still bouncing around the parameter space at

the end of training.

0 100 200 300 400 500
Batch Index

10−7

10−5

10−3

10−1

101

No
rm

ε =0
ε =0.1
ε =0.2
ε =0.3
ε =0.4

(a) ‖OθL̂ε(θ)‖, MNIST

0 500 1000 1500 2000
Batch Index

10−3

10−2

10−1

100
No

rm

ε =0
ε =2/255
ε =4/255
ε =8/255

(b) ‖OθL̂ε(θ)‖, CIFAR10

Figure 4.4 – Norm of the stochastic gradient ‖OθL̂ε(θ)‖ in the final phase of training. We report
last 500 updates for MNIST models and last 2000 updates for CIFAR10 models.

Hessian Analysis

To study the effective local Lipschitz constant of Lε(θ), we analyze the Hessian spectrum of

models trained under different values of ε. It is known that the curvature in the neighborhood

of model parameters is dominated by the top eigenvalues of the Hessian matrix O2Lε(θ).

To this end, we use the power iteration method as in [171] to iteratively estimate the top

20 eigenvalues and the corresponding eigenvectors of the Hessian matrix. Furthermore, to

discard the effect of the scale of function Lε(θ) for different ε, we estimate the scale of Lε(θ)

by randomly sampling θ. We then normalize the top Hessian eigenvalues by the average value

of Lε(θ) on these random samples.

In Figure 4.5, we show the top 20 Hessian eigenvalues, both before and after normalization,

of LeNet models on MNIST and ResNet18 models on CIFAR10 under different adversarial

budgets. In Figure 4.6, we also provide 3D visualization of the neighborhood in directions of

the top 2 eigenvectors. It is clear that the local effective second-order Lipschitz constant of the

model obtained consistently increases with the value of ε.

Ideally, the sharpness of the minima is depicted by the condition number of its Hessian

matrix. However, in the context of deep neural networks, the eigenvalue with the smallest

58

4.2. Adversarial Loss Landscape

0 5 10 15 20
Index

10−4

10−2

100

102
V

al
ue

Eigenvalues

ε = 0

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

0 5 10 15 20
Index

10−1

100

101

V
al

ue

Eigenvalues

ε = 0

ε = 2/255

ε = 4/255

ε = 8/255

Figure 4.5 – Top 20 eigenvalues of the Hessian matrix for LeNet models on MNIST (left) and
ResNet18 models on CIFAR10 (right) under different values of ε. We show the normalized
(solid) and original (dashed) values.

absolute value of the Hessian matrix is almost zero, which imposes difficulties in calculating

the condition number both algorithmically and numerically [50]. Instead, the spectral norm

and the nuclear norm of the Hessian matrix are used as a quantitative metric for the sharpness

of the minima [37]. To this end, Figure 4.5 demonstrates that the minima obtained is shaper

when ε is larger.

a1

−0.2−0.1 0.0 0.1

a 2

−0.2
−0.1

0.0
0.1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.05
0.10
0.15
0.20
0.25
0.30

(a) MNIST, ε= 0.0

a1

−0.2−0.1 0.0 0.1

a 2

−0.2
−0.1

0.0
0.1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.1
0.2
0.3
0.4
0.5

(b) MNIST, ε= 0.1

a1

−0.2−0.1 0.0 0.1

a 2

−0.2
−0.1

0.0
0.1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0.5
1.0
1.5
2.0
2.5
3.0
3.5

(c) MNIST, ε= 0.3

a1

−0.2−0.1 0.0 0.1

a 2

−0.2
−0.1

0.0
0.1

Loss

0
5
10
15
20
25
30
35

5
10
15
20
25
30

(d) MNIST, ε= 0.4

a1

−2 −1 0 1

a 2

−2
−1

0
1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.05
0.10
0.15
0.20
0.25

(e) CIFAR10, ε= 0

a1

−2 −1 0 1

a 2

−2
−1

0
1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.2

0.4

0.6

0.8

1.0

(f) CIFAR10, ε= 2/255

a1

−2 −1 0 1

a 2

−2
−1

0
1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.2
0.4
0.6
0.8
1.0
1.2

(g) CIFAR10, ε= 4/255

a1

−2 −1 0 1

a 2

−2
−1

0
1

Loss

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75

(h) CIFAR10, ε= 8/255

Figure 4.6 – Loss landscape Lε(θ+a1v1 +a2v2) under different adversarial budgets. θ, v1, v2

are the parameter, and the first and second unit eigenvectors of the Hessian matrix. (Note that
the z-scale for ε= 0.4 in the MNIST case differs from the others.)

To validate the claim in Section 4.2.2 that non-smoothness arises from abrupt changes of

the adversarial examples, we study the similarity of adversarial perturbations ∆ generated by

different model parameter values in a small neighborhood. Specifically, we perturb the model

parameters θ in opposite directions to θ+av and θ−av, where v is a unit vector and a is a scalar.

Let ∆av and ∆−av represent the adversarial perturbations generated by the corresponding

model parameters. We then calculate the average cosine similarity between them over the

training set.

59

Empirical Robustness

a = 0.00 a = 0.01 a = 0.03 a = 0.05 a = 0.10

0.2

0.4

0.6

0.8

V
al

ue

Cosine Similarity

ε = 0.1

ε = 0.2

ε = 0.3

ε = 0.4

a = 0.0 a = 0.1 a = 0.3 a = 0.5 a = 1.0
0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue

Cosine Similarity

ε = 2/255

ε = 4/255

ε = 8/255

Figure 4.7 – Cosine similarity between perturbations∆av and∆−av for LeNet models on MNIST
(left) and ResNet18 models on CIFAR10 (right). v can be either top eigenvectors (dashed) or
randomly picked ones (solid). We do not plot the curves when the cosine similarity is negative.

The results of LeNet models on MNIST and ResNet18 models on CIFAR10 are provided in

Figure 4.7. To account for the random start in PGD, we run each experiment 4 times and

report the average value. The variances of all experiments are smaller than 0.005 and thus not

shown in the figure. Note that, when v is a random unit vector, the robust error Eε(θ) of the

parameters θ±av on both the training and test sets remains unchanged for different values

of a, indicating a flat landscape in the direction v. The adversarial examples in this case are

mostly similar and have very high cosine similarity. By contrast, if v is the top eigenvectors of

the Hessian matrix, i.e., the most curvy direction, then we see a sharp increase in the robust

error Eε(θ) when we increase a. Correspondingly, the cosine similarity between the adversarial

perturbations is much lower, which indicates dramatic changes of the adversarial examples.

Minima Connectivity

In addition to sharpness of the local minima, we study their connectivity in this section. As

pointed in [40, 47], the minima found in vanilla training have been found well connected.

That is, if we train two neural networks under the same settings but different initializations,

there exists a path connecting the resulting two models in the parameter space such that all

points along this path have low loss values.

Similarly to [47], we parameterize the path joining two minima using a general Bezier curve.

Let θ0 and θn be the parameters of two separately-trained models, and
{
θ̂i

}n−1
i=1 the parameters

of (n −1) trainable intermediate models. Then, an n-order Bezier curve is defined as a linear

combination of these (n +1) points in parameter space, i.e.,

B(t) = (1− t)nθ0 + t nθn +
n−1∑
i=1

(
n

t

)
(1− t)n−i t i θ̂i . (4.28)

60

4.2. Adversarial Loss Landscape

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

ε = 0
ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4

(a) MNIST, LeNet, training loss.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.05

0.10

0.15

Er
ro

r

ε = 0
ε = 0.1
ε = 0.2
ε = 0.3
ε = 0.4

(b) MNIST, LeNet, test error.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

ε = 0
ε = 2/255
ε = 4/255
ε = 8/255

(c) CIFAR10, ResNet18, training loss.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r

ε = 0
ε = 2/255
ε = 4/255
ε = 8/255

(d) CIFAR10, ResNet18, test error.

Figure 4.8 – Training loss and test error along the path connecting the minima of two
independently-trained models.

B(t) is a smooth curve, and B(0) = θ0 and B(1) = θn . We train the parameters
{
θ̂i

}n−1
i=1 by

minimizing the average loss along the path: Et∼U [0,1]Lε(B(t)), where U [0,1] is the uniform

distribution between 0 and 1. We use the Monte Carlo method to estimate the gradient of

this expectation-based function and minimize it using gradient-based optimization. We use

second-order Bezier curves to connect MNIST model pairs and fourth-order Bezier curves

to connect CIFAR10 model pairs. When evaluating the models on the learned curves, we

re-estimate the running mean and variance in the batch normalization layer based on the

training set. The results are reported based on the evaluation mode of the models, and we

turn off data augmentation to avoid stochasticity.

In Figure 4.8, following [47], we plot the training loss and test error along the learned curve, as

a function of t in Equation (4.28). Same as previous experiments, we use LeNet models for

MNIST and ResNet18 models for CIFAR10. For vanilla training or when the adversarial budget

is small, we can easily find flat curves connecting different minima. This is consistent with the

findings in [40, 47]. However, the learned curves are not flat anymore when the strength of the

adversarial budget increases. This indicates that the minima are less well-connected under

adversarial training, and that it is more difficult for the optimizer to find a minimum.

61

Empirical Robustness

4.2.4 Periodic Adversarial Scheduling

In previous sections, we have theoretically and empirically shown that the adversarial loss

landscape becomes less favorable to optimization under large adversarial budgets. Specifically,

gradients are more scattered, local minima are sharper and less connected. In this section, we

introduce methods to utilize these properties and overcome the challenges.

Inspired by the learning rate warmup heuristic used in deep learning [54, 70], we introduce

warmup for the adversarial budget. Let d be the current epoch index and D be the warmup

period’s length. We define a cosine scheduler εcos and a linear scheduler εlin, parameterized

by εmax and εmin, as:

εcos(d) = 1

2

(
1−cos

d

D
π

)
(εmax −εmin)+εmin, εlin(d) = (εmax −εmin)

d

D
+εmin . (4.29)

We clip εcos(d) and εlin(d) between 0 and εtarget, the target value of ε. If εmin ≤ 0 and εmax >
εtarget, the value of ε starts from 0, gradually increases to εtarget and remains constant then.

This warmup strategy allows us to overcome the fact, highlighted in the previous sections,

that adversarial training is more sensitive to the learning rate under a large budget because

the gradients are more scattered. This is evidenced by Figure 4.9, which compares the robust

test error of MNIST models relying on different adversarial budget scheduling schemes. For

all models, we used ε = 0.4, and report results after 100 epochs with different but constant

learning rates in Adam [81]. Our linear and cosine schedulers perform better than using a

constant value of ε during training and yield good performance for a broader range of learning

rates: in the small learning rate regime, they speed up training; in the large learning rate regime,

they stabilize training and avoid divergence. Note that, as shown in Figure 4.10, warmup of

the learning rate does not yield similar benefits.

1 × 10−5 3 × 10−5 1 × 10−4 3 × 10−4 1 × 10−3

Learning Rate

20

40

60

80

Er
ro

r (
%

) Const
Linear
Cosine

Figure 4.9 – Mean and standard devi-
ation of the test error under different
learning rates with Adam and adversar-
ial budget scheduling.

1 × 10−4 3 × 10−4 1 × 10−3

Final Learning Rate

0

20

40

60

80

100

Er
ro

r (
%

)

LR Warmup

Figure 4.10 – Mean and standard derivation of the
test error on MNIST models when we use learning
rate warmup but constant ε. The best performance
by constant learning rate but adversarial budget
warmup is highlighted by a blue bar.

62

4.2. Adversarial Loss Landscape

(a) Optimization in 1st period. (b) 3 periods during training. (c) Ensemble of 3 checkpoints

Figure 4.11 – Different phases of periodic adversarial scheduling (PAS). Red arrows means
parameter updates within a period; purple arrows means adversarial budget and learning rate
resets. The example has 3 phases, and the outcome is the ensemble of 3 checkpoints in the
end of each period.

As shown in [70], periodic learning rates enable model ensembling to improve the perfor-

mance. Especially, in the context of adversarial training, different local minima are not well

connectivity, ensembling these minima of potential greater diversity can further boost the

performance. Here, we can follow the same strategy but also for the adversarial budget. To

this end, we divide the training phase into several periods and store one model at the end of

each period. We make final predictions based on the ensemble of these models. This periodic

scheme has no computational overhead. We call it periodic adversarial scheduling (PAS).

As before, we run experiments on MNIST and CIFAR10. For MNIST, we use LeNet with width

w = 16. We train each model for 100 epochs and do not use a periodic scheduling for the

learning rate, which we found not to improve the results. For CIFAR10, we use VGG and

ResNet18 with width w = 8. We train each model for 200 epochs. When there are no learning

rate resets, our results indicate the final model after 200 epochs. When using a periodic

learning rate, we divide the 200 epochs into 3 periods, i.e., we reset the learning rate and the

adversarial budget after 100 and 150 epochs, and compute the results using an ensemble of 3

models.

The value of learning rate and the adversarial budget size are calculated based on the ratio

of the current epoch index to the current period length. We fine-tune the weight-decay

factor, choosing 1× 10−3 as the optimal value. In periodic settings, the learning rate and

the adversarial budget is reset after 100 and 150 epochs. The scheduling in each period is

scaled proportionally. We plot the learning rate scheduling curves for VGG and ResNet18 in

Figure 4.12 for both the vanilla and periodic settings.

Regarding scheduling of ε, we do not fully explore the value range of the hyper-parameters

in the cosine and linear schedulers. We use εmin = 0. for all experiments. For the MNIST

experiments, we set εmax = 0.6 for the cosine scheduler and εmax = 0.8 for the linear scheduler.

For the CIFAR10 experiments, we set εmax = 16/255 for both the cosine and linear schedulers.

63

Empirical Robustness

0 50 100 150 200
Epoch

1.0

0.1

Va
lu

e

×10−3

Learning Rate

(a) CIFAR10, VGG, Vanilla

0 50 100 150 200
Epoch

0.100

0.010
0.001

Va
lu

e

Learning Rate

(b) CIFAR10, ResNet18, Vanilla

0 50 100 150 200
Epoch

1.0

0.1

Va
lu

e

×10−3

Learning Rate

(c) CIFAR10, VGG, Periodic

0 50 100 150 200
Epoch

0.100

0.010
0.001

Va
lu

e

Learning Rate

(d) CIFAR10, ResNet18, Periodic

Figure 4.12 – Learning rate scheduling for VGG and ResNet18 for CIFAR10 classification.

We plot the curves for εcos(d) and εlin(d) in Figure 4.13.

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

Va
lu

e

Value of ε

(a) MNIST, Cosine

0 50 100 150 200
Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e

Value of ε

(b) CIFAR10, Cosine

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

Va
lu

e

Value of ε

(c) MNIST, Linear

0 50 100 150 200
Epoch

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Va
lu

e

Value of ε

(d) CIFAR10, Linear

Figure 4.13 – Adversarial budget scheduling for MNIST and CIFAR10 models.

Task
Periodic
Learning

Rate

ε

Scheduler
Clean Error

(%)

Robust Error (%)
PGD
(%)

APGD100
CE (%)

APGD100
DLR (%)

Square5K
(%)

MNIST
LeNet
ε= 0.4

No
Constant 1.56(17) 8.58(89) 15.18(155) 14.70(136) 19.58(45)
Cosine 1.08(2) 6.64(70) 14.36(134) 13.46(129) 16.78(25)
Linear 1.06(6) 6.69(59) 13.91(150) 13.17(120) 17.05(47)

CIFAR10
VGG

ε= 8/255

No
Constant 28.25(47) 56.22(43) 58.18(46) 58.65(69) 54.37(29)
Cosine 25.06(19) 56.06(48) 57.83(45) 58.88(16) 53.95(15)
Linear 23.56(95) 56.09(14) 57.74(16) 58.39(18) 53.66(24)

Yes
Constant 28.33(81) 54.24(28) 55.45(26) 56.56(4) 52.85(18)
Cosine 23.91(21) 53.18(21) 54.44(16) 55.80(24) 51.41(37)
Linear 21.88(33) 53.03(14) 54.32(17) 55.63(17) 51.28(4)

CIFAR10
ResNet18
ε= 8/255

No
Constant 18.62(6) 55.00(8) 57.26(13) 56.60(25) 50.59(19)
Cosine 18.43(26) 53.95(23) 56.16(18) 55.77(24) 49.60(18)
Linear 18.55(14) 53.46(20) 55.69(17) 55.45(22) 49.66(28)

Yes
Constant 21.00(5) 48.98(25) 50.29(27) 50.98(6) 46.84(9)
Cosine 19.90(18) 48.57(25) 49.71(22) 50.54(9) 46.19(11)
Linear 20.26(28) 48.60(13) 49.73(9) 50.68(11) 46.47(26)

Table 4.2 – Comparison between different adversarial budget schedulers under different adver-
sarial attacks. Cosine / Linear schedulers are consistently better than constant schedulers. The
number between brackets indicate the standard deviation across different runs. Specifically,
for example, 1.56(17) stands for 1.56±0.17.

We compare different scheduler in adversarial budget under different tasks and settings. We

evaluate the robustness of our trained models by different kinds of attacks. First we evaluate

the models under the PGD attack used in training (PGD), i.e., 50-iteration PGD for MNIST

64

4.2. Adversarial Loss Landscape

models and 10-iteration PGD for CIFAR10 models. Then, we increase the number of iterations

in PGD and compute the robust error under 100-iteration PGD. To solve the issue of suboptimal

step size, we also evaluate our models using the state-of-the-art AutoPGD attack [33], which

searches for the optimal step sizes. We run AutoPGD for 100 iterations for evaluation, based

on either cross-entropy loss (APGD100 CE) or the difference of logit ratio loss (APGD100 DLR).

To avoid gradient masking, we also run the state-of-the-art black-box SquareAttack [5] for

5000 iterations (Square5K). The hyperparameters of these attacks are the same as in [33].

The results are summarized in Table 4.2, where we compare the clean and robust accuracy

under different adversarial attacks on the test set. It is clear that our proposed cosine or linear

schedulers yield better performance, in both clean accuracy and robust accuracy, than using a

constant adversarial budget in all cases. For MNIST, warmup not only makes training robust

to different choices of learning rate, but also improves the final robust accuracy. For CIFAR10,

model ensembling enabled by the periodic scheduler improves the robust accuracy.

4.2.5 Discussion

So far, we focuses on the impact of the strength ε of the adversarial budget on the optimization

in adversarial training. In this section, we briefly discuss other factors that also affect the

adversarial loss landscape.

Model Capacity

w= 16 w= 8 w= 4 w= 2
Model Size

20

40

60

80

Er
ro

r (
%

)

Const
Linear
Cosine

Figure 4.14 – The mean and standard
derivation of the test error under LeNet
models on MNIST of different width w by
different ε scheduler.

The capacity of the model can greatly affects the

adversarial loss landscape and thus the perfor-

mance of adversarial training. Adversarial train-

ing needs higher model capacity in two aspects: if

we decrease the model capacity, adversarial train-

ing will fail to converge while vanilla training still

works [98]; if we increase the model capacity, the

robust accuracy of adversarial training continues

to rise while the clean accuracy of normal training

saturates [166].

In Figure 4.14, we report the performance of

LeNet models of different width factors w by dif-

ferent ε schedulers. We use ε= 0.4 at test time. We

set the learning rate in Adam to be 10−4, because,

for constant ε during training, it yields the best

performance. Both Cosine and Linear schedulers outperform using a constant ε in all cases.

When the model size is small, e.g., w = 4 and w = 2, using a constant ε during training fails to

converge, but the Cosine and Linear schedulers still yield competitive results.

65

Empirical Robustness

As a result, warmup in adversarial budget is also necessary for small models. In many cases,

the parameter space of small models has good minima in terms of robustness, but adversarial

training with a constant value of ε fails to find them. For example, one can obtain small but

robust models by pruning large ones [58, 172].

Architecture

The network architecture encodes the parameterization of the model, so it greatly affects the

adversarial loss landscape. In Table 4.2, ResNet18 has fewer trainable parameters but better

performance than VGG on CIFAR10, indicating that ResNet18 has a better parameterization in

terms of robustness. Since the optimal architecture for adversarial robustness is not neces-

sarily the same as the one for clean accuracy, we believe that finding architectures inherently

favorable to adversarial training is an interesting but challenging topic for future research.

Adversarial Example Generation

We approximate the adversarial loss using adversarial examples generated by PGD, which is

a good estimate of the inner maximization in (1.2). PGD-based adversarial training updates

model parameters by near-optimal adversarial examples. However, recent works [130, 158]

have shown that robust models can also be trained by suboptimal adversarial examples, which

are faster to obtain. The formulation of these methods differs from (1.2), because the inner

maximization problem is not approximately solved. Understanding why models (partially)

trained on suboptimal adversarial examples are resistant to stronger adversarial examples

needs more investigation.

4.3 Adversarial Overfitting

Last section focuses on the slower convergence of adversarial training, this section studies

another phenomenon: adversarial overfitting. Figure 4.1 in Section 4.1 clearly demonstrates

that adversarial training has much larger generalization gap, particularly in the late phase of

training, when the model’s performance on the test set decays significantly. So far, researchers

found adversarial overfitting can be mitigated by early stopping [118] or model smoothing [21],

the reason behind the overfitting of adversarial training remains poorly understood.

We study the adversarial overfitting phenomenon from the aspect of training instances, i.e.,

training input-target pairs. We introduce a quantitative metric to measure the relatively diffi-

culty of an instance within a set. Then, we analyze the model’s behavior on training instances

of different difficulties. This lets us discover that the model’s generalization performance

decays significantly when it fits the hard adversarial instances in the later training phase.

To more rigorously study this phenomenon, we conduct theoretical analyses on both linear

and nonlinear models. For linear models, we study logistic regression on a Gaussian mixture

66

4.3. Adversarial Overfitting

model, in which we can calculate the analytical expression of the model parameters upon

convergence and thus the robust test accuracy. Our theorem demonstrates that adversarial

training on harder instances leads to larger generalization gaps. Furthermore, the difference

in robust accuracy between the models trained by the hard instances and the ones trained by

the easy instances increases with the size of the adversarial budget. In the case of nonlinear

models, we derive the lower bound of the model’s Lipschitz constant when the model is well

fit to the training instances under adversarial attacks. This bound increases with the difficulty

level of the training instances and the size of the adversarial budget. Since a larger Lipschitz

constant indicates a higher adversarial vulnerability [120, 154, 155], our theoretical analysis

confirms our empirical observations.

Our empirical and theoretical analyses indicate that avoiding to fit the hard training instances

can mitigate adversarial overfitting. We therefore study this in three different scenarios: stan-

dard adversarial training, fast adversarial training and adversarial fine-tuning with additional

training data. We show that existing approaches to mitigating adversarial overfitting [8, 21, 71]

implicitly avoid fitting the hard adversarial input-target pairs, by either adaptive inputs or

adaptive targets. By contrast, the methods that focus on fitting hard adversarial [181] instances

are not truly robust under adaptive attacks [67].

4.3.1 Measuring Instancewise Difficulty

Parametric models, such as f parameterized by θ, are trained to minimize a loss objective

based on several input-target pairs called training set, and are then evaluated on a held-out

set called test set. By comparing the loss value of each instance, we can understand which

ones, in either the training or the test set, are more difficult for the model to fit. Therefore, we

introduce a metric for instance difficulty based on its loss. Let ĝε(θ,x) denote the average loss

of the instance (x, y) under the adversarial budget S(p)
ε across all training epochs. Same as in

Equation 4.1, the label y and superscript (p) are discarded for notation simplicity.

Now, we define the difficulty of the instance (x, y) within a finite set D as:

dε(x) =P(ĝε(x) < ĝε(x̂)|x̂ ∼U (D))+ 1

2
P(ĝε(x) = ĝε(x̂)|x̂ ∼U (D)) , (4.30)

Here, x̂ ∼U (D) indicates that x̂ is uniformly sampled from the finite set D. By definition, dε(x)

is a bounded function, close to 0 for the hardest instances and to 1 for the easiest ones.

To study the factors affecting the difficulty function defined in (4.30), let us denote by d (1)
ε ,

d (2)
ε the difficulty functions obtained under two different training settings, such as different

network architectures or adversarial attack strategies. We then define the difficulty distance

(D-distance) between two such functions in the following equation. In this regard, the expected

D-distance between two random difficulty functions is 0.375.

D
(
d (1)
ε ,d (2)

ε

)= Ex∼U (D)
∣∣d (1)
ε (x)−d (2)

ε (x)
∣∣ . (4.31)

67

Empirical Robustness

We then study the properties of the difficulty metric of Equation (4.30) by performing ex-

periments on the CIFAR10 [83] and CIFAR10-C [64] dataset, varying factors of interest. In

particular, we first study the influence of the network by using either a ResNet18 model [158],

trained for either 100 or 200 epochs (RN18-100 or RN18-200), or a WideResNet34 model [98]

trained for 200 epochs (WRN34). To generate adversarial attacks, we make use of PGD with an

adversarial budget based on the l∞ norm with ε= 8/255. PGD uses a step size of 2/255 and

runs for 10 iterations. We use stochastic gradient descent (SGD) with a mini-batch size of 128

and a momentum to optimize the model parameters, we also use weight decay whose factor is

0.0005. The momentum factor is 0.9, the learning rate starts with 0.1 and is divided by 10 in

the 1/2 and 3/4 of the whole training duration. This corresponds to the settings used in other

works [64, 98].

In the left part of Table 4.3, we report the D-distance for all pairs of settings. Each result is

averaged over 4 runs, and the variances are all below 0.012. The D-distances in all scenarios

are all very small and close to 0, indicating the architecture and the training duration have

little influence on instance difficulty based on our definition.

d (1)
ε \d (2)

ε RN18-100 RN18-200 WRN34
RN18-100 0.0189 0.0232 0.0355
RN18-200 0.0232 0.0159 0.0299
WRN34 0.0355 0.0299 0.0178

d (1)
ε \d (2)

ε Clean FGSM PGD
Clean 0.0189 0.0607 0.1713
FGSM 0.0607 0.0843 0.1677
PGD 0.1713 0.1677 0.0857

Table 4.3 – D-distances between the difficulty functions in different settings, including different
model architectures and training duration (left), and different types of perturbations (right).

We then perform experiments by varying the attack strategies using a ResNet18 network. As

shown by the D-distances reported in the right portion of Table 4.3, the discrepancy between

values obtained with clean, FGSM-perturbed and PGD-perturbed inputs is much larger, thus

indicating that the function dε correctly reflects the influence of an attack on an instance.

In addition, Table 4.4 demonstrates the D-distance between the difficulty functions based on

clean instances, FGSM-perturbed instance, PGD-perturbed instances and different common

corruptions from CIFAR10-C [64]. Note that [64] only provides corrupted instances on the

test set, so we train models on the clean training set and test model on corrupted test set in

these cases. We use ResNet18 architecture and train it for 100 epochs in all cases, results are

reported on the test set. Compared with the results in the left half of Table 4.3, the D-distance

is much larger here. This indicates the difficulty function depends on the perturbation type

applied to the input, including the common corruptions.

To summarize, the results in Table 4.3 and 4.4 indicate that our difficulty metric mainly

depends on the data itself and on the perturbation type, i.e., attack methods; not the model

architecture or the training duration.

In the definition of our difficulty metric in Equation (4.30), the difficulty of one instance is

based on its average loss values during the training procedure. It is intuitive, because the

68

4.3. Adversarial Overfitting

d1\d2 brightness contrast defocus elastic fog gaussian_blur
Clean 0.1279 0.3219 0.2646 0.2115 0.2324 0.3069
FGSM 0.1303 0.3128 0.2642 0.2098 0.2289 0.3064
PGD 0.1873 0.3082 0.2616 0.2319 0.2414 0.2959

d1\d2 glass_blur jpeg motion_blur pixelate gaussian_noise impulse_noise
Clean 0.2809 0.1838 0.2520 0.2365 0.2999 0.2869
FGSM 0.2760 0.1853 0.2520 0.2417 0.2918 0.2807
PGD 0.2825 0.2026 0.2605 0.2551 0.2980 0.2866

d1\d2 saturate shot_noise snow spatter zoom_blur speckle_noise
Clean 0.1335 0.2832 0.2033 0.1930 0.2654 0.2829
FGSM 0.1329 0.2754 0.2003 0.1946 0.2657 0.2759
PGD 0.1932 0.2841 0.2148 0.2297 0.2711 0.2901

Table 4.4 – D-distances between difficulty functions of vanilla / FGSM / PGD training and
training based on 18 different corruptions on CIFAR10-C. We run each experiment for 4 times
and report the average value.

values of the loss objective represents the cost that model needs to fit the corresponding data

point. The bigger this cost is, the more difficulty this instance will be. To make the metric stable

and prevent the metric from being sensitive to the stochasticity in the training dynamics, we

use the average value of the loss objective for each instance to define its difficulty. In addition

to the average loss objectives, we can also use the average 0-1 error to define the difficulty

function. In Figure 4.15, we plot the relationship between the difficulty metric based on the

average loss values and the one based on the average 0-1 error for instances in the CIFAR10

training set when we train a ResNet18 model for 100 epochs and WideResNet34 model for 200

epochs. We can see a strong correlation between them for both models. The correlation of the

difficulty measured by two metrics for the same instance is 0.9466 in the ResNet18 case and

0.9545 in the WideResNet34 case. The high correlation indicates we can use either metric to

measure the difficulty. Since the loss objective values are continuous and finer-grained, we

choose it as the basis of the difficulty function we use in this paper.

4.3.2 Empirical Observation

Based on the discussion in the last section, we conclude that the function dε defined in (4.30)

mainly depends on the data and the perturbation applied; the model architecture and the

training duration have negligible effects on it. We can then use dε(x) to represent the difficulty

of x within a set under a specific type of perturbation.

In Figure 4.16, we show some samples of the easiest and the hardest instances of each class in

CIFAR10 [83] and SVHN [104], respectively. In both cases, the easiest instances are visually

highly similar, whereas the hardest ones are much more diverse, some of them being am-

biguous or even incorrectly labeled. Now, we study how easy and hard instances impact the

69

Empirical Robustness

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Measured by Average Loss

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

 M
ea

su
re

d
by

 A
ve

ra
ge

 0
-1

 E
rro

r

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Measured by Average Loss

0.0

0.2

0.4

0.6

0.8

1.0

Di
ffi

cu
lty

 M
ea

su
re

d
by

 A
ve

ra
ge

 0
-1

 E
rro

r

Figure 4.15 – The relationship between the difficulty function based on the average loss values
and the one based on the average 0-1 errors. The left figure is based on the RN18-200 model;
the right figure is based on the WRN34 model. The correlation between these two metrics are
0.9466 (left) and 0.9545 (right), respectively.

performance of adversarial training, with a focus on the adversarial overfitting phenomenon.

plane, 0.999 plane plane, 0.999 plane plane, 0.998 plane

plane, 0.996 plane plane, 0.995 plane plane, 0.995 plane

plane, 0.995 plane plane, 0.995 plane plane, 0.994 plane

plane, 0.994 plane plane, 0.993 plane plane, 0.993 plane

plane, 0.991 plane plane, 0.989 plane plane, 0.989 plane

plane, 0.989 plane plane, 0.988 plane plane, 0.986 plane

(a) Plane, Easy

plane, 0.000 bird plane, 0.002 frog plane, 0.002 frog

plane, 0.003 bird plane, 0.003 ship plane, 0.005 truck

plane, 0.005 truck plane, 0.006 frog plane, 0.006 deer

plane, 0.006 truck plane, 0.007 frog plane, 0.007 ship

plane, 0.007 car plane, 0.007 cat plane, 0.008 bird

plane, 0.008 deer plane, 0.008 horse plane, 0.009 frog

(b) Plane, Hard

car, 1.000 car car, 0.999 car car, 0.999 car

car, 0.999 car car, 0.998 car car, 0.998 car

car, 0.998 car car, 0.997 car car, 0.997 car

car, 0.997 car car, 0.997 car car, 0.997 car

car, 0.996 car car, 0.996 car car, 0.996 car

car, 0.996 car car, 0.996 car car, 0.996 car

(c) Car, Easy

car, 0.001 truck car, 0.002 cat car, 0.002 cat

car, 0.005 dog car, 0.006 cat car, 0.006 horse

car, 0.006 cat car, 0.008 frog car, 0.009 dog

car, 0.009 frog car, 0.010 truck car, 0.012 truck

car, 0.012 truck car, 0.012 ship car, 0.013 truck

car, 0.013 plane car, 0.014 frog car, 0.015 cat

(d) Car, Hard
0, 0.998 0 0, 0.997 0 0, 0.997 0

0, 0.997 0 0, 0.997 0 0, 0.997 0

0, 0.996 0 0, 0.995 0 0, 0.995 0

0, 0.994 0 0, 0.994 0 0, 0.993 0

0, 0.993 0 0, 0.993 0 0, 0.993 0

0, 0.992 0 0, 0.992 0 0, 0.990 0

(e) 0, Easy

0, 0.000 3 0, 0.000 5 0, 0.000 7

0, 0.001 5 0, 0.001 2 0, 0.002 1

0, 0.004 7 0, 0.004 3 0, 0.004 1

0, 0.005 1 0, 0.005 1 0, 0.006 5

0, 0.007 1 0, 0.007 6 0, 0.009 5

0, 0.010 1 0, 0.010 5 0, 0.012 7

(f) 0, Hard

1, 0.999 1 1, 0.998 1 1, 0.998 1

1, 0.998 1 1, 0.998 1 1, 0.998 1

1, 0.998 1 1, 0.998 1 1, 0.998 1

1, 0.997 1 1, 0.997 1 1, 0.996 1

1, 0.996 1 1, 0.995 1 1, 0.995 1

1, 0.995 1 1, 0.994 1 1, 0.994 1

(g) 1, Easy

1, 0.000 3 1, 0.000 6 1, 0.000 3

1, 0.001 8 1, 0.001 2 1, 0.001 3

1, 0.001 6 1, 0.001 3 1, 0.001 2

1, 0.001 5 1, 0.002 5 1, 0.002 3

1, 0.002 2 1, 0.002 5 1, 0.002 5

1, 0.003 6 1, 0.004 2 1, 0.004 2

(h) 1, Hard

Figure 4.16 – Easy and hard examples in the first two categories of both CIFAR10 (first row)
and SVHN (second row) dataset. In each subfigure, odd columns present the original images,
and even columns present the PGD-perturbed images. Above each image, we provide the
normalized difficulty defined in Equation (4.30) as well as the labels: true labels for the original
images and the predicted labels for the perturbed images.

70

4.3. Adversarial Overfitting

Using a Subset of Training Data

We start by training ResNet18 models for 200 epochs using either the 10000 easiest, random

or hardest instances of the CIFAR10 training set via either vanilla training, FGSM or PGD

adversarial training. The adversarial budget is based on the l∞ norm and ε= 8/255. Note that

the instance’s difficulty is defined under the corresponding perturbation type, and we enforce

these subsets to be class-balanced. For example, the easiest 10000 instances consist of the

easiest 1000 instances in each class.

We provide the learning curves under different settings in Figure 4.17.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r R
at

e

(a) PGD Adversarial Training.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

(b) FGSM Adversarial Training.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Easy 10k
Random 10k
Hard 10k

(c) Vanilla Training.

Figure 4.17 – Learning curves obtained by training on the 10000 easiest, random and hardest
instances of CIFAR10 under different scenarios. The training error (dashed lines) is the error
on the selected instances, and the test error (solid lines) is the error on the whole test set.

For PGD adversarial training, in Figure 4.17a, while we observe adversarial overfitting when

using the random instances, as in [118], no such phenomenon occurs when using the easiest

instances: the performance on the test set does not degrade during training. However, PGD

adversarial training fails and suffers more severe overfitting when using the hardest instances.

In contrast to PGD, FGSM adversarial training and vanilla training (Figure 4.17b, 4.17c),

through which the model does not achieve true robustness [98], do not suffer from severe

adversarial overfitting. In these cases, the models trained with the hardest instances also

achieve non-trivial test accuracy. Furthermore, the gaps in robust test accuracy between the

models trained by easy instances and by hard ones are much smaller.

In Figure 4.18, we demonstrate the learning curves of PGD adversarial training using l∞
norm based adversarial budget with different values of ε. With the increase in the size of the

adversarial budget, we can see a clear transition from the vanilla training: more and more

severe generalization decay when training on the random or the hardest subset. In Figure 4.19

confirms the same phenomenon in the case of l2 norm based adversarial budget.

Finally, we experiment with training models using increasingly many training instances, start

with the easiest ones. We demonstrate our results in Figure 4.20 for both CIFAR10 and SVHN,

under the l∞ norm based adversarial budget with ε= 8/255 and ε= 0.02, respectively. Our

results indicate that if we do model selection on a validation set as in [118], the selected models

are still better on both CIFAR10 and SVHN when they are trained with more data, although the

71

Empirical Robustness

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

(a) ε= 2/255.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

(b) ε= 4/255.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Easy 10k
Random 10k
Hard 10k

(c) ε= 6/255.

Figure 4.18 – Learning curves obtained by training on the 10000 easiest, random and hardest
instances of CIFAR10 by PGD adversarial training with l∞ adversarial budget using different
values of ε. The training error (dashed lines) is the error on the selected instances, and the test
error (solid lines) is the error on the whole test set.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

(a) ε= 0.50.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

(b) ε= 0.75.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Easy 10k
Random 10k
Hard 10k

(c) ε= 1.00.

Figure 4.19 – Learning curves obtained by training on the 10000 easiest, random and hardest
instances of CIFAR10 by PGD adversarial training with l2 adversarial budget using different
values of ε. The training error (dashed lines) is the error on the selected instances, and the test
error (solid lines) is the error on the whole test set.

final models in these cases are not necessarily better. This indicates that the hard instances

can still benefit adversarial training, but need to be utilized in an adaptive manner.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Easy 10k
Easy 20k
Easy 30k
Easy 40k
Total 50k

(a) CIFAR10

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

Er
ro

r R
at

e

Easy 20k
Easy 30k
Easy 40k
Total

(b) SVHN

Figure 4.20 – The learning curves of RN18 models on CIFAR10 and SVHN, with more and more
training data. The training accuracy and test accuracy are ploted as dashed lines and solid
lines, respectively. The training accuracy is based on the selected subset of the training data,
while the test accuracy is based on the whole test set.

72

4.3. Adversarial Overfitting

Hard Instances Lead to Overfitting

Let us now turn to the more standard setting where we train the model with the entire training

set. To nonetheless analyze the influence of instance difficulty in this scenario, we divide the

training set D into 10 non-overlapping groups
{
Gi

}9
i=0 with:

Gi =
{

x ∈D|0.1× i ≤ dε(x) < 0.1× (i +1)
}

. (4.32)

That is, G0 is the hardest group, whereas G9 is the easiest one. We then train a ResNet18

model on the entire CIFAR10 training set by PGD adversarial training and monitor the training

behavior of the different groups. In particular, in Figure 4.21a, we plot the average loss of

the instances in the groups G0, G3, G6 and G9. The results show that, in the early training

stages, the model first fits the easy instances, as evidenced by the average loss of group G9

decreasing much faster than that of the other groups. By contrast, in the late training phase,

the model tries to fit the more difficult instances, with the average loss of groups G0 and G3

decreasing much faster than that of the other groups. In this period, however, the robust test

error (solid grey line) increases, which indicates that adversarial overfitting arises from the

model’s attempt to fit the hard adversarial instances.

In addition to average losses, inspired by [76], which showed that the penultimate layer’s

activations of a robust model correspond to its robust features that cannot be misaligned by

adversarial attacks, we monitor the group-wise average magnitudes of the penultimate layer’s

activations. As shown in Figure 4.21b, the model first focuses on extracting robust features

for the easy instances, as evidenced by the comparatively large activations of the instances in

G9. In the late phase of training, the norm of the activations of the hard instances increases

significantly, bridging the gap between easy and hard instances. This further indicates that the

model focuses more on the hard instances in the later phase, at which point it starts overfitting.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e

Lo
ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

(a)

0 25 50 75 100 125 150 175 200
Epoch

1

2

3

4

5

Fe
at

ur
e

M
ag

ni
tu

de

Easiest top 10%
Easiest 30%-40%
Hardest 30%-40%
Hardest top 10%

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Er

ro
r

(b)

Figure 4.21 – Analysis on the groups G0, G3, G6 and G9 in the training set. The right vertical axis
corresponds to the training (dashed grey line) and test (solid grey line) error under adversarial
attacks for both plots. Left plot: The left vertical axis represents the average loss of different
groups. Right plot: The left vertical axis represents the average l2 norm of features extracted
during training for different groups.

73

Empirical Robustness

4.3.3 Toy Model: Logistic Regression

We now study the relationship between adversarial overfitting and instance difficulty from

a theoretical viewpoint. This section focuses on a toy model: logistic regression. We use{
xi , yi

}N
i=1 to represent the training data, and (X,y) as its matrix form. For notation simplicity,{

x′i , yi
}n

i=1
and (X′,y) are their adversarial counterparts. That is to say x′i = xi +∆i . Here,

xi ∈RM , yi ∈ {−1,+1}, X ∈RN×M and y ∈ {−1,+1}n .

We study the logistic regression model under an l2 norm based adversarial budget. In this

case, the model is parameterized by w ∈ RM and outputs si g n(wT x′i) given the adversarial

example x′i of the input xi . Therefore, the loss function for this instance is 1

1+e yi wT x′
i

. We assume

over-parameterization, which means N < M .

The following theorem shows that, under mild assumptions, the parameters of the adversari-

ally trained model converge to the l2 max-margin direction of the training data.

Theorem 4.4 For a dataset
{

xi , yi
}N

i=1 that is linearly separable under the adversarial bud-

get S(2)(ε), any initial point w0 and step size α ≤ 2‖X‖−2, the gradient descent wu+1 = wu −
αOwLwu (X′) converges asymptotically to the l2 max-margin vector of the training data. That is,

lim
u→∞

wu

‖wu‖
= ŵ

‖ŵ‖ , where ŵ = argminw‖w‖

s.t . ∀i ∈ {1,2, ...,n}, wT xi ≥ 1 .
(4.33)

Theorem 4.4 extends the conclusion in [141], which only studies the non-adversarial case. It

also indicates that the optimal parameters are only determined by the support vectors of the

training data, which are the ones with the smallest margin. According to the loss function, the

smallest margin means the largest loss values and thus the hardest training instances based

on our definition in Section 4.3.1.

Similar to [141], we can assume all instances are positive without the loss of generality, this

is because we can always redefine yi xi as the input. In this regard, the loss to optimize in a

logistic regression model under the adversarial budget S(2)(ε) is:

gε(w,X) =
N∑

i=1
l (wT xi −ε‖w‖) (4.34)

Here l (·) is the logistic function: l (x) = 1
1+e−x . The loss function gε(w,X) is ‖X‖2-smooth, where

‖X‖2 is the maximal singular value of X. Since function gε is convex on w, so gradient descent

of step size smaller than 2‖X‖−2 will asymptotically converge to the global infimum of the

function gε on w.

Before proving Theorem 4.4, we first introduce the following lemma:

74

4.3. Adversarial Overfitting

Lemma 4.2 Consider the max-margin vector ŵ of the vanilla case defined in Equation (4.33),

we then introduce the max margin vector ŵ′ defined under the adversarial attack of budget

S(2)(ε) as follows:

ŵ′ = argminw‖w‖ s.t . ∀i ∈ {1,2, ..., N }, wT xi −ε‖w‖ ≥ 1 (4.35)

Then we have ŵ′ is collinear with ŵ, i.e., ŵ′
‖ŵ′‖ =

ŵ
‖ŵ‖ .

Proof: We show that ŵ = 1
1+ε‖ŵ′‖ ŵ′ and prove it by contraction.

Let’s assume ∃v, s.t . ‖v‖ < ‖ŵ′‖
1+ε‖ŵ′‖and ∀i ∈ {1,2, ..., N }, vT xi ≥ 1, then we can consider v′ =

(1+‖ŵ′‖)v. The l2 norm of v′ is smaller than that of ŵ′, and we have

∀i ∈ {1,2, ..., N },v′T xi −ε‖v′‖ = (1+ε‖ŵ′‖)vT xi −ε‖v′‖ > (1+ε‖ŵ′‖)−ε‖ŵ′‖ = 1 (4.36)

Inequality (4.36) shows we can construct a vector v′ whose l2 norm is smaller than ŵ′ and

satisfying the condition (4.35), this contracts with the optimality of ŵ′. Therefore, there is no

solution of condition (4.33) whose norm is smaller than ‖ŵ′‖
1+ε‖ŵ′‖ .

On the other hand, 1
1+ε‖ŵ′‖ ŵ′ satisfies the condition (4.33) and its l2 norm is ‖ŵ′‖

1+ε‖ŵ′‖ . As a result,

we have ŵ = 1
1+ε‖ŵ′‖ ŵ′. That means ŵ and ŵ′ are collinear. �

With Lemma 4.2, Theorem 4.4 is more straightforward, whose proof is shown below. Regard-

ing the convergence analysis of the logistic regression model in non-adversarial cases, we

encourage the readers to find more details in [77, 141].

Proof: Theorem 1 in [77] and Theorem 3 in [141] proves the convergence of the direction of the

logistic regression parameters in different cases. In this regard, we can let w∞ = limu→∞ w(u)
‖w(u)‖ .

That is to say, for sufficiently large u, the direction of the parameter w(u) can be considered

fixed. As a result, the adversarial perturbations of each data instance xi is fixed, i.e., εw∞.

We can then apply the conclusion of Theorem 3 in [141] here, the only difference is the data

points are {xi −εw∞}n
i=1. Therefore, the parameter w(u) will converge to the l2 max margin

of the dataset {xi −εw∞}n
i=1. When t → ∞, we have w(u)T (xi − εw∞) = w(u)T xi − ε‖w(u)‖.

This is exactly the adversarial max margin condition in (4.35). Based on Lemma 4.2, we have

limu→∞ w(u)
‖w(u)‖ = ŵ′

‖ŵ′‖ =
ŵ
‖ŵ‖ �

To further study how the training instances’ difficulty influences the model’s generalization

performance, we assume that the data points are drawn from a I -mode Gaussian mixture

model (GMM). Specifically, the i -th component has a probability pi of being sampled and is

75

Empirical Robustness

formulated as:

xi ∼N(yi rkη,I) (4.37)

Here, η ∈ RM is the unit vector indicating the mean of the positive instances, and ri ∈ R+

controls the average distance between the positive and negative instances. The mean values

of all modes in this GMM are colinear, so ri indicates the difficulty of instances sampled from

the i -th component. Without the loss of generality, we assume r1 < r2 < ... < r I−1 < r I . As

in Section 4.3.2, we consider models trained with the subsets of the training data, e.g., N

instances from the l-th component. l = 1 then indicates training on the hardest examples,

while l = I means using the easiest. In matrix form, we have X = rl yηT +Q for the instances

sampled from the l -th component, where the rows of noise matrix Q are sampled from N(0,I).

Although the max-margin direction in Equation (4.33), where the parameters converge based

on Theorem 4.4, does not have an analytical expression, the results in [149] indicate that,

in the over-parameterization regime and when the training data is sampled from a GMM,

the max-margin direction is the min-norm interpolation of the data with high probability.

Since the latter has an analytical form given by XT (XXT)−1y, we can then calculate the exact

generalization performance of the trained model as stated in the following theorem.

Theorem 4.5 If a logistic regression model is adversarially trained on N separable training

instances sampled from the l-th component of the GMM model described in (4.37). If M
N log N is

sufficiently large3, then with probability 1−O
(1

N

)
, the expected adversarial test error R under

the adversarial budget S(2)
ε , which is a function of rl and ε, on the whole GMM model described

in (4.37) is given by:

R(rl ,ε) =
I∑

i=1
piΨ

(
ri g (rl)−ε)

where g (rl) =
(

C1 − 1

C2r 2
l +o(r 2

l)

) 1
2

, C1,C2 ≥ 0.

(4.38)

C1, C2 are independent of ε and rl . The functionΨ is defined asΨ(x) =P(Z > x), Z ∼N(0,1).

To prove the theorem above, we first calculate the robust error for the i -th component of the

GMM model defined in (4.37).

Lemma 4.3 The 0-1 classification error of a linear classifier w under the adversarial attack of

the budget S(2)
ε for the i -th component of the GMM model defined in (4.37) is:

R̂i (ε) =Ψ(
ri wTη

‖w‖ −ε) (4.39)

whereΨ(x) =P(Z > x), Z ∼N(0,1).

3Specifically, M and N need to satisfy M > 10N log N +N −1 and M > C N rl
√

log2N‖η‖. The constant C is
derived in the proof of Theorem 1 in [149].

76

4.3. Adversarial Overfitting

Proof: For a random drawn data instance (x, y), the adversarial perturbation is −yε w
‖w‖ . Let’s

decompose x as ri yη+z, where z ∼N(0,I). Then, we have

R̂k (ε) =P(ywT (x− yε
w

‖w‖) < 0) =P(ywT (ri yη+z− yε
w

‖w‖) < 0)

=P(−ywT z > ri wTη−ε‖w‖)
(4.40)

Since z ∼N(0,I), we have −ywT z ∼N(0, (−ywT)T (−ywT)) =N(0,wT w). Furthermore −ywT z
‖w‖ ∼

N(0,1), and we can further simplify R̂i (ε) as follows:

R̂k (ε) =P
(−ywT z

‖w‖ > ri wTη

‖w‖ −ε
)
=Ψ

(
ri wTη

‖w‖ −ε
)

(4.41)

�

With Lemma 4.3, we can straightforwardly calculate the robust error for all components of the

GMM model defined in (4.37):

R̂(ε) =
I∑

i=1
piΨ

(
ri wTη

‖w‖ −ε
)

(4.42)

On the other hand, Theorem 4.4 indicates the parameter w will converge to the l2 max margin.

However, for arbitrary training set, we do not have the closed form of w, which is a barrier for

the further analysis. Nevertheless, results from [149] indicates in the over-parameterization

regime, the parameter w will converge to min-norm interpolation of the data with high

probability.

Lemma 4.4 (Directly from Theorem 1 in [149]) Assume N training instances drawn from the

l -th mode of the described distribution in (4.37) and each of them is a M-dimensional vector. If
M

N log N is sufficiently large4, then the l2 max margin vector in Equation (4.33) will be the same as

the solution of the min-norm interpolation described below with probability at least
(
1−O

(1
N

))
.

w = argminw‖w‖ s.t . ∀i ∈ {1,2, ..., N }, yi = wT xi (4.43)

Since the min-norm interpolation has a closed solution w = XT (XXT)−1y, Lemma 4.4 will

greatly facilitate the calculation of R(w) in Theorem 4.5. To simplify the notation, we first

define the following variables.

U = QQT , d = Qη, s = yT U−1y, t = dU−1d, v = yT U−1d (4.44)

4Specifically, M and N need to satisfy M > 10N log N +N −1 and M > C N rl
√

log2N‖η‖. The constant C is
derived in the proof of Theorem 1 in [149].

77

Empirical Robustness

Now, we are ready to prove Theorem 4.5.

Proof: Based on (4.42), the key is to simplify the term wTη
‖w‖ , let’s denote it by A, then we have:

A2 = ηT wwTη

wT w
= (yT (XXT)−1Xη)2

yT (XXT)−1y
(4.45)

The key challenge here is to calculate the term (XXT)−1 where X = rl yηT +Q. Here we utilize

Lemma 3 of [149] and Woodbury identity [69], we have:

yT (XX)−1 = yT U−1 − (r 2
l s‖η‖2 + r 2

l v2 + rl v − r 2
l st)yT + rl sdT

r 2
l s(‖η‖2 − t)+ (rl v +1)2

U−1 (4.46)

Here, s, t , v , U and d are defined in Equation (4.44). The scalar divisor comes from the

matrix inverse calculation. Based on Equation (4.46), we can then calculate yT (XXT)−1y and

yT (XXT)−1Xη.

yT (XXT)−1y = s − (r 2
l s‖η‖2 + r 2

l v2 + rl v − r 2
l st)s + rl sv

r 2
l s(‖η‖2 − t)+ (rl v +1)2

= s

r 2
l s(‖η‖2 − t)+ (rl v +1)2

(4.47)

yT (XXT)−1Xη= yT (XXT)−1(rl yηT +Q)η

= rl‖η‖2yT (XXT)−1y+yT (XXT)−1d

= rl s(‖η‖2 − t)+ rl v2 + v

r 2
l s(‖η‖2 − t)+ (rl v +1)2

(4.48)

Plug Equation (4.47) and (4.48) into (4.45), we have:

A2 =
(
rl s(‖η‖2 − t)+ rl v2 + v

)2

s
(
r 2

l s(‖η‖2 − t)+ (rl v +1)2
)

= s(‖η‖2 − t)+ v2

s
− ‖η‖2 − t

r 2
l s(‖η‖2 − t)+ (rl v +1)2

= s(‖η‖2 − t)+ v2

s
− 1(

s(‖η‖2−t)+v2

‖η‖2−t

)
r 2

l + 2v
‖η‖2−t rl + 1

‖η‖2−t

(4.49)

Plug (4.49) into (4.42), we then obtain the robust error on all components of the GMM defined

78

4.3. Adversarial Overfitting

in (4.37):

R(rl ,ε) =
I∑

i=1
piΨ

(
ri g (rl)−ε) , g (rl) =

(
C1 − 1

C2r 2
l +C3

) 1
2

C1 = s(‖η‖2 − t)+ v2

s
, C2 = s(‖η‖2 − t)+ v2

‖η‖2 − t
, C3 = 2v

‖η‖2 − t
rl +

1

‖η‖2 − t
.

(4.50)

We study the sign of C1 and C2. Consider U = QQT is a positive semidefinite matrix, so

s = yU−1yT ≥ 0. In addition, we have ‖η‖2 − t = ηT
(
I− (QQT)−1

)
η. Since I − (QQT)−1 =

(I− (QQT)−1)T (I− (QQT)−1) is a positive semidefinite matrix, we can obtain I− (QQT)−1 is also

a positive semidefinite matrix. As a result, C1 and C2 are both non-negative. �

We calculate the exact expression of C1 and C2 in the proof above. Since C1 and C2 are

independent of rl , and Ψ(x) is a monotonically decreasing function, we can conclude that

the robust test error R(rl ,ε) becomes smaller when rl increases. That is, when the training

instances become easier, the corresponding generalization error under the adversarial attack

becomes smaller.

Theorem 4.5 holds only if the training data is separable under the adversarial budget. The

following corollary shows that the difference in the robust test error between models trained

with easy instances and the ones with hard ones increases when ε becomes larger.

Corollary 4.2 Under the conditions of Theorem 4.5 and the definition of R in Equation (4.38),

if ε1 < ε2, then we have ∀ 0 ≤ i < j ≤ I ,R(ri ,ε1)−R(r j ,ε1) <R(ri ,ε2)−R(r j ,ε2).

R(ri ,ε)−R(r j ,ε) is the gap in robust accuracy between the models trained on the easy instances

and the ones on the hard instances under the adversarial budget S(2)
ε . Corollary 4.2 shows that

such a gap increases with the size of the adversarial budget. This indicates that, compared with

training on the clean inputs, i.e., ε= 0, the generalization performance of adversarial training

with ε > 0 is more sensitive to the difficulty of the training instances. Such sensitivity also

increases with ε. This is consistent with our empirical observations in Figure 4.17, Figure 4.18

and Figure 4.19.

To prove Corollary 4.2, we first prove the following lemma:

Lemma 4.5 Under the condition of Theorem 4.5 and R in Equation (4.38), ∂R(rl ,ε)
∂rl

is negative

and monotonically decreases with ε.

Proof: Based on Equation (4.50), we have:

∂R(rl ,ε)

∂rl
=

I∑
i=1

piΨ
′(ri g (rl)−ε)

∂g (rl)

∂rl
(4.51)

79

Empirical Robustness

Since the training data is separable, we have ∀i ,ri wTη−ε‖w‖ > 0, which is equivalent to the

following:

∀i ,ri g (rl)−ε> 0 (4.52)

First, pi is a positive number by definition. Consider functionΨ(x) monotonically decrease

with x and is convex when x > 0, so ∀i ,Ψ′(ri g (rl)− ε) is negative and decreases with ε. In

addition, g (rl) increases with rl and is independent on ε, so ∂g (rl)
∂rl

can be considered as a

positive constant. Therefore, ∂R(rl ,ε)
∂rl

is negative and monotonically decreases with ε.

�

Now, we are ready to prove Corollary 4.2:

Proof: We subtract the left hand side from the right hand side in the inequality of Corollary 4.2:

[
R(r j ,ε1)−R(ri ,ε1)

]− [
R(r j ,ε2)−R(ri ,ε2)

]= ∫ r j

ri

∂R(rl ,ε1)

∂rl
drl −

∫ r j

ri

∂R(rl ,ε2)

∂rl
drl

=
∫ r j

ri

[
∂R(rl ,ε1)

∂rl
− ∂R(rl ,ε2)

∂rl

]
drl

> 0

(4.53)

The last inequality is based on r j > ri , ε2 > ε1, Lemma 4.5, which indicates
[
∂R(rl ,ε1)

∂rl
− ∂R(rl ,ε2)

∂rl

]
is always positive. We reorganize (4.53) and obtain R(ri ,ε1)−R(r j ,ε1) <R(ri ,ε2)−R(r j ,ε2).

�

4.3.4 Theoretical Analysis for General Models

In this section, we study the binary classification problem on a general nonlinear model with

b parameters, i.e., θ ∈Rb . Without loss of generality, we assume the output of the function f

to lie in [−1,+1]. Furthermore, we assume isoperimetry of the data distribution:

Assumption 4.2 The data distribution µ is a composition of I c-isoperimetric distributions on

RM , each of which has a positive conditional variance. That is, µ = ∑I
i=1αiµi , where αi > 0

and
∑I

i=1αi = 1. We define σ2
i = Eµi

[
V ar [y |x]

]
, and without loss of generality assume that

σ1 ≥ σ2 ≥ ... ≥ σI > 0. Furthermore, given any L-Lipschitz function f , i.e., ∀x1,x2,‖ f (θ,x1)−
f (θ,x2)‖ ≤ L‖x1 −x2‖, we have the following inequality satisfied ∀i ∈ {1, ..., I }

P
(
x ∼µi ,

∥∥ f (θ,x)−Eµi

(
f (θ, ·))∥∥≥ t

)≤ 2e−
mt2

2cL2 . (4.54)

80

4.3. Adversarial Overfitting

This is a benign assumption; the data distribution is a mixture of I components and each of

them contains samples from a sub-Gaussian distribution. These components correspond to

training instances of different difficulty levels measured by the conditional variance. We then

study the property of the model f under adversarial attacks.

Definition 4.1 Given the dataset {xi , yi }N
i=1, the model f parameterized by θ, the adversarial

budget S(p)
ε and a positive constant C , we define the function h(C ,ε) as

h(C ,ε) = min
θ∈U(C ,ε)

min
i

hi ,θ(ε)

where U(C ,ε) =
{
θ| 1

N

N∑
i=1

(f (θ,x′i)− yi)2 ≤C

}
,

hi ,θ(ε) = maxζ, s.t .
[

f (θ,xi)−ζ, f (θ,xi)+ζ]⊂ {
f (θ, xi +∆)|∆ ∈ S(p)

ε

}
.

(4.55)

The function h has the following property.

Lemma 4.6 ∀C ,ε1 < ε2, h(C ,ε1) ≤ h(C ,ε2); ∀ε,C1 <C2, h(C1,ε) ≥ h(C2,ε).

Proof: By definition, hi ,θ(ε) ≥ 0 depicts the bandwidth ζ of the model’s output range in the

domain of the adversarial budget on a training instance. h(C ,ε) is the minimum bandwidth

among the models whose mean squared error on the adversarial training set is smaller than

C . Based on the definitions of U and hi ,θ, and for a fixed value of C , we have ∀ε1 < ε2,

hi ,θ(ε1) ≤ hi ,θ(ε2) and U(C ,ε2) ⊂U(C ,ε1). As a result, ∀ε1 < ε2, h(C ,ε1) ≤ h(C ,ε2). In addition,

since ∀C1 <C2, U(C1,ε) ⊂U(C2,ε) for a fixed value of ε, we have ∀C1 <C2, h(C1,ε) ≥ h(C2,ε).

�

Therefore, h(C ,ε) is a monotonically non-decreasing function on ε and a monotonically non-

increasing function on C . In practice, when f represents a deep neural network, h(C ,ε)

increases with ε almost surely, because the attack algorithm usually generates adversarial

examples at the boundary of the adversarial budget. Based on the monotonicity properties of

h, We then state our main theorem below.

Theorem 4.6 Given N M-dimensional training pairs {xi , yi }N
i=1 sampled from the l-th com-

ponent µl of the distribution in Assumption 4.2, the model f parameterized by θ ∈ Rb , the

adversarial budget S(p)
ε and the corresponding function h defined in Definition 4.1, we assume

that the model f is in the function space F= { f (θ, ·),θ ∈W} with W⊂Rb having a finite diame-

ter di am(W) ≤ W and, ∀w1,w2 ∈W,‖ f (θ1, ·)− f (θ2, ·)‖∞ ≤ J‖θ1 −θ2‖∞. We train the model

f adversarially using these N data points. Let x′ be the adversarial example of the data point

x and δ ∈ (0,1). If we have 1
N

∑N
i=1(f (θ, x ′

i)− yi)2 =C and γ :=σ2
l +h2(C ,ε)−C ≥ 0, then with

probability at least 1−δ, the Lipschitz constant of f (θ, ·) is lower bounded as

Li p
(

f (θ, ·))≥ γ

27

√
N M

c
(
b log(4W Jγ−1)− log(δ/2−2e−2−11Nγ2)

) . (4.56)

81

Empirical Robustness

where Li p
(

f (θ, ·)) is the Lipschitz constant of f (θ, ·):

∀x1,x2,‖ f (θ,x1)− f (θ,x2)‖ ≤ Li p(f (θ, ·))‖x1 −x2‖ . (4.57)

Theorem 4.6 extends the results in [16] to the case of adversarial training. The Lipschitz

constant is widely used to bound a model’s adversarial vulnerability [120, 154, 155]; larger

Lipschitz constants indicate higher adversarial vulnerability. Recall that γ needs to be non-

negative, so C is upper bounded. That is to say, our theorem is based on the condition that

the model is well fit to the training set, so the adversarial vulnerability is approximately the

generalization gap. Note that modern deep neural network models typically have millions of

parameters, so b À max{c, M , N }. In this case, we can approximate the lower bound (4.56) by

Li p(f (θ, ·))& γ

27

√
N M

bc log(4W Jγ−1) , and the right hand side increases with γ.

Since γ := σ2
l +h2(C ,ε)−C , we can conclude that the Lipschitz upper bound and thus the

adversarial vulnerability is affected by three factors: it increases with both σl and ε but

decreases as C increases. This means the adversarial vulnerability of a model increases with

the size of the adversarial budget and the difficulty level of the training instances; it also

increases as the training mean squared error decreases. That is 1) under the same adversarial

budget, the adversarial vulnerability increases with the instances’ difficulty, measured by σl in

our theorem; 2) using the same training instances, the adversarial vulnerability increases with

the adversarial budget measured by ε; 3) using the same training instances and the adversarial

budget, as adversarial training progresses, the mean squared error C on the adversarial training

instances becomes smaller, which makes the Lipschitz bound larger, and thus the adversarial

vulnerability increases. These three points are consistent with our empirical observations: 1)

higher robust test error under the hard training instances and the larger adversarial budget; 2)

the increase of the robust test error in the late phase of training when the training loss is small.

Now, we begin to prove Theorem 4.6. We start with the following lemma.

Lemma 4.7 Given the assumptions of Theorem 4.6, we define g (x) = E(y |x), z(x) = y − g (x) and

consider γ=σ2
l +h2(C ,ε)−C , then the following inequality holds.

∀a ∈ (0,1),P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

(
yi − f (θ, x ′

i)
)2 ≤C

)

≤ 2e−
N a2γ2

8 +P
(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

f (θ, xi)z(xi) ≥ 1

2
(1−3a)γ

) (4.58)

Proof: Given the definition of h(C ,ε), we have:

(yi − f (θ,x′i))2 = [(yi − f (θ,xi))+ (f (θ,xi)− f (θ,x′i))]2

≥ (yi − f (θ,xi))2 + (f (θ,xi)− f (θ,x′i))2

≥ (yi − f (θ,xi))2 +h2(C ,ε)

(4.59)

82

4.3. Adversarial Overfitting

For the first inequality, x′i is the adversarial example which tries to maximize the loss objective,

yi ∈ {−1,+1} and the range of f is [−1,+1], so 〈yi − f (θ,xi), f (θ,xi)− f (θ,x′i)〉 ≥ 0. The second

inequality is based on the definition of h2(C ,ε) in Definition 4.1. As a result, we can simplify

the left hand side of (4.58) as follows:

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

(yi − f (θ, x ′
i))2 ≤C

)
≤P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

(yi − f (θ, xi))2 ≤C −h2(C ,ε)

)
(4.60)

We consider the sequence {z(xi)}N
i=1, it is i.i.d with Eµl (z(x)2) = Eµl [V ar (y |x)] =σ2

l . Since the

range of the prediction is [−1,+1], so z2(x) ∈ [0,4]. Then, we have the following inequality by

Hoeffding’s inequality [68].

∀a ∈ (0,1),P

(
1

N

N∑
i=1

z2(xi) ≤σ2
l −aγ

)
≤ e−

na2γ2

8 (4.61)

Similarly, we consider the sequence {z(xi)g (xi)}N
i=1, the following inequality holds based on

the Hoeffding’s inequality and the fact E(z(x)g (x)) = 0, z(x)g (x) ∈ [−2,+2].

∀a ∈ (0,1),P

(
1

N

N∑
i=1

z(xi)g (xi) ≤ aγ

)
≤ e−

N a2γ2

8 (4.62)

Now we study the right hand side of (4.60):

1

N

N∑
i=1

(yi − f (θ,xi))2 = 1

N

N∑
i=1

(
z2(xi)+ (g (xi)− f (θ,xi))2 +2z(xi)(g (xi)− f (θ,xi))

)
≥ 1

N

N∑
i=1

(
z2(xi)+2z(xi)g (xi)−2z(xi) f (θ,xi)

) (4.63)

Consider the following reasoning:



1

N

N∑
i=1

(yi − f (θ,xi))2 ≤C −h2(C ,ε) =σ2
l −γ

1

N

N∑
i=1

z2(xi) ≥σ2
l −aγ

1

N

N∑
i=1

z(xi)g (xi) ≥−aγ

=⇒ 1

N

N∑
i=1

z(xi) f (θ, xi) ≥ 1

2
(1−3a)γ (4.64)

83

Empirical Robustness

As a result, we have:

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

(yi − f (θ,xi) ≤C −h2(C ,ε))

)

≤P
(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z2(xi) ≤σ2
l −aγ

)
+P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi)g (xi) ≥−aγ

)
+

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi) f (θ,xi) ≥ 1

2
(1−3a)γ

)

≤2e−
N a2γ2

8 +P
(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi) f (θ,xi) ≥ 1

2
(1−3a)γ

)
(4.65)

The first inequality is based on the reasoning of (4.64). The second inequality is based on (4.61)

and (4.62).

Based on the inequality (4.60) and (4.65), we prove the Lemma 4.7. �

To further simplify the right hand side of (4.58),P
(∃ f (θ, ·) ∈F : 1

N

∑N
i=1 z(xi) f (θ,xi) ≥ 1

2 (1−3a)γ
)

needs to be bounded, and this is solved by the following lemma. We demonstrate the corre-

sponding lemma followed by its proof.

Lemma 4.8 Given the assumptions of Theorem 4.6 and the definition of g (x), z(x) in Lemma 4.7,

then the following inequality holds.

∀a ∈ (0,1), a1 > 0, a2 > 0 and a1 +a2 = 1

2
(1−3a),

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi) f (θ,xi) ≥ 1

2
(1−3a)γ

)
≤ 2|F|e− N M

144cL2 a2
1γ

2 +2e−
N
8 a2

2γ
2

(4.66)

Proof: We recall that the data points {xi , yi }N
i=1 are sampled from the distribution µl , which is

c-isoperimetric. For any L-Lipschitz function f , we have:

∀t ,P
(| f (θ,x)−Eµl (f (θ, ·))| ≥ t

)≤ 2e−
M t2

2cL2 (4.67)

Since z(x) = y − g (x) ∈ [−2,+2], we can then bound P
(
z(x)(f (θ,x)−Eµl (f (θ, ·))) ≥ t

)
:

∀t ,P
(
z(x)(f (θ,x)−Eµl (f (θ, ·))) ≥ t

)≤P(|z(x)(f (θ,x)−Eµl (f (θ, ·)))| ≥ t
)

≤P
(
|(f (θ,x)−Eµl (f (θ, ·)))| ≥ t

2

)
≤ 2e−

M t2

8cL2
(4.68)

84

4.3. Adversarial Overfitting

Here we utilize the proposition in [148, 146]5, which claims if {Xi }N
i=1 are independent variables

and all C -subgaussian, then 1p
N

∑N
i=1 Xi is 18C -subgaussian. Therefore, we have:

∀t ,P

(
1p
N

N∑
i=1

z(xi)(f (θ,xi)−Eµl (f (θ, ·))) ≥ t

)
≤ 2e−

M t2

144cL2 (4.69)

Let t = a1γ
p

N , then we have:

P

(
1

N

N∑
i=1

z(xi)(f (θ,xi)−Eµl (f (θ, ·))) ≥ a1γ

)
≤ 2e−

N M
144cL2 a2

1γ
2

(4.70)

In addition, we can bound P
(1

N

∑N
i=1 z(xi)Eµl (f (θ, ·)) ≥ a2γ

)
by:

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi)Eµl (f (θ, ·)) ≥ a2γ

)
≤P

(
1

N

N∑
i=1

|z(xi)| ≥ a2γ

)
≤ 2e−

N
8 a2

2γ
2

(4.71)

The first inequality is based on the fact Eµl (f (θ, ·)) ∈ [−1,+1]; the second inequality is based on

Hoeffding’s inequality.

Now, we are ready to bound the probability P
(∃ f (θ, ·) ∈F : 1

N

∑N
i=1 z(xi) f (θ, xi) ≥ 1

2 (1−3a)γ
)
.

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi) f (θ, xi) ≥ 1

2
(1−3a)γ

)

≤P
(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi)(f (θ, xi)−Eµl (f (θ, ·))) ≥ a1γ

)

+P
(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

z(xi)Eµl (f (θ, ·)) ≥ a2γ

)
≤2|F|e− N M

144cL2 a2
1γ

2 +2e−
N
8 a2

2γ
2

(4.72)

The first inequality is based on the fact a1 +a2 = 1
2 (1−3a); the second inequality is based on

the Boole’s inequality [13], inequality (4.70) and (4.71). �

To simplify the constant notation, we let a = 1
8 , a1 = 3

16 and a2 = 1
8 . We plug this into the

inequality (4.58) and (4.66), then:

P

(
∃ f (θ, ·) ∈F :

1

N

N∑
i=1

(yi − f (θ, x ′
i))2 ≤C

)
≤ 4e−

Nγ2

29 +2|F|e−
N Mγ2

212cL2 (4.73)

5Proposition 2.6.1 in [148] and Exercise 3.1 in [146]

85

Empirical Robustness

Now we turn to the proof of Theorem 4.6.

Proof: We let FL = { f (θ, ·)|θ ∈W,Li p(f (θ, ·)) ≤ L}, Fγ = { f (θ, ·)|θ ∈W,θ = γ
4J ¯ z,z ∈ Zb} and

Fγ,L = Fγ∩FL . Correspondingly, we let WL = {θ|θ ∈W,Li p(f (θ, ·)) ≤ L}, Wγ = {θ|θ ∈W,θ =
γ

4J ¯z,z ∈Zb} and Wγ,L =Wγ∩WL . Because the diameter of W is W , we have |Fγ,L | ≤ |Fγ| ≤(
4W J
γ

)b
. Here, ¯ means the element-wise multiplication.

Note that the inequality (4.73) is valid for any values of C as long as it satisfies γ≥ 0. Based on

this, we apply the substitution


C ←C + 1

2
γ

γ← 1

2
γ

, then:

P

(
∃ f (θ, ·) ∈Fγ,L :

1

N

N∑
i=1

(yi − f (θ,x′i))2 ≤C + 1

2
γ

)
≤ 4e−

Nγ2

211 +2|F|e−
N Mγ2

214cL2

≤ 4e−
Nγ2

211 +2eb log(4W J
γ

)− N Mγ2

214cL2

(4.74)

Based on the definition ofWγ,L , we can conclude that ∀θ1 ∈WL ,∃θ2 ∈Wγ,L s.t .‖θ1−θ2‖∞ ≤ γ
8J .

Therefore, ∀ f (θ1, ·) ∈FL ,∃ f (θ2, ·) ∈Fγ,L s.t .‖ f (θ1, ·)− f (θ2, ·)‖∞ ≤ γ
8 . Let choose such f (θ2, ·) ∈

Fγ,L given an arbitrary f (θ1, ·) ∈FL , then:

(y − f (θ1,x))2 = (y − f (θ2,x))2 + (2y − f (θ1, x)− f (θ2,x))(f (θ2,x)− f (θ1,x))

≥ (y − f (θ2,x))2 − γ

8
|(2y − f (θ1,x)− f (θ2,x))|

≥ (y − f (θ2,x))2 − γ

2

(4.75)

The first inequality in (4.75) is based on Hölder’s inequality; the second inequality is based on

y ∈ {−1,+1} and the range of ∀ f (θ, ·) ∈F is [−1,+1].

We combine (4.73) with (4.75), then:

P

(
∃ f (θ, ·) ∈FL :

1

N

N∑
i=1

(yi − f (θ, x ′
i))2 ≤C

)
≤P

(
∃ f (θ, ·) ∈Fγ,L :

1

N

N∑
i=1

(yi − f (θ, x ′
i))2 ≤C + 1

2
γ

)

≤ 4e−
Nγ2

211 +2eb log(4W J
γ

)− N Mγ2

214cL2

(4.76)

Note that FL is the set of functions in F whose Lipschitz constant is no larger than L. We set

the right hand side of (4.76) to be δ and then get L = γ

27

√
N M

c
(
b log(4W Jγ−1)−log(δ/2−2e−2−11 Nγ2)

) . This

concludes the proof. �

86

4.3. Adversarial Overfitting

Numerical Validation

Training Set
Lipschitz in l∞ Cases (×104) Lipschitz in l2 Cases (×104)

ε= 2/255 ε= 4/255 ε= 8/255 ε= 0.50 ε= 0.75 ε= 1.00
Easy10K 5.91 6.06 14.54 3.34 3.67 3.91
Random10K 28.98 79.96 93.63 30.01 31.28 39.34
Hard10K 72.42 117.60 567.24 60.62 80.06 77.55

Table 4.5 – Upper bound of the Lipschitz constant under different settings of ε and training
instances.

We conduct empirical analyses to confirm the validity of Theorem 4.6 in our settings. To this

end, we use the CIFAR10 dataset and an ResNet18 network architecture. Since calculating the

Lipschitz constant of a deep neural network is NP-hard [125], exactly calculating the Lipschitz

constant [78] can only be achieved for simple multi-layer perceptron (MLP) models, not for

modern deep networks. Instead, we therefore estimate the upper bound of the Lipschitz

constant numerically, as in [125].

25 50 75 100 125 150 175
Epoch

102

103

104

105

106

Up
pe

r B
ou

nd
 o

f L
ip

sc
hi

tz
 C

on
st

an
t

Easy 10k
Random 10k
Hard 10k

Figure 4.22 – Curves of the Lipschitz up-
per bound when the model is adversari-
ally trained by the easiest, random and the
hardest 10000 instances. The y-axis is in
log-scale.

Table 4.5 provides the upper bound of the Lips-

chitz constant of models trained by different sub-

sets of the training data and different adversarial

budget. Due to the stochasticity introduced by

the algorithm of [125], we run it 20 times and re-

port the average; we observed the variance to be

negligible. Based on the results in Table 4.5, it is

clear that the models adversarially trained on the

hard training instances have a much larger Lips-

chitz constant than the ones trained on the easy

instances.

Figure 4.22 depicts the curves of the Lipschitz

upper bound when the model is adversarially

trained by the easiest, random, and the hardest

10000 instances. The adversarial budget is based on the l∞ norm with ε = 8/255. We can

clearly see that, as training progresses, the Lipschitz upper bound increases in all cases. Fur-

thermore, compared with training on easy instances, the Lipschitz upper bound of the models

adversarially trained on hard instances increases much faster. These results are consistent

with Theorem 4.6.

4.3.5 Case Studies

Our empirical observation and theoretical analyses indicate that fitting hard adversarial leads

to adversarial overfitting. In this section, we first study existing approaches to mitigating adver-

sarial overfitting, and show that they implicitly avoid fitting hard adversarial instances, which

87

Empirical Robustness

0.00 0.25 0.50 0.75 1.00
d(xi)

0.00

0.05

0.10

0.15

ε i

(a)

80 100 120 140 160 180 200
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

W
ei

gh
t

Hardest top 10%
Hardest 30%-40%
Easiest 30%-40%
Easiest top 10%

(b)

80 100 120 140 160 180 200
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Hardest top 10%
Hardest 30%-40%
Easiest 30%-40%
Easiest top 10%

(c)

Figure 4.23 – Results of the case study. The model is always ResNet18 and the target adversarial
budget’s size ε= 8/255. (a) Relationship between instance difficulty dε(xi) and its adversarial
budget size in IAT for the CIFAR10 training set. (b) Average weights of different groups in
the CIFAR10 training set during training in SAT. The warmup period is 90 epochs, and SAT is
enabled after that. (c) Training accuracy of different groups on the CIFAR10 training set during
training in SAT. The solid lines and the dashed lines represent the accuracy on the ground
truth and on the adaptive targets, respectively. The warmup period is 90 epochs, and SAT is
enabled after that.

provides an explanation for their success. We also show that the methods that encourage

fitting hard adversarial instances fail to yield truly robust models. In addition to standard ad-

versarial training, we also study fast adversarial training, as well as adversarial fine-tuning with

additional training data. Our results indicate that avoiding fitting hard adversarial instances

also improves the performance in these cases.

A New Perspective on Existing Methods

Existing methods aiming to mitigate adversarial overfitting can be generally divided into two

categories: those that use adaptive inputs, such as [8], and those that rely on adaptive targets,

such as [21, 71]. We show below that both categories implicitly aim to prevent the model from

fitting hard input-target pairs.

We use instance-wise adversarial training (IAT) [8] and self-adaptive training (SAT) [71] as

examples of these two categories. IAT uses an instance-adaptive adversarial budget during

training. That is, it adaptively adjusts the size of the adversarial budget for each training

instance. SAT uses self-supervised adaptive targets instead of the ground truth during training.

We run both algorithms using the settings in their original papers, except that we set the

training duration to be 200 epochs for a consistent comparison.

Let us study how these algorithms adaptively use instances of different difficulty levels. For IAT,

we plot the relationship between the instance difficulty dε(xi) and its adaptive adversarial bud-

get’s size εi in Figure 4.23a, which shows a high correlation (0.884) between them. Specifically,

we find that the hard instances are assigned smaller adversarial budgets for training, which

indicates that IAT prevents the model from fitting the hard adversarial instances. For SAT, we

88

4.3. Adversarial Overfitting

show the average weights assigned to the instances in each group of {Gi }9
i=0 during training in

Figure 4.23b. The hard instances are clearly assigned much smaller weights to calculate the

loss, which indicates that they are downplayed during training. We also provide the average

accuracy of each group during training in Figure 4.23c, given both the ground truth or the

adaptive target. 6 We observe that the hard instances have much higher accuracy on their

adaptive targets compared with the ground truth, while such a difference is much smaller for

the easy instances. Our results thus indicate that the adaptive targets used by SAT are much

easier to fit, which avoids having to directly fit the hard adversarial input-target pairs.

In addition to IAT and SAT, other methods have introduced regularization terms to mitigate

adversarial overfitting, such as [178] and [21]. These regularization terms calculate the distance

between the adversarial output logits and their anchor points. The anchor points can be

considered the adaptive targets, and can be the clean output logits in [178] or a teacher

network’s outputs in [21]. The regularizers used in these methods encourage the adversarial

output logits to be closer to the anchor points other than to the ground truth for the hard

instances. In other words, these methods also use adaptive targets to avoid fitting the hard

input-target pairs.

In contrast to the methods above, [181] proposed an instance-adaptive reweighting strategy

which assigns larger weights to the training instances that PGD breaks in fewer iterations. In

other words, this approach assigns larger weights to the hard adversarial instances, which

contrasts with what our analysis revealed. As a matter of fact, this method was recently shown

to be vulnerable to adaptive attacks [67].

Alternative Training Scenarios

Our findings are applicable to other scenarios than standard adversarial training. In this regard,

we conduct preliminary analyses on two examples: fast adversarial training and fine-tuning a

pre-trained model using additional data.

Fast Adversarial Training

Adversarial training in [98] introduces a significant computational overhead, so it is desirable to

accelerate this method. Our experiments in this section are based on adversarial training with

transferable adversarial examples (ATTA in [182]), which stores the adversarial perturbation

for each training instance as an initial point for the next epoch. We show that adaptively

utilizing the easy and hard training instances not only mitigates adversarial overfitting, but

also significantly improves the performance of the final model.

First, we use a reweighting scheme to assign lower weights to hard instances when calculating

the loss objective. Specifically, each training instance is assigned a weight equaling to the

adversarial output probability of the true label. Then this weight is normalized to ensure

6For the adaptive target t, the prediction o is considered correct if and only if argmaxi ti = argmaxi oi .

89

Empirical Robustness

that the weights in a mini-batch sum to 1. Note that our reweighting scheme is based on the

adversarial output instead of the clean output, because the adversarial output probability will

also be used to calculate the loss objective. As a result, the computational overhead of the

reweighting scheme is negligible.

In addition to reweighting, we follow the idea of SAT [71] and use adaptive targets to improve

the performance. For each training instance (x, y), we maintain an adaptive moving average

target t̃. t̃ is updated in an exponential average manner in each epoch t̃ ← ρt̃+ (1−ρ)o′ where

ρ is the momentum factor and o′ is the output probability of the adversarial input. This is

similar to the target in [71], but, similarly to the reweighting scheme, we use the adversarial

output o′ instead of the clean output o to avoid an increase in computational complexity. The

final adaptive target we use is t =β1y + (1−β)̃t and thus the loss objective is L(f (θ,x+∆),t).

The factor β controls how “adaptive” our target is: β= 0 yields a fully adaptive moving average

target t̃ and β = 1 yields a one-hot target 1y . We provide the pseudocode as Algorithm 4.1

below.

Algorithm 4.1: One epoch of the accelerated adversarial training we use.

Input: training data D, model f , batch size B , PGD step size α, adversarial budget S(p)
ε ,

coefficient ρ, β.
for Sample a mini-batch {xi , yi }B

i=1 ∼D do
∀i , obtain the initial perturbation ∆i as in [182].
∀i , one step PGD update: ∆i ←Π

S
(p)
ε

[
∆i +αsign(O∆iL(f (θ,xi +∆i), yi))

]
.

∀i , update the cached adversarial perturbation ∆i as in [182].
if use reweight then

∀i , weight wi = softmax[f (xi +∆i)]yi

else
∀i , weight wi = 1

end if
∀i , query the adaptive target t̃i and update: t̃i ← ρt̃i + (1−ρ)softmax[f (xi +∆i)].
∀i , the final adaptive target ti =β1yi + (1−β)t̃i

Calculate the loss 1∑B
i wi

∑B
i wiL(f (θ,xi +∆i),ti) and update the parameters.

end for

Our experiment is on CIFAR10 and ε= 8/255, the standard setting where most fast adversarial

training algorithms are benchmarked [30]. The step size α of the perturbation update is 4/255,

same as [182]. The average coefficient ρ and β is 0.9 and 0.1 unless explicitly stated. Our

learning rate scheduler also follows [182]: we train the model for 38 epochs, the learning rate is

0.1 on the first 30 epochs, it decays to 0.01 in the next 6 epochs and further decays to 0.001 in the

last 2 epochs. When we use adaptive targets, the first 5 epochs are the warmup period in which

we use fixed targets. Since the goal here is to accelerate adversarial training, we do not use a

validation set to do model selection as in [118]. We use the standard data augmentation on

CIFAR10: random crop and random horizontal flip. We evaluate the model’s robust accuracy

on the test set by AutoAttack [33], the popular and reliable attack for evaluation.

90

4.3. Adversarial Overfitting

Method Model Epochs Complexity AA

[130] WideResNet34 200 2 41.17
[158] ResNet18 15 4 43.21
[182] WideResNet34 38 4 44.48
[177] WideResNet34 105 3 44.83
[20] WideResNet34 100 7 51.12
Reweighting (Ours) WideResNet34 38 4 46.15
Adaptive Target (Ours) WideResNet34 38 4 51.17

Table 4.6 – Comparison between different accelerated adversarial training methods in robust
test accuracy against AutoAttack (AA). The baseline results are from RobustBench. Complexity
shows the number of forward passes and backward passes in one mini-batch update.

The results are provided in Table 4.6, where the results of the baseline methods are taken

from RobustBench [30]. We also report the number of epochs and the number of forward and

backward passes in a mini-batch update of each method. The product of these two values

indicates the training complexity. We can clearly see that both reweighting and adaptive targets

improve the performance on top of ATTA [182]. Note that our method based on adaptive

targets achieve the best performance while needing only 1/4 of the training time of [20], the

strongest baseline. [158] is the only baseline consuming less training time than ours, but its

performance is much worse than ours; it suffers from catastrophic overfitting when using a

WideResNet34 model.

0 5 10 15 20 25 30 35
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
R

at
e

β = 0.0

β = 0.1

β = 0.3

β = 0.5

β = 1.0

Figure 4.24 – The learning curves with dif-
ferent values of β. The solid curve and the
dashed curve represent the robust test error
and the robust training error, respectively.

0 5 10 15 20 25 30 35
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
R

at
e

ATTA

ATTA+RW

Figure 4.25 – The learning curves of ATTA
with and without reweighting. The solid
curve and the dashed curve represent the
robust test error and the robust training er-
ror, respectively.

We conduct ablation study in the context of fast adversarial training. In Figure 4.24, we change

the value of β in Algorithm 4.1 and plot the corresponding learning curves. Lower the value of

β is, more weights assigned to the adaptive part of the target: β= 0 means we only utilize the

moving average target as the final target, β= 1 means we use the one-hot groundtruth label.

Figure 4.24 clearly shows us the generalization gap decreases with the decrease in β. That is to

91

Empirical Robustness

say, the adaptive target can indeed improve the generalization performance.

Figure 4.25 compare the learning curves of ATTA [182] with and without reweighting. The first

5 epochs are the warmup period. The results confirm that the reweighting scheme can prevent

adversarial overfitting and decrease the generalization gap.

To confirm that the algorithm we use is consistent with our theoretical and empirical analysis,

we study the relationship between the instance difficulty and the weight assigned to them

when using reweighting, as well as the soft target when using adaptive targets. Since the

evaluation of model robustness is based on the PGD attack, the difficulty value here is also

based on the PGD perturbation. In Figure 4.26, we demonstrate the relationship between the

difficulty value and the average assigned weight for each instance when using reweighting.

We calculate the correlation between these two values on the training set, it is 0.8900. This

indicates we indeed assign smaller weights for hard training instances and assign bigger

weights for easy training instances. In Figure 4.27, we show the relationship between the

difficulty value and the average value of the true label’s probability in the soft target when we

use the adaptive targets. Similarly, we calculate the correlation between these two values on

the training set, it is 0.9604. This indicates the adaptive target is similar to the ground-truth

one-hot target for the easy training instances, while the adaptive target is very different from

the ground-truth one-hot target for the hard training instances. This means, adaptive targets

prevent the model from fitting hard training instances while encourage the model to fit the

easy training instances.

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Level

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

W
ei

gh
t A

ss
ig

ne
d

Figure 4.26 – The relationship between the
difficulty value and the weight assigned to
each instances when using reweighting. We
use the average weight across epochs. The
correlation between them is 0.8900.

0.0 0.2 0.4 0.6 0.8 1.0
Difficulty Level

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Co
rre

ct
 L

ab
el

Figure 4.27 – The relationship between the
difficulty value and the average value of the
true label’s probability when using the adap-
tive targets. The correlation between them
is 0.9604.

Adversarial Fine-tuning with Additional Data

We observe that adversarial overfitting occurs in the small learning rate regime. To further

study this, we propose to fine-tune an adversarially pretrained model using additional training

data, because we also use small learning rate to fine-tune a model. While additional training

data was shown to be beneficial in [3, 18], we demonstrate that letting the model adaptively fit

92

4.3. Adversarial Overfitting

the easy and hard instances can further improve the performance.

We conduct experiments on both CIFAR10 and SVHN, using WideResNet34 and ResNet18 mod-

els, respectively. For CIFAR10, we use 500000 images from 80 Million Tiny Images dataset [144]

with pseudo labels in [18] 7. For SVHN, we use the extra held-out set provided by SVHN itself,

which contains 531131 somewhat less difficult samples. When we construct a mini-batch,

half of its instances are sampled from the original training set and the other half are sampled

from the additional data. The experimental settings are the same as [18] except the learning

rate. We tune the learning rate and find that fixing it to 10−3 is the best choice. The model is

fine-tuned for either 1 epoch or 5 epochs, which means that each additional training instance

is used either 5 times or only once. This is because we observed the performance of vanilla

adversarial training to start decaying after 5 epochs. As such, methods requiring many epochs

such as [8] and [71] are not applicable here.

Our first technique, reweighting, is the same as in the previous section. In addition to reweight-

ing, we can also add a KL regularization term measuring the KL divergence between the output

probability of the clean instance and of the adversarial instance. The KL term encourages the

adversarial output to be close to the clean one. In other words, the clean output probability

serves as the adaptive target. For hard instances, the clean and adversarial inputs are usually

both misclassified. Therefore, the clean outputs of these instances constitute simpler targets

compared with the ground-truth labels. Ultimately, the loss objective of a mini-batch {xi , yi }B
i=1

used for fine-tuning is expressed as LF T
(
θ, {xi , yi }B

i=1

)=∑B
i=1 wi

[
L(f (θ,x′i), yi)+λK L(oi ||o′

i)
]

where wi is the adaptive weight when we use re-weighting, or 1/B otherwise. x′i and o′
i

represent the adversarial input and adversarial output, respectively. λ is 6 when using the

regularization term and 0 otherwise.

Duration Method AutoAttack Duration Method AutoAttack

WRN34 on CIFAR10, ε= 8/255 RN18 on SVHN, ε= 0.02
No Fine Tuning 52.01 No Fine Tuning 67.77

1 Epoch

Vanilla AT 54.11

1 Epoch

Vanilla AT 70.81
RW 54.69 RW 70.83
KL 54.73 KL 72.29
RW + KL 54.69 RW + KL 72.53

5 Epoch

Vanilla AT 55.49

5 Epoch

Vanilla AT 72.18
RW 56.41 RW 72.72
KL 56.55 KL 73.17
RW + KL 56.99 RW + KL 73.35

Table 4.7 – Robust accuracy of fine-tuned models against AutoAttack(AA). We conduct ablation
study on both reweighting (RW) and KL regularization (KL).

We use both reweighting and KL regularization to fine-tune the model. Our results are shown

in Table 4.7, where the robust test accuracy is also evaluated by AutoAttack. It is clear that

7Data available for download on https://github.com/yguooo/semisup-adv.

93

https://github.com/yguooo/semisup-adv

Empirical Robustness

both reweighting and the KL regularization term benefit the performance of the finetuned

model. All these results show that avoiding fitting hard adversarial examples helps to improve

the generalization performance in adversarial fine-tuning with additional training data.

4.4 Summary and Broader Impact

In this chapter, we have studied empirical robustness and, in particular, adversarial training,

the most popular method to achieve empirical robustness. We have conducted a theoretical

analysis to understand two of the unsatisfying properties of adversarial training: slow con-

vergence and large generalization gap. Using our theoretical understanding, we designed

algorithms to mitigate these challenges and to explain the existing successful methods.

For adversarial loss landscape, our work is the first (to the best of our knowledge) to discover

its non-smooth properties in the general case. [79] follows our work and points out that

the adversarial loss landscape can be smooth in some special cases, such as binary linear

classification under l2 adversarial attack. We find that, in Figure 4.6, local minima found in

adversarial training are sharper than training on clean inputs. In this regard, [161] proposes

adversarial weight perturbation to enable the optimizer to find flatter local minima in order

to achieve better generalization. Furthermore, Proposition 4.2 indicates scattered gradients

in adversarial training. [38] follows our work and proposes methods for improving gradient

stability. For adversarial overfitting, our work is a theory-backed analysis in the lens of training

data. We have given explanations, based on whether or not to avoid fitting hard adversarial

instances, on the success and failure of existing methods. We have shown that, in particular,

our discovery still holds in different forms of adversarial training. We believe our findings can

be applied in different scenarios and are beneficial for designing new algorithms.

In addition to convergence and generalization, adversarial training still has other challenges

in efficiency. In the next chapter, we discuss the efficiency issues in adversarial training. We

design methods that achieve light models and low computational costs.

94

5 Efficient Robust Learning

In Section 1.3, we point out that there are several challenges in robust learning compared

with the non-robust counterpart: degradation in clean accuracy, slower convergence, larger

generalization gap, larger model capacity requirements, and more training data needs. In

Section 4.2 and 4.3, we conduct theoretical analyses to understand the reason for slower

convergence and for the larger generalization gap. In this chapter, we focus on designing

algorithms to solve or mitigate the challenges we face in robust learning. We improve, in

particular, the efficiency of adversarial training in two aspects: (1) in the decrease of the model

size, and (2) in the reduction of the training time.

In Section 5.1, we extend the Lottery Ticket Hypothesis [45] to the adversarial cases. By introduc-

ing adaptive pruning strategy and the binary initialization scheme, we design the algorithm to

find a robust sub-network inside a large randomly initialized binary network, without updat-

ing its weights. In Section 5.2, we first review the methods for accelerating adversarial training

and the issue of catastrophic overfitting in this context. Based on instance-adaptive step size

in the adversarial example generation, our proposed methods are shown free of catastrophic

overfitting with little computational overhead.

The contents of this chapter are mainly from the following papers. I am the primary contributor

of the first paper, I contribute to the motivation and theoretical proofs of the second paper.

• Chen Liu, Ziqi Zhao, Sabine Süsstrunk, Mathieu Salzmann. “Robust Binary Models by

Pruning Randomly-initialized Networks.” Preprint.

• Zhichao Huang, Yanbo Fan, Chen Liu, Weizhong Zhang, Yong Zhang, Mathieu Salz-

mann, Sabine Süsstrunk, Jue Wang. “Fast Adversarial Training with Adaptive Step Size.”

Preprint.

5.1 Robust Subnetwork inside Randomly-initialized Networks

We introduce methods that contain compressed and robust models by pruning randomly-

initialized networks [96]. Our methods are based on the Strong Lottery Ticket Hypothe-

95

Efficient Robust Learning

sis [113, 183], which studies the non-robust cases. To improve the efficiency and the per-

formance against adversarial attacks, we introduce the adaptive pruning strategy and the

binary initialization scheme as shown in the following sections. We then conduct comprehen-

sive experiments to demonstrate the advantages of our methods.

5.1.1 Lottery Ticket Hypothesis

Our method is motivated by the Lottery Ticket Hypothesis [45] and the Strong Lottery Ticket

Hypothesis [113, 183]. The Lottery Ticket Hypothesis is the hypothesis that overparameterized

neural networks contain sparse subnetworks that can be trained in isolation to achieve com-

petitive performance. These competitive subnetworks are called the winning tickets. The

Strong Lottery Ticket Hypothesis further shows that there exist winning tickets with competitive

performance even without training. Motivated by the Strong Lottery Ticket Hypothesis, we aim

to find the winning tickets that achieve not only competitive performance but also robustness

against adversarial attacks.

Extending the Strong Lottery Ticket Hypothesis to the adversarial cases is meaningful, because

adversarial robustness is shown to require larger model capacity [98, 166], finding the robust

“winning tickets” will compress and robustify the models at the same time. In this regard,

our method follows a fundamentally different philosophy from typical adversarial training:

instead of using adversarial examples to search for the optimal model parameters, we search

for a robust network structure by pruning a randomly-initialized network. Intrinsically, the

resulting learned models are lightweight and robust.

Mathematically, instead of learning the model parameters θ in adversarial training, our meth-

ods learn the binary masks m representing the architectures of the subnetworks. Correspond-

ingly, given the pruning rate r , the dataset {(xi , yi)}N
i=1 and the adversarial budget S(p)

ε , we

search for m that solves the following optimization problem:

min
m

1

N

N∑
i=1

max
∆i∈S(p)

ε

L
(

f (θ¯m,xi +∆i), yi
)

s.t . m ∈ {0,1}n , sum(m) = (1− r)n.

(5.1)

Here, n is the number of parameters and sum indicates the function that calculates the sum-

mation of all the elements in a vector. In contrast to adversarial training, we do not optimize

the model parameters θ in (5.1); instead θ represents the randomly-initialized parameters that

are kept fixed during optimization.

Since the mask m is a discrete vector, it cannot be directly optimized by gradient-based

methods. To overcome this, we replace it with a continuous “score” variable, s ∈ Rn , from

which we calculate the mask as

m = mask(s,r) , (5.2)

where mask is a binarization function, which constructs a binary mask from the continuous-

96

5.1. Robust Subnetwork inside Randomly-initialized Networks

valued scores s based on the pruning strategy and the required pruning rate r . Specifically, the

pruning strategy first determines the number of parameters retained in each layer. Then, for a

layer assigned m post-pruned parameters, we retain the parameters with the top m highest

scores and prune the rest.

To update the scores s, we use the same edge-popup strategy as in [113], and we first generate

adversarial perturbations of the input using PGD as in [46]. The strategy works by exploiting

the mask function to construct the binary mask in the forward pass, while treating mask as

the identity function in the backward pass. This is called straight-through estimator [11] and

allows the gradient to pass through and update all elements in the scores s, although we only

use a subnetwork in the forward pass. Note that we need the gradient of the score ∂L
∂s only in

the outer minimization of (5.1). Therefore, the approximation of the function mask in the

back-propagation does not affect solving the inner maximization in (5.1), which utilizes ∂L
∂∆

instead. In practice, we can effectively generate adversarial examples by PGD.

We provide the pseudo-code of the edge pop-up algorithm for adversarial robustness as

Algorithm 5.1, where we use PGD to generate adversarial attacks. Π
S

(p)
ε

mean projection into

the adversarial budget S(p)
ε .

Algorithm 5.1: Edge pop-up algorithm for adversarial robustness.

Input: training set D, batch size B , PGD step size α and iteration number T , adversarial

budget S(p)
ε , pruning rate r , mask function mask, the optimizer.

Random initialize the model parameters θ and the scores s.
for Sample a mini-batch {xi , yi }B

i=1 ∼D do
for i = 1, 2, ..., B do

Sample a random noise δ within the adversarial budget S(p)
ε .

x(0)
i = xi +δ

for j = 1, 2, ..., T do

x(j)
i = x(j−1)

i +αOx(j−1)
i

L(f (θ¯mask(s,r),x(j−1)
i), yi)

x(j)
i = xi +ΠS

(p)
ε

(
x(j)

i −xi

)
end for

end for
Calculate the gradient g = 1

B

∑B
i=1OsL(f (θ¯mask(s,r),x(T)

i), yi)
Update the score s using the optimizer.

end for
Output: the pruning mask: mask(s,r).

5.1.2 Adaptive Pruning

As shown in (5.1) in the previous section, how the function mask works, i.e. the pruning

strategy, can greatly affect the performance and stability of the edge-popup method, partic-

ularly in the case of adversarial training, as adversarial training solves a more challenging

optimization problem than training on clean samples [93]. For the edge-popup method in the

97

Efficient Robust Learning

non-adversarial cases, [113] uses the fixed pruning rate for each layer. In this adversarial cases,

we found this pruning strategy does not work well when the pruning rate r is high. To tackle

this issue, we introduce an adaptive pruning strategy that relies on an adaptive rate for layers

of different sizes. We will later show the adaptive pruning strategy is a necessary ingredient to

achieve competitive performance in the context of adversarial attacks.

Let use consider an L-layer neural network with n1, n2, ..., nL trainable parameters, and we

retain m1, m2, ..., mL correspondingly after pruning. Therefore, the fixed pruning rate strategy

means 1− r = m1
n1

= m2
n2

= ... = mL
nL

. Since for each layer i , we select mi trainable parameters

out of ni , the total number of combinationsΠL
i=1

(
ni

mi

)
is the size of the search space for sub-

networks. The following theorem indicates that the fixed pruning rate strategy is the strategy

which approximates the maximization of the total number of combinations.

Theorem 5.1 Consider an L-layer neural network with n1, n2, ..., nL parameters in each layer,

we retain m1, m2, ..., mL parameters after pruning. Given a predefined pruning rate r =
1−

∑L
i=0 mi∑L
i=0 ni

, the optimal numbers of post-pruning parameters {mi }L
i=1 that maximizing the total

number of combinationsΠL
i=1

(
ni

mi

)
satisfy the following inequality:

∀1 ≤ j ,k ≤ L,

∣∣∣∣m j

n j
− mk

nk

∣∣∣∣< 1

n j
+ 1

nk
(5.3)

Specifically, we let nk in (5.3) be the largest layer in the network without the loss of generality,

we then have the following inequality:

∀1 ≤ j ≤ k ≤ L, j 6= k,

∣∣∣∣m j − mk

nk
n j

∣∣∣∣< n j

nk
+1 ≤ 2 (5.4)

m j is the number of retained parameters and thus an integer, so Theorem 5.1 indicates the

pruning rate of each layer is close to each other when we aim to maximize the total number

of combinations. That is to say, the fixed pruning rate strategy, i.e., 1− r = m1
n1

= m2
n2

= ... = mL
nL

,

is an approximation to maximize the search space for sub-networks. We provide its proof as

follows.

Proof: We pick arbitrary 0 < j ,k ≤ L and generates two sequences {m̂i }L
i=1, {m̃i }L

i=1 as follows:

m̂ j = m j −1,m̂k = mk +1,m̂i = mi∀i 6= j , i 6= k.

m̃ j = m j +1,m̃k = mk −1,m̃i = mi∀i 6= j , i 6= k.
(5.5)

Consider {mi }L
i=1 the optimality that maximizes the combination numberΠL

i=1

(
ni

mi

)
. We have

98

5.1. Robust Subnetwork inside Randomly-initialized Networks

the following inequality:

1 >
ΠL

i=1

(
ni

m̂i

)

ΠL
i=1

(
ni

mi

) = m j

n j −m j +1

nk −mk

mk +1
, 1 >

ΠL
i=1

(
ni

m̃i

)

ΠL
i=1

(
ni

mi

) = n j −m j

m j +1

mk

nk −mk +1
(5.6)

Reorganize the inequalities above, we obtain:

−
(

1

nk
+ mk −m j +1

n j nk

)
< mk

nk
− m j

n j
<

(
1

n j
+ m j −mk +1

n j nk

)
(5.7)

Consider 1 ≤ m j ≤ n j and 1 ≤ mk ≤ nk , we have
mk−m j+1

n j nk
≤ 1

n j
and

m j−mk+1
n j nk

≤ 1
nk

. As a result,

we have the following inequality:

∀ j ,k,−
(

1

n j
+ 1

nk

)
< mk

nk
− m j

n j
<

(
1

n j
+ 1

nk

)
(5.8)

This concludes the proof. �

The fixed pruning rate strategy is intuitive, it simply applies the same pruning rate to each layer

without the consideration of their topology. In practice, the number of parameters in different

layers can vary widely. For example, residual networks [63] have much fewer parameters

in the first and last layers than in the middle ones. Using the fixed pruning rate thus yields

very few parameters after pruning within such small layers. For example, when r = 0.99,

only 17 parameters are left after pruning for a convolutional layer with 3 input channels, 64

output channels and a kernel size of 3. Such a small number of parameters has two serious

drawbacks: 1) It greatly limits the expression power of the network; 2) it makes the edge-popup

algorithm less stable, because adding or removing a single parameter then has a large impact

on the network’s output. This instability becomes even more pronounced in the presence of

adversarial samples, because the gradients of the model parameters are more scattered than

when training on clean inputs [93].

To overcome these drawbacks, we study an alternative strategy aiming to maximize the total

number of paths from the input to the output in the pruned network. For a feedforward

network, the total number of such paths is upper bounded byΠL
i=1mi . Note that, for convo-

lutional layers, we do not repeatedly count the paths of the same parameters but through

different pixels of the feature maps. The following theorem demonstrates that the pruning

strategy that maximizes this upper bound consists of retaining the same number of parame-

ters in every layer, except for the layers that initially have too few parameters, for which all

parameters should then be retained.

99

Efficient Robust Learning

Theorem 5.2 Consider an L-layer feedforward neural network with n1,n2, ...,nL parameters in

its successive layers, from which we retain m1,m2, ...,mL parameters, respectively, after pruning.

Given a predefined sparsity ratio r = 1−
∑L

i=1 mi∑L
i=1 ni

, the numbers of post-pruning parameters {mi }L
i=1

that maximize the upper bound of the total number of the input-output pathsΠL
i=1mi have the

following property: ∀1 ≤ j ≤ L, m j satisfies either of the following two conditions:

1) m j = n j ; 2) ∀1 ≤ k ≤ L,m j ≥ mk −1.

The two conditions in Theorem 5.2 mean we retain the same number of parameters for each

layer except for ones totally unpruned. We refer to the corresponding pruning strategy as the

fixed number of parameters. We prove Theorem 5.2 by contradiction.

Proof: We assume the optimal {mi }L
i=1 does not satisfy the proporty mentioned in Theorem 5.2.

This means ∃1 ≤ j ≤ L such that m j < n j and ∃1 ≤ k ≤ L,m j < mk −1. Based on this, we then

construct a new sequence {m̂i }L
i=1 as follows:

m̂ j = m j +1;m̂k = mk −1;∀i 6= j , i 6= k,m̂i = mi . (5.9)

We then calculate the ratio ofΠL
i=1m̂i andΠL

i=1mi :

ΠL
i=1m̂i

ΠL
i=1mi

= (m j +1)(mk −1)

m j mk
= 1+ mk −m j −1

m j mk
> 1 (5.10)

The last inequality is based on the assumption m j < mk −1. (5.10) indicatesΠL
i=1m̂i >ΠL

i=1mi ,

which contradicts the optimality of {mi }L
i=1. �

While this fixed number of parameters strategy addresses the problem of obtaining too small

layers arising in the fixed pruning rate one, it suffers from overly emphasizing the influence

of the small layers. That is, the smaller layers end up containing too many parameters. In

the extreme case, some layers are totally unpruned when the pruning rate r is small. This is

problematic in our settings, since the model parameters are random and not updated. The

unpruned layers based on random parameters provide a large amount of noise in the forward

process. Furthermore, this strategy significantly sacrifices the expression power of the big

layers.

In other words, the two strategies discussed above are two extremes: the fixed pruning rate one

suffers when r is big, whereas the fixed number of parameters one suffers when r is small. To

address this, we propose a strategy in-between these two extremes. Specifically, we determine

the number of parameters retained in each layer by solving the following system of equations:

1− r =
∑L

i=1 mi∑L
i=1 ni

,
m1

nγ
1

= m2

nγ
2

= ... = mL

nγ

L

, (5.11)

100

5.1. Robust Subnetwork inside Randomly-initialized Networks

where γ ∈ [0,1] is a hyper-parameter controlling the trade-off between the two extreme cases.

When γ= 0, the strategy (5.11) is close to the fixed number of parameters one. When γ= 1,

the strategy becomes the fixed pruning rate one. By setting 0 < γ< 1, we can retain a higher

proportion of parameters in the smaller layers without sacrificing the big layers too much. We

call this strategy adaptive pruning.

As discussed above, the strategy obtained with γ= 1 tends to fail with a big r , while the strategy

resulting from setting γ= 0 tends to fail with a small r . This indicates that we need to assign

small values of γ given a big r and big values of γ otherwise. We validate this and study the

influence of γ on the results of our approach in our experiments.

5.1.3 Binary Initialization Scheme

The empirical studies of [113] demonstrate the importance of the initialization scheme

on the performance of the pruned network. To this end, they suggest the Signed Kaim-

ing Constant initialization: the parameters in layer i are uniformly sampled from the set{
−

√
2

li−1(1−r) ,
√

2
li−1(1−r)

}
, where li−1 represents the fan-out of the previous layer. Correspond-

ingly, the scores s are initialized based on a uniform distribution U
[
−

√
1

li−1
,
√

1
li−1

]
.

The magnitude of the Signed Kaiming Constant initialization is carefully calculated to keep the

variance of the intermediate activations stable from the input to the output. In modern deep

neural networks, the convolutional layers, potentially together with activation functions, are

typically followed by a batch normalization layer. In [113] and our settings, these batch nor-

malization layers only estimate the running statistics of their inputs, they do not have trainable

parameters representing affine transformations. Because of these batch normalization layers,

the magnitudes of the convolutional layers do not affect the outputs of the “convolution-batch

norm” blocks. Furthermore, the fully-connected layers on top of the convolutional ones are

homogeneous1 because their bias terms are always initialized to zero. The activation functions

we use, such as ReLU or leaky ReLU [97], are also homogeneous. Therefore, the magnitudes of

parameters in these fully-connected layers do not change the predicted labels of the model.

Based on the analysis above, we can conclude that the magnitudes of the model parameters at

initialization do not change the predicted labels and thus the expression power of the network.

Therefore, we propose to scale the model parameters θ in all linear layers, i.e., convolutional

and fully-connected ones, so that they are all sampled from {−1,+1}. Correspondingly, the

scores s are initialized based on a uniform distribution [−a, a] where a is a factor controlling

the variance. Binary initialization is beneficial to model compression and acceleration, since

there are no longer multiplication operations in linear layers.

Without the loss of generality, we consider ri n-channel input feature maps of size s, the size

of the convolutional kernel is c and the convolutional layer outputs rout channels. Table 5.1

demonstrate the complexity in FLOP operations in both full-precision and binary, both dense

1We call a function f homogeneous if it satisfies ∀x ∀a ∈R+, f (ax) = a f (x).

101

Efficient Robust Learning

(unpruned) and sparse (pruned) “Convolution-BatchNorm-ReLU” blocks. Since our model

includes a batch normalization layer, we report the FLOP complexity in both the training

mode and the evaluation mode. Theoretically, for the RN34 models we use in this paper,

binary initialization can save approximately 45% and 32% FLOP operations compared with its

full precision counterpart in the training time and inference time, respectively. Since we use

irregular pruning in our method, fully take advantage of this improvement needs lower-level

and hardware customization.

Network Full Precision Binary

Forward
Training 2(1− r)c2s2ri nrout +11s2rout (1− r)c2s2ri nrout +11s2rout

Evaluation 2(1− r)c2s2ri nrout +4s2rout (1− r)c2s2ri nrout +4s2rout

Backward 4(1− r)c2s2ri nrout +4s2rout + c2ri nrout 3(1− r)c2s2ri nrout +4s2rout

Table 5.1 – The complexity in FLOP operations of the sparse “Convolution-BathNorm-ReLU”
block in both full precision and binary case. For the forward pass, we consider both the
training mode and the evaluation mode.

Although scaling the model parameters does not affect the expression power of the network,

it does change the optimization landscape of the problem (5.1), because the softmax cross-

entropy function L used to calculate the loss objective is not homogeneous. Compared with

the Signed Kaiming Constant method, after multiplying the parameters initialized in the

last layer by
√

lL−1(1−r)
2 , the output logits fed to the softmax cross-entropy function are also

multiplied by the same factor. In practice,
√

lL−1(1−r)
2 À 1 greatly increases the magnitude of

the output logits. Large logits which are fed to the softmax cross-entropy function L will cause

numerical instability and thus greatly worsen the optimization performance.

To address this issue, we propose to add a 1-dimensional batch normalization layer at the

end of model, just before the softmax cross-entropy function. We call this the last batch

normalization (LBN). This normalization layer can cancel out the multiplication factor applied

to the weights in the last layer and thus facilitates the optimization. We consider an L-layer

neural network and each layer has l1, l2, ..., lL neurons. Let u ∈ RlL−1 , W ∈ RlL×lL−1 , o ∈ RlL be

the output of the penultimate’s output, the weight matrix of the last fully-connected layer and

the last layer’s output, respectively. By definition o = Wu. In addition, we use y ∈ {1,2, ..., lL}

to denote the label of the data and omit the bias term of the last layer since it is initialized as

0 and is not updated. For the 1-dimensional batch normalization layer, we use b ∈ RlL and

v ∈RlL to represent the running mean and running standard deviation, respectively.

Therefore, the loss objective Lwo and its gradient of the model without the 1-dimensional

batch normalization layer is:

Lwo =−log
eoy∑lL

i=1 eoi

,
∂Lwo

∂o j
= eo j∑lL

i=1 eoi

−1(j = y) (5.12)

Here 1 is the indicator function. Correspondingly, the loss objective Lwi and its gradient of

102

5.1. Robust Subnetwork inside Randomly-initialized Networks

the model with the 1-dimensional batch normalization layer is:

Lwi =−log
e(oy−by)/vy∑lL
i=1 e(oi−bi)/vi

,
∂Lwi

∂o j
= 1

v j

(
e(oy−by)/vy∑lL
i=1 e(oi−bi)/vi

−1(j = y)

)
(5.13)

Now we consider the case when the model parameter W is multiplied by a factor α À 1:

W′ :=αW and assume the output of the penultimate layer is unchanged. Based on this, the

new output of the last layer is o′ =αo. For the model with the normalization layer, the new

statistics are b′ =αb and v′ =αv. In this regard, we can then recalculate the gradient of the

loss objectives in both cases as follows:

∂L′
wo

∂o′
j

= eo′
j∑lL

i=1 eo′
i

−1(j = y) = eαo j∑lL
i=1 eαoi

−1(j = y)

∂L′
wi

∂o′
j

= 1

v′j

(
e(o′

y−b′
y)/v′

y∑lL
i=1 e(o′

i−b′
i)/v′

i

−1(j = y)

)
= 1

αv j

(
e(oy−by)/vy∑lL
i=1 e(oi−bi)/vi

−1(j = y)

) (5.14)

We first study the case without the normalization layer. The first term eαo j∑lL
i=1 eαoi

of the gra-

dient
∂L′

wo
∂o′

j
converges to 1(j = argmaxi oi) as increases. For correctly classified inputs,

∂L′
wo

∂o′
j

converges to 0 exponentially with α. In addition, the gradient
∂L′

wo
∂u = W′T ∂L′

wo
∂o′

j
= αWT ∂L′

wo
∂o′

j

also vanish with α. Since
∂L′

wo
∂u is backward to previous layers, it leads to gradient vanishing.

For incorrectly classified inputs,
∂L′

wo
∂o′

j
converges to 1(j = argmaxi oi)−1(j = y), which is a

vector with y-th element being −1, the element corresponding to the output label being +1

and the rest elements being 0. In this case, the gradient backward
∂L′

wo
∂u = αWT ∂L′

wo
∂o′

j
will be

approximately multiplied by α, causing gradient exploding.

By contrast, in the case of the model with the normalization layer,
∂L′

wi
∂o′

j
= 1

α
∂Lwi
∂o j

. The factor

1
α is canceled out when we calculate

∂L′
wi

∂u = W′T ∂L′
wi

∂o = WT ∂Lwi
∂o . This means the gradient

backward remains unchanged if we use the 1-dimensional batch normalization layer, which

maintains the stability of training if we scale the model parameters.

In addition to the gradient of the intermediate activations, the gradient of the score s in

(5.1) also remains unchanged on the network with the last batch normalization layer. By

contrast, the gradient of the score s will vanish or explode without the last batch normalization

layer. Since the score variable s is initialized based on a distribution of zero mean and a fixed

predefined variance a, unstable gradient will make the performance sensitive to the choice of

a and thus the hyper-parameter tuning more difficult.

In our experiments in the following section, we show that the last batch normalization layer

can greatly improve the performance of both the Signed Kaiming Constant method and our

103

Efficient Robust Learning

Binary Initialization one. Furthermore, it also makes the performance more robust to different

score s initializations.

5.1.4 Experimental Results

In this section, we present extensive experimental results to validate our approach. First,

we describe an ablation study and sensitivity analysis to evaluate the performance of our

proposed methods. Then, we compare our performance with existing works, which achieve

robustness and compression in either full-precision or binary cases. We also include adversar-

ial training [98] as a baseline. Finally, we analyze the structure of the pruned networks that we

obtain. We show some interesting patterns of these post-pruning networks, suggesting the

potential of our approach for effective compression.

Unless explicitly stated otherwise, we use a 34-layer Residual Network (RN34) [63], it is the

same as the one in [113, 128] and has 21265088 trainable parameters. 2 The bias terms of

all linear layers are initialized 0, and are thus disabled. We also disable the learnable affine

parameters in batch normalization layers, following the setup of [113].

We use the CIFAR10 dataset [83] in the ablation study; we also use the CIFAR100 dataset [83]

and ImageNet100 [35] in the comparison with the baselines. All three datasets contain colored

images, the resolution is 32×32 for CIFAR10, CIFAR100 and 224×224 for ImageNet100. For

CIFAR10 and CIFAR100 datasets, we train the models for 400 epochs and use a cosine annealing

learning rate scheduler with an initial value of 0.1 for the SGD optimizer with a weight decay

factor equaling to 5×10−4. For ImageNet100 dataset, we train the models for 100 epochs

instead. We employ PGD attacks [98] to generate adversarial examples during training, but we

use AutoAttack (AA) [33] for our robustness evaluation. While PGD is faster than AutoAttack

and thus suitable for training, AutoAttack is the current state-of-the-art attack method, and

we thus consider it a more reliable metric of robustness. We use an l∞ norm-based adversarial

budget, and the perturbation strength ε is 8/255 for CIFAR10, 4/255 for CIFAR100 and 2/255

for ImageNet100. Finally, considering adversarial overfitting [118], we use a validation set

consisting of 2% of the training data to select the best model during training.

Ablation Study and Sensitivity Analysis

Pruning Strategy and Pruning Rates We compare the performance of our method under

different pruning rates r and adaptive pruning strategies with different values of γ. We focus

on binary initialization and networks with the last batch normalization. The scores s are

initialized from a uniform distribution U [−0.01,0.01].

Our results are summarized in Table 5.2, in which we include 7 different values of the pruning

rate r and 7 different values of γ in the adaptive pruning strategy. First, we notice that the

2Note that the RN34 used in these papers and ours differs from the WideRN34-10 used in [98, 161], which is
larger and has almost twice the number of trainable parameters.

104

5.1. Robust Subnetwork inside Randomly-initialized Networks

best performance is achieved when r = 0.99 and γ= 0.1. r = 0.8 performs the best under the

fixed pruning rate strategy (γ = 1). Compared with the vanilla (e.g., non-adversarial) case

in [113], which uses the fixed pruning rate strategy and shows that r = 0.5 achieves the best

clean accuracy, the best performance for robust accuracy is achieved at a much higher pruning

rate. This interesting observation is consistent with the existing work [29], which shows that

adversarial training implicitly encourages sparse convolutional kernels.

Prune Strategy r = 0.5 r = 0.8 r = 0.9 r = 0.95 r = 0.99 r = 0.995 r = 0.998
γ= 0.0 2.16 6.86 23.01 41.61 44.60 40.70 34.97
γ= 0.1 4.35 15.03 28.12 42.65 44.88 40.97 33.09
γ= 0.2 8.01 19.21 27.99 43.72 42.92 40.52 32.99
γ= 0.5 9.21 32.70 42.84 43.62 42.45 40.55 30.08
γ= 0.8 28.90 41.51 43.64 43.88 39.12 33.61 28.07
γ= 0.9 39.09 41.71 43.07 42.28 38.68 33.89 17.43
γ= 1.0 42.85 43.23 42.13 41.12 34.57 26.67 20.56

Table 5.2 – Robust accuracy (in %) on the CIFAR10 test set under different pruning rates r and
values of γ in adaptive pruning. The best result for each pruning rate is marked in bold.

Table 5.2 further demonstrates the benefits of our proposed adaptive pruning strategy. For

larger pruning rates r , a smaller value of γ prevails; for smaller pruning rates, a bigger value of

γ prevails. This is consistent with our analysis in Section 5.1.2. In particular, compared with

the best results for a fixed pruning rate strategy (γ= 1.0, r = 0.8), which is the pruning strategy

in [113], our best adaptive pruning (γ= 0.1, r = 0.99) achieves not only better performance

but also a higher pruning rate. That is to say, using our adaptive pruning strategy improves

both robustness and compression rates.

In Figure 5.1, we provide the learning curves of the experiments in Table 5.2 when r = 0.99 and

when r = 0.5. Regardless of the pruning rate r , these curves indicate the importance of the

pruning strategy: a well chosen γ value not only improves the performance but also makes

training more stable.

Initialization Scheme and Last Batch Normalization We now compare different initialization

schemes and how the last batch normalization layer affects the performance. We focus on

the binary initialization first and report the performance of models with and without the last

normalization layer under different values of a, the hyper-parameter controlling the variance

of the initial score s. Based on the results of Table 5.2, we use the adaptive pruning strategy

with γ= 0.1 and the prune rate r = 0.99.

The results are listed in Table 5.3 and clearly show that the last batch normalization layer (LBN)

greatly improves the performance. Furthermore, LBN makes performance much less sensitive

to the initialization of the scores, which in practice facilities the hyper-parameter selection.

We then compare the performance of the binary initialization with the Signed Kaiming Con-

stant. We fix the pruning rate to r = 0.99 and employ an adaptive pruning strategy with

different values of γ. Our results are summarized in Table 5.4. For binary initialization, we use

105

Efficient Robust Learning

0 50 100 150 200 250 300 350 400
Iterations

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(a) γ= 0.1, r = 0.99

0 50 100 150 200 250 300 350 400
Iterations

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(b) γ= 0.5, r = 0.99

0 50 100 150 200 250 300 350 400
Iterations

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(c) γ= 0.8, r = 0.99

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(d) γ= 1.0, r = 0.99

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(e) γ= 0.1, r = 0.5

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(f) γ= 0.5, r = 0.5

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(g) γ= 0.8, r = 0.5

0 50 100 150 200 250 300 350 400
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

training accuracy
testing accuracy
validation accuracy

(h) γ= 1.0, r = 0.5

Figure 5.1 – Learning curves of our proposed method under adaptive pruning strategy with
different values of pruning ratio r and pruning strategies represented by γ.

Model
Value of a in score initialization

0.001 0.01 0.1 1
no LBN 33.08 39.96 41.01 31.04

LBN 45.06 44.88 44.63 44.41

Table 5.3 – Robust accuracy (in %) on the CIFAR10 test set for models with and without the last
batch normalization layer (LBN) under different values of a for score s initialization. The best
result for each model architecture is marked in bold.

the optimal initialization scheme of the score s from Table 5.3; for Signed Kaiming Constant

initialization, we use the optimal setting from [113] to initialize s.

Prune Strategy
Signed Kaiming Constant Binary Initialization

no LBN LBN no LBN LBN
γ= 0.0 39.38 42.83 40.94 44.65
γ= 0.1 39.62 45.01 41.01 45.06
γ= 0.2 36.66 45.04 37.85 41.58
γ= 0.5 39.98 42.64 40.61 39.95
γ= 0.8 37.96 41.71 35.15 38.95
γ= 0.9 34.75 40.14 35.64 35.81
γ= 1.0 36.88 39.32 30.02 30.62

Table 5.4 – Robust accuracy (in %) on the CIFAR10 test set with the Signed Kaiming Con-
stant and the binary initialization. We include models both with and without the last batch
normalization layer (LBN). The best results are marked in bold.

106

5.1. Robust Subnetwork inside Randomly-initialized Networks

Based on the results in Table 5.4, we can conclude that the binary initialization achieves

a comparable performance with the Signed Kaiming Constant. In addition, the last batch

normalization layer can also benefit performance when using the Signed Kaiming Constant.

In Table 5.5 below, we demonstrate that these conclusions also hold in the non-adversarial

cases, i.e., ε= 0. This indicate the broad applicability of our methods.

Prune Strategy
Kaiming Constant Initialization Binary Initialization

no LBN LBN no LBN LBN
γ= 0.0 93.25 93.99 93.64 94.05
γ= 0.1 92.12 93.98 93.84 93.99
γ= 0.2 92.96 94.35 89.27 93.87
γ= 0.5 93.44 94.29 90.85 94.00
γ= 0.8 90.93 92.57 90.37 92.42
γ= 0.9 91.31 92.26 90.51 90.12
γ= 1.0 89.27 89.12 87.58 89.03

Table 5.5 – The accuracy (in %) of vanilla trained models on the CIFAR10 test set under various
settings. The best result for each setting is marked in bold and the second best is underlined.

Comparison with Existing Methods

CIFAR10 and CIFAR100

In this section, we compare our approach with the state-of-the-art methods targeting model

compression and robustness. Specifically, we include FlyingBird, FlyingBird+[22], Bayesian

Connectivity Sampling (BCS) [107], Robust Scratch Ticket (RST) [46], HYDRA [128] and

ATMC [58], as well as adversarial training (AT) [98] with early stopping [118]. Given our

previous results, we fix the pruning rate to r = 0.99. For adversarial training, we use the full

RN34 model and some smaller networks with approximately the same number of parameters

as our pruned models. These smaller networks have the same architecture as the RN34 ex-

cept that they have fewer channels. Table 5.6 demonstrates the architecture details of these

networks. We follow the official implementations of all the baselines, and thus, unlike in our

method, the normalization layers in all the baselines that update model parameters have an

affine transformation with trainable parameters.

ATMC supports quantization but its parameterization introduces learnable quantized values.

That is, the models obtained by ATMC’s 1-bit quantization have only two parameter values

in each layer; these values are different from layer to layer and are not necessarily −1 and

+1. This means that, compared with the binary networks obtained with our method, those

from ATMC have more flexibility. Nevertheless, we still include ATMC for comparison in the

case of binary networks. Similarly to our method, RST does not update the model parameters.

It initializes the model parameters with full-precision values, and we thus only provide full-

precision results for RST. The other baselines and AT are not designed for quantization and

do not inherently support binary networks. To address this, we use BinaryConnect [28] to

107

Efficient Robust Learning

Layer Name RN34 Small RN34-γ0.1 Small RN34-γ1.0
Conv1 3×3, 64 3×3, 23 3×3, 6

Block1

[
3 × 3, 64
3 × 3, 64

]
× 3

[
3 × 3, 23
3 × 3, 23

]
× 3

[
3 × 3, 6
3 × 3, 6

]
× 3

Block2

[
3 × 3, 128
3 × 3, 128

]
× 4

[
3 × 3, 25
3 × 3, 25

]
× 4

[
3 × 3, 13
3 × 3, 13

]
× 4

Block3

[
3 × 3, 256
3 × 3, 256

]
× 6

[
3 × 3, 27
3 × 3, 27

]
× 6

[
3 × 3, 26
3 × 3, 26

]
× 6

Block4

[
3 × 3, 512
3 × 3, 512

]
× 3

[
3 × 3, 29
3 × 3, 29

]
× 3

[
3 × 3, 51
3 × 3, 51

]
× 3

global average pool, fully connected layer to the output, softmax
#Params 21265088 201078 216360

Table 5.6 – RN34 and its variants that have similar layer sizes as ones obtained by different γ
values. 3×3,23 means the kernel size is 3×3 and there are 23 output channels.

replace the model’s linear layers so that their parameters are binary. BinaryConnect generates

binarized model parameters by taking the sign of the weights during the forward pass, and

uses straight-through estimation [11] for gradient calculation.

Our method uses binary initialization and the last batch normalization layer, so the models we

obtained are inherently binary. In addition to using PGD-based adversarial examples, we ac-

celerate our method by using adversarial examples based on FGSM [?] with ATTA [182]. FGSM

with ATTA generates adversarial examples by one-step attacks with accumulated perturbations

across epochs. This is much cheaper than the 10-step PGD attacks.

Our main results on CIFAR10 and CIFAR100 are summarized in Table 5.7, where we report

the robust accuracy under AutoAttack (AA). Our method using the adaptive pruning strategy

(p = 0.1) achieves better performance than all baselines in case of binary models. We also

achieves comparable performance to methods that aim to compress full-precision robust

models. Furthermore, our method achieves results comparable with AT on the original un-

pruned models that has 100× more trainable parameters. In addition, our method based on

accelerated adversarial training also achieves better performance than all baselines in the case

of binary networks.

In Table 5.7, we report the results of all baselines using their default settings in architecture

and pruning strategy based on publicly available codes. 3 The exceptions are that we also

include adaptive pruning (p = 0.1) for HYDRA, ATMC, and the last batch normalization layer

for RST, because we noticed such changes to improve their performance. For all baselines

except RST, the last normalization layer does not improve the performance; it even hurts the

performance in the full-precision cases. This is because these baselines (except RST) update

3Publicly available code on GitHub: FlyingBird/FlyingBird+: VITA-Group/Sparsity-Win-Robust-Generalization
BCS: IGITUGraz/SparseAdversarialTraining RST: RICE-EIC/Robust-Scratch-Ticket HYDRA: inspire-group/hydra
ATMC: VITA-Group/ATMC All the codes are free to use for non-commerical purposes.

108

https://github.com/VITA-Group/Sparsity-Win-Robust-Generalization
https://github.com/IGITUGraz/SparseAdversarialTraining
https://github.com/RICE-EIC/Robust-Scratch-Ticket
https://github.com/inspire-group/hydra
https://github.com/VITA-Group/ATMC

5.1. Robust Subnetwork inside Randomly-initialized Networks

Method Architecture
Pruning CIFAR10 CIFAR100
Strategy FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98
AT Small RN34 Not Pruned 38.81 26.03 27.68 15.85
FlyingBird RN34 Dynamic 45.86 34.37 35.91 23.32
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64
BCS RN34 Dynamic 43.51 - 31.85 -
RST RN34 p = 1.0 34.95 - 21.96 -
RST RN34-LBN p = 1.0 37.23 - 23.14 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60
ATMC RN34 Global 34.14 25.62 25.10 11.09
ATMC RN34 p = 0.1 34.58 24.62 25.37 11.04
Ours RN34-LBN p = 0.1 - 45.06 - 34.83
Ours(fast) RN34-LBN p = 0.1 - 40.77 - 34.45

Table 5.7 – Robust accuracy (in %) on the CIFAR10 and CIFAR100 test sets for the baselines and
our proposed method. “RN34-LBN” represents ResNet34 with the last batch normalization
layer. “Small RN34” refers to Small RN34-p0.1 in Table 5.6 The pruning rate is set to 0.99 except
for the not-pruned methods. The best results for the full-precision (FP) models are underlined;
the best results for the binary models are marked in bold.

the model parameters w. In the full precision cases, the magnitude of w, and thus of the

output logits, is automatically adjusted during training. The issue resulting from large output

logits that we pointed out in Section 5.1.3 does thus not happen in these cases, so the last

batch normalization layer is not necessary. In practice, we observed this layer to slow down

the training convergence of these models. For the pruning strategy, the proposed adaptive

pruning strategy (p = 0.1) consistently achieves better performance than the fix pruning rate

strategy (p = 1.0) and than global pruning. FlyingBird, FlyingBird+ and BCS dynamically

assign retrained parameters during training, which has similar benefits to adaptive pruning

but at the cost of training efficiency [22].

To more comprehensively compare the baseline methods with our methods, we further study

the baseline methods with additional settings such as adding the last batch normalization

layer, changing the pruning strategy, using different AT methods, and provide a complete set

of comparison results in Table 5.8. First, the last batch normalization layer (LBN) does not

improve the baselines that update model parameters in the full-precision setting, because the

magnitude of the output logits can be automatically adjusted in these cases. There is no need to

insert another normalization layer. For FlyingBird(+), BCS and HYDRA, adding LBN to a binary

network will most likely be beneficial to a better performance. This observation is consistent

with our claim in Section 5.1.3. As for ATMC, it is actually not pruning a truly binary network

since the value of model parameters are trainable and not necessarily +1 or −1, so adding

LBN might not be useful in this case. For the pruning strategy, adaptive pruning strategy with

p = 0.1 always has better performance than the fixed pruning rate strategy, i.e., p = 1.0. This

is because the pruning rate here is very high r = 0.99, and we need a small value of p based

109

Efficient Robust Learning

on the analysis in Section 5.1.2. Furthermore, we provide the performance of TRADES [178],

which trades clean accuracy for adversarial accuracy. Compared with adversarial training (AT),

TRADES achieves competitive performance in the full precision cases, but it performance

degrades significantly in the binary cases.

Method Architecture
Pruning CIFAR10 CIFAR100
Strategy FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98
TRADES RN34 Not Pruned 49.07 30.18 35.28 29.64
TRADES RN34-LBN Not Pruned 48.27 37.91 31.23 31.26
FlyingBird RN34 Dynamic 45.86 34.37 35.91 22.49
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64
FlyingBird RN34-LBN Dynamic 45.58 37.18 35.06 24.94
FlyingBird+ RN34-LBN Dynamic 44.44 37.48 34.03 24.50
BCS RN34 Dynamic 43.51 22.61 31.85 11.96
BCS RN34-LBN Dynamic 42.02 30.67 31.16 17.54
RST RN34 p = 1.0 34.95 - 21.96 -
RST RN34-LBN p = 1.0 37.23 - 23.14 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60
HYDRA RN34 p = 1.0 40.51 26.40 31.09 18.24
HYDRA RN34-LBN p = 0.1 40.55 33.99 13.63 25.53
HYDRA RN34-LBN p = 1.0 32.93 26.23 29.96 18.91
ATMC RN34 Global 34.14 25.62 25.10 11.09
ATMC RN34 p = 0.1 34.58 24.65 25.37 11.04
ATMC RN34 p = 1.0 30.50 20.21 22.28 2.53
ATMC RN34-LBN Global 33.55 19.01 23.16 15.73
ATMC RN34-LBN p = 0.1 31.61 22.88 25.16 17.33
ATMC RN34-LBN p = 1.0 27.88 13.22 22.12 9.55
AT Small RN34-p0.1 Not Pruned 42.01 32.54 28.46 16.18
AT Small RN34-p1.0 Not Pruned 38.81 26.03 27.68 15.85
TRADES Small RN34-p0.1 Not Pruned 42.60 29.92 28.44 15.25
TRADES Small RN34-p1.0 Not Pruned 38.53 24.83 27.63 13.16
Ours RN34-LBN p = 0.1 - 45.06 - 34.83
Ours RN34-LBN p = 1.0 - 34.57 - 26.32
Ours (fast) RN34-LBN p = 0.1 - 40.77 - 34.45
Ours (fast) RN34-LBN p = 1.0 - 29.68 - 24.97

Table 5.8 – Robust accuracy (in %) on the CIFAR10 and CIFAR100 test sets for AT, HYDRA, ATMC
and our proposed method. “RN34-LBN” represents RN34 with the last batch normalization
layer. “Small RN34” here refers to Small RN34-p0.1 in Table 5.6. Among the compressed
models, the best results for full precision (FP) models are underlined; the best results for
binary models are marked in bold.

Finally, we report the vanilla accuracy of all methods in Table 5.9. We show that our proposed

method also has competitive performance on clean inputs. Specifically, we achieve the best

performance among all methods for binary networks. Combining the results in Table 5.7 and

Table 5.9, we can conclude that our proposed method yields a better trade-off between vanilla

accuracy and robust accuracy.

110

5.1. Robust Subnetwork inside Randomly-initialized Networks

Method Architecture
Pruning CIFAR10 CIFAR100
Strategy FP Binary FP Binary

AT RN34 Not Pruned 80.99 74.37 61.48 47.87
AT RN34-LBN Not Pruned 80.96 74.17 57.73 60.08
AT Small RN34 Not Pruned 74.76 58.69 52.77 28.81
FlyingBird RN34 Dynamic 79.29 62.28 62.12 43.66
FlyingBird+ RN34 Dynamic 77.01 62.69 59.09 41.69
BCS RN34 Dynamic 74.75 - 53.82 -
RST RN34 p = 1.0 65.93 - 38.87 -
RST RN34-LBN p = 1.0 67.45 - 42.95 -
HYDRA RN34 p = 0.1 75.31 62.09 55.92 45.96
ATMC RN34 Global 81.85 72.97 57.15 36.39
ATMC RN34 p = 0.1 81.37 73.34 59.99 32.68
Ours RN34-LBN p = 0.1 - 76.59 - 60.16
Ours(fast) RN34-LBN p = 0.1 - 81.63 - 63.73

Table 5.9 – The accuracy (in %) on the clean inputs of the models in Table 5.7. “RN34-LBN”
represents RN34 with the last batch normalization layer. The best results in the full precision
(FP) cases are underlined and the best results in the binary cases are marked in bold.

ImageNet100

Algorithm 5.2: Accelerated training for ImageNet100.

Input: training set D, batch size B , FGSM step size α, adversarial budget Sε, pruning rate r ,
mask function mask(·, ·), the optimizer.
Random initialize the model parameters θ and the scores s.
Initialize the instance-to-perturbation dictionary M= {}
for Sample a mini-batch {xi , yi }B

i=1 ∼D do
for i = 1,2, ...,n do

Data augmentation xi ← A(xi)
if xi in M then

Get the downsampled perturbation: δ′i = A(M(xi))
Upsample δ′ to the original resolution and get δi .

else
Sample a random noise δi within the adversarial budget Sε

end if
δi ← δi +αOδiL(f (θ¯mask(s,r),xi +δi), yi)
δi ←ΠSεδi

Update the dictionary by the downsampled perturbation δ′i : M(xi) = A−1(δ′i)
end for

end for
Calculate the gradient g = 1

B

∑B
i=1OsL(f (θ¯mask(s,r),xi +δi), yi)

Update the score s using the optimizer.
Output: the pruning mask mask(s,r).

Due to the high image resolution and large size of the ImageNet100 dataset, we use the

accelerated training method (FGSM + ATTA) to generate adversarial examples for all baselines

111

Efficient Robust Learning

and our proposed methods. In addition, due to the high resolution and large size of the

ImageNet100 dataset, we need to compress the initial perturbation directory to reduce the

overhead of memory consumption. Here, we choose to downsample the original perturbation

to reduce its resolution for storage, and then upsample it back to the original resolution when

using it as the initial perturbation. We provide the pseudo-code as Algorithm 5.2.

Similar to the settings in Table 5.7, we use RN34 models and the pruning rate is r = 0.99. The

results in Table 5.10 show that our algorithm outperforms all baselines in the binary cases. Our

method, which aims to train binary networks, also outperforms most full-precision networks

trained by the baselines. BCS has almost trivial performance on ImageNet100 (< 3%) and thus

is not included in Table 5.10. This infers that BCS might not be able to converge under a high

compression rate and a complicated dataset. Compared with adversarial training on the full

network, which has 100 times the parameters than ours, we achieve comparable performance

with the binary networks, but worse performance than the full-precision networks. It is

extremely challenging to use 1% amount of the binary parameters to fit the high-dimensional

ImageNet100 dataset under adversarial attacks. As we can see in Table 5.10, many baselines

are only able to achieve low robust accuracy under this setting.

Method Architecture
Pruning ImageNet100
Strategy FP Binary

AT RN34 Not Pruned 53.92 34.20
AT RN34-LBN Not Pruned 55.14 35.36
AT Small RN34 Not Pruned 25.40 10.44
FlyingBird RN34 Dynamic 37.70 9.54
FlyingBird+ RN34 Dynamic 37.70 9.52
RST RN34 p = 1.0 17.54 -
RST RN34-LBN p = 1.0 15.36 -
HYDRA RN34 p = 0.1 43.18 18.22
ATMC RN34 Global 22.18 5.78
ATMC RN34 p = 0.1 23.52 4.58
Ours RN34-LBN p = 0.1 - 33.04

Table 5.10 – Robust accuracy (in %) on the ImageNet100 test sets for baselines and our pro-
posed method. “RN34-LBN” represents ResNet34 with the last batch normalization layer.
“Small RN34” here refers to Small RN34-p0.1 in Table 5.6. The prune rate is always 0.99 except
for those not pruned. Among the compressed models, the best results for full precision (FP)
models are underlined; the best results for binary models are marked in bold.

Analysis of the Subnetwork Pattern

In this work, we use irregular pruning. Compared with regular pruning, irregular pruning is

more flexible but less structured, which means that it requires lower-level customization to

fully take advantage of parameter sparsity for acceleration. However, visualizing the masks m

of the convolutional layers in our pruned binary network with a pruning rate r = 0.99 allowed

us to find that the mask is structured to some degree. For example, we visualize the mask of a

112

5.2. Instance-Adaptive Fast Adversarial Training

0 50 100 150 200 250
Channel index

0

10

20

30

40

50

60

Nu
m

be
r o

f r
em

ai
ni

ng
 w

ei
gh

ts random
pruned

(a) In Channel, Layer1

0 50 100 150 200 250
Channel index

0

20

40

60

80

100

Nu
m

be
r o

f r
em

ai
ni

ng
 w

ei
gh

ts random
pruned

(b) Out Channel, Layer1

0 50 100 150 200 250
Channel index

0

20

40

60

80

100

120

Nu
m

be
r o

f r
em

ai
ni

ng
 w

ei
gh

ts random
pruned

(c) In Channel, Layer2

0 50 100 150 200 250
Channel index

0

50

100

150

200

250

Nu
m

be
r o

f r
em

ai
ni

ng
 w

ei
gh

ts random
pruned

(d) Out Channel, Layer2

Figure 5.2 – Number of retained parameters in each input and output channel of layer1 and
layer2 in a residual block. We sort the numbers and plot the curves from the largest on the left
to the smallest on the right. The red curves represent the mask obtained by our method; the
blue curves depict what happens when randomly pruning the corresponding layer.

convolutional layer with 256 input channels and 256 output channels in Figure 5.3 below. We

notice that the retained parameters are quite concentrated: A large portion of the retained

parameters concentrate on few input or output channels, while many other channels (40% of

the total) are completely pruned.

Furthermore, we visualize two consecutive convolutional layers in the same residual block

of the RN34 model. We call them layer1 and layer2 following the forward pass. In Figure 5.2,

we plot the distribution of the retained parameters in each input channel and in each output

channel, respectively. We find that many output channels of layer1 and the input channels of

layer2, 40% of all channels in this case, are totally pruned. As a reference, we also plot the dis-

tribution of random pruning, based on the average of 500 simulations. In a randomly pruned

network, it is almost impossible to have even one entirely pruned channel by probability

theory. The comparison indicates that our mask m is structured to some degree.

Furthermore, in Figure 5.4, we visualize the pruned channels in both layers and find that they

are aligned. That is, some neurons representing both the output channels of layer1 and the

input channels of layer2 are entirely removed. The pattern of the structures learned by our

method indicates the potential of regular pruning for a randomly-initialized neural network in

the presence of adversarial attacks. We leave this as our future work.

5.2 Instance-Adaptive Fast Adversarial Training

Last section tackles the challenges of larger model capacity requirement in adversarial training.

We now turn to the issue of training speed in this section: adversarial training based on

PGD [98] needs much longer training time than the non-adversarial counterpart. This issue

arises from the fact that PGD needs multiple iterations, i.e., multiple forward and backward

passes, to generate high-quality adversarial examples and that adversarial training needs more

model parameter updates to converge [93]. Therefore, to tackle this problem, we need to come

up with algorithms which uses faster-generated adversarial examples and needs fewer model

113

Efficient Robust Learning

Figure 5.3 – Mask visualization of the weight of a random convolutional layer in our model. The
parameters retained is highlighted as blue dots. The dimension of the convolutional kernel is
(rout , ri n , 3, 3). We reshape this kernel in rectangle of shape (rout × 3, ri n × 3). Channels with
no remaining weight are colored orange. The top bar indicates whether the channel is empty
(white) or not (blue).

114

5.2. Instance-Adaptive Fast Adversarial Training

Figure 5.4 – Distribution of weights in two consecutive layers. In layer1 (left), the masks are
reshaped into (rout × 3, ri n × 3) while masks in layer2 (right) are reshaped into (ri n × 3, rout

× 3). The output channels totally pruned in layer1 and the input channels totally pruned in
layer2 are highlighted as the white bars in the middle.

parameter updates to converge.

In this section, we will first review fast adversarial training algorithms, especially the problem

of catastrophic overfitting. Then, we introduce the proposed method: adversarial training with

adaptive step size. We theoretically justify it has faster convergence and empirically validate

our claims by comprehensive experiments.

5.2.1 Fast Adversarial Training and Catastrophic Overfitting

[130] first proposes to accelerate adversarial training by batch replaying: to update model

parameters in each iteration of PGD attack so that we can solve much fewer epochs for

training. [158] introduces FGSM-RS to improve the performance. FGSM-RS uses FGSM [53] to

generate adversarial examples, but from a random perturbation within the adversarial budget.

Compared with FGSM, models trained by FGSM-RS can achieve robustness against stronger

attackers such as PGD and AA. Compared with PGD, FGSM-RS is much cheaper and has the

same complexity as FGSM or 1-step PGD.

Despite impressive performance, [158] also points out the phenomenon of catastrophic over-

fitting: for some model architectures or hyper-parameter settings, the model may overfit to

the FGSM-RS and suddenly lose robustness against stronger attacks such as PGD. Figure 5.5

demonstrates the learning curves and the loss landscapes when the catastrophic overfitting

happens. In addition, the model will not re-gain robustness once the catastrophic overfitting

happens. Catastrophic overfitting greatly affects the stability of FGSM-RS adversarial training,

115

Efficient Robust Learning

which we call fast adversarial training unless ambiguous.

Catastrophic
Overfitting

Distorted Loss Landscape

Figure 5.5 – When catastrophic overfitting occurs, the robust accuracy against PGD suddenly
decreases to nearly 0%. And the loss landscape of the input becomes distorted.

To tackle the stability issue, [6] finds that it is the scattered gradients of the input that causes

the catastrophic overfitting. Scattered gradients means curvy loss landscape in the input

space, which makes FGSM-RS find sub-optimal perturbations. To avoid scatter gradients, [6]

proposes gradient align regularization to punish scattered gradients w.r.t. the inputs. Mathe-

matically, the regularization term is
〈
∂L(f (θ,x),y)

∂x , ∂L(f (θ,x+∆),y)
∂x

〉
where ∆ is a random perturba-

tion within the adversarial budget. Although the regularization can successfully prevent the

catastrophic overfitting, it considerably increases the computational complexity because of

the need to calculate the second-order gradients. How to stabilize and improving accelerated

adversarial training without introducing too much computational overhead is still an active

problem to solve.

5.2.2 Attack by Adaptive Step Size

Similar to Section 4.3, we study the stability problem of accelerated adversarial training from

the aspect of training instances. Different training instances have different loss landscapes and

may result in different reasons causing catastrophic overfitting. In practice, FGSM-RS [158]

uses large step size, such as 14/255 in the case of ε = 8/255. As a result, training against

FGSM-RS perturbed training instances may result in only minimizing the classification loss

for perturbed inputs near the boundary of the adversarial budget, while the loss of the inputs

in the middle of the adversarial budget can be very large, which is exactly what the right half

of Figure 5.5 demonstrates.

Distorted loss landscape shown in Figure 5.5 means the large magnitude of the input gradient
∂L
∂x . For these training instances, we should use smaller step sizes when generating adversarial

example. This will enable us to minimize the loss objective for perturbations in the middle of

the adversarial budget, effectively preventing the catastrophic overfitting. However, for flat loss

landscape, i.e., training instances with small magnitude of the input gradient ∂L
∂x , we should

use large step size instead to better approximate the optimality of the inner maximization

116

5.2. Instance-Adaptive Fast Adversarial Training

problem.

Based on the discussion above, we propose to use instance-adaptive step size in FGSM-RS

to generate adversarial examples. Specifically, for each training instances xi , we maintain a

pre-conditioner vi to represent the moving average of the gradient norm:

vi ←−βvi + (1−β)‖OxL‖2 (5.15)

Here, β is the hyper-parameter representing the momentum. Based on this pre-conditioner,

the instance-adaptive step size αi is inversely proportional to the square root of vi :

αi = αp
vi +C (5.16)

Here, α is a unified step size before pre-conditioning, and C is a small positive constant to

avoid zero-division. The step size αi for the instance xi is adjusted in each epoch.

Based on our adaptive step size method, training instance with large gradient norm will have

smaller step size to avoid distorted loss landscape, which causes the catastrophic overfit-

ting. However, using random start and small step size cannot fully explore the adversarial

budget. To tackle this problem, we utilize the idea of adversarial training by transferable at-

tacks (ATTA) [182] to initialize the perturbations by the one in the last epoch, which means we

accumulatively calculate the perturbations across epochs. We call our proposed method adver-

sarial training with adaptive step-size (ATAS), whose pseudo-code is provided as Algorithm 5.3

below. We use the l∞ adversarial budget as an example, the algorithm is applicable for general

lp norm adversarial budgets.

Algorithm 5.3: ATAS algorithm in the case of l∞ adversarial budget.

Input: Training set D= {xi , yi }N
i=1, The model f parameterized by θ, loss function `,

adversarial budget Sε, the unified step size α before pre-conditioning, learning rate η.
Initialize v (0)

i = 0 for i = 1, · · · , N

Initialize perturbation uniformly: x(0)
i = xi + U(−ε,ε) for i = 1, · · · , N

for j = 1 to N do
for (xi , yi) ∈D do

Update the pre-conditioner: v (j)
i =βv (j−1)

i + (1−β)‖O
x(j−1)

i
L(f (θ,x(j−1)

i), yi)‖2
2

Get step size: α(j)
i = α√

v (j)
i +C

Update perturbation: x(j)
i =ΠSε

(
x(j−1)

i −xi +α(j)
i si g n(Ox(j−1)

i
L(f (θ,x(j−1)

i), y))
)

Update parameters: θ←− θ−ηOθL(f (θ,x(j)
i), y).

end for
end for
Output: Optimized model f with optimal parameter θ∗

117

Efficient Robust Learning

5.2.3 Convergence Analysis

We conduct convergence analysis of the Algorithm 5.3 shown above. Specifically, we show the

advantages of our method when the variance of input gradients’ norm is large. We first recall

the min-max problem solved by adversarial training, same as (1.2) in Chapter 1.

min
θ

1

N
max
∆i∈Sε

N∑
i=1

L(f (θ,xi +∆i), yi)

Similar to Assumption 4.1 in Chapter 4, we assume the smoothness of the loss function L. In

addition, same as the convergence analysis of Adam [81], we study the convex case.

Assumption 5.1 The loss function L has the following properties:

1. L is convex and Lθ-smooth w.r.t. model parameters θ; θ and its gradient are bounded in l2

balls:

‖θ−θ∗‖2 ≤ Dθ,2,
1

N

N∑
i=1

‖OθL(f (θ,xi +∆i), y)‖2
2 ≤G2

θ,2 (5.17)

θ∗ is the optimal model parameters: θ∗ = argminθ max∆i∈Sε
∑N

i=1L(f (θ,xi +∆i), yi).

2. L is concave and Lx-smooth w.r.t. each training instance xi ; For any ∆i satisfying ‖∆i‖∞ ≤
Dx,∞ 4, we have the following bounds:

‖O∆iL(f (θ,xi +∆i), yi)‖2
2 ≤G2

xi ,2,
N∑

i=1
‖O∆iL(f (θ,xi +∆i), yi)‖2

2 ≤G2
x,2 (5.18)

For notation simplicity, we X ∈RN×M to represent the training data and ∆ ∈RN×M the corre-

sponding perturbation. In addition, we define the matrix form of the function L as follows,

where the label y is omitted unless ambiguous:

L(X,θ) := 1

N

N∑
i=1

L(f (θ,xi), yi), max
∆∗∈Sε

L(X+∆∗,θ) := 1

N

N∑
i=1

max
∆i∈Sε

L(f (θ,xi +∆i), yi) (5.19)

We average the trajectory of T -steps θ
T = 1

T

∑T
t=1θ

(t) and ∆
T = 1

T

∑T
t=1∆

(t) to get the near-

optimal points, where
{
θ(t)

}T
t=1 and

{
∆(t)

}T
t=1 represent the model parameter and the adversar-

ial perturbation trajectories, respectively. This is the standard technique used in the analysis of

stochastic gradient method [42]. In this regard, the convergence gap max∆∗∈SεL(X+∆∗,θ
T

)−
max∆∗∈SεL(X+∆∗,θ∗) can be upper bounded by the regret R(T) as follows:

R(T) =
T∑

t=1

[
max
∆∗∈Sε

L(X+∆∗,θ(t))−min
θ∗

L(X+∆(t),θ∗)

]
(5.20)

4By definition, Dx,∞ = ε. Here, we use Dx,∞ for the unified notation style.

118

5.2. Instance-Adaptive Fast Adversarial Training

The formal theoretical result is demonstrated as follows:

Lemma 5.1 Consider the loss function L satisfying the Assumption 5.1, then:

max
∆∗∈Sε

L(X+∆∗,θ
T

)−min
θ∗

max
∆∗∈Sε

L(θ
∗

,X+∆∗) ≤ R(T)

T
(5.21)

Proof:
max
∆∗∈Sε

L(X+∆∗,θ
T

)−min
θ∗

max
∆∗∈Sε

L(X+∆∗,θ∗)

≤ max
∆∗∈Sε

L(X+∆∗,θ
T

)−min
θ∗

L(X+∆T
,θ∗)

= max
∆∗∈Sε

L

(
X+∆∗,

1

T

T∑
t=1

θ(t)

)
−min

θ∗
L

(
X+ 1

T

T∑
t=1
∆(t),θ∗

)

≤ 1

T

(
max
∆∗∈Sε

T∑
t=1

L(X+∆∗,θ(t))−min
θ∗

T∑
t=1

L(X+∆(t),θ∗)

)

≤ 1

T

T∑
t=1

(
max
∆∗∈Sε

L(X+∆∗,θ(t))−min
θ∗

L(X+∆(t),θ∗)

)
= R(T)

T
.

(5.22)

The first and the third inequality follows the optimality condition and the second inequality

uses the Jensen inequality. �

Convergence of ATAS

ATAS can be formulated as Adaptive Stochastic Gradient Descent Block Coordinate Ascent

(ASGDBCA), which randomly picks an instance xk at the step t , applying stochastic gradient

descent to the parameter θ and adaptive block coordinate ascent to the input perturbation

matrix ∆. Unlike stochastic gradient descent ascent (SGDA) [92], where all dimensions of

the input perturbation matrix ∆ get updated in each iteration, ASGDBCA only updates some

rows of ∆, corresponding to the training instances sampled in the current mini-batch. Mathe-

matically, ASGDBCA first calculates the pre-conditioner v (
i t) for the training instance xk as:

v (t+1)
i =

βv (t)
i + (1−β)‖O∆iL(f (θ,xi +∆i), yi)‖2

2 i = k

v (t)
i i 6= k

v̂ (t+1)
i = max

(
v̂ (t)

i , v (t+1)
i

)
.

(5.23)

Then the adversarial perturbations {∆i }N
i=1 and the model parameters θ are optimized by the

following formula:

∆(t+1)
i =


ΠSε

[
∆(t)

i + ηx√
v̂ (t+1)

i

O∆(t)
i
L(f (θ(t),xi +∆(t)

i), yi)

]
i = k

∆(t)
i i 6= k

θ(t+1) = θ(t) −ηθOθL(f (θ(t),xk +∆(t+1)
k), yk) .

119

Efficient Robust Learning

The only difference of the update rule above and Algorithm 5.3 is v̂ (t)
k . This is because the

pre-conditioner needs to be non-decreasing for ASGDBCA to convergence, similar to Adam

in [116]. In practice, the non-convergence version works better, so ATAS still uses v (t)
k as the

pre-conditioner.

Now, we provide the convergence analysis of ASGDBCA as the theorem below. Our theorem

shows, using properly set learning rate ηx and ηθ for the perturbation update and model

parameter update, the converge gap, which is bounded by R(T)
T , converges in the speed of

O(1p
T

). This is asymptotically the same speed as SGD for the convex function.

Theorem 5.3 Under the assumption 5.1 and the update rules (5.23), (5.2.3), if ηθ = Dθ,2

Gθ,2
p

T
and

ηx =
p

dDx,∞
(1−β)−1/4

p
T

, the regret of ASGDBCA is bounded by the following inequality:

RASGDBCA(T) ≤Gθ,2Dθ,2

p
T + Dx,∞

∑N
i=1 Gxi ,2

p
MT

N (1−β)1/4
+ MLxD2

x,∞
2N 2

√
1−β

(5.24)

Without adaptive step size, the Stochastic Gradient Descent Block Coordinate Ascent (SGDBCA

can be formulated as:

∆(t+1)
i =

ΠSε [∆
(t)
i +ηxO∆(t)

i
L(f (θ(t),xi +∆(t)

i), yi)] i = k

∆(t)
i i 6= k

θ(t+1) = θ(t) −ηθOθL(f (θ(t),xk +∆(t+1)), yk) ,

(5.25)

This update rule represents ATTA [182] in practice. Similar to ASGDCBA, the following theorem

provides the bound of the regret for SGDBCA.

Theorem 5.4 Under the assumption 5.1 and the update rules (5.25), if ηθ = Dθ,2

Gθ,2
p

T
and ηx =

p
N MDx,∞
Gx,2

p
T

, the regret of SGDBCA is bounded by the following inequality:

RSGDBCA(T) ≤Gθ,2Dθ,2

p
T +Gx,2Dx,∞

√
MT

N
+ MLxD2

x,∞
2N

(5.26)

We compare the bounds in Theorem 5.3 and Theorem 5.4. When T is large, the third term

of the regret bound in both SGDBCA and ASGDBCA is negligible. Considering that their first

terms are the same, the main difference is the second term:
Dx,∞

∑N
i=1 Gxi ,2

p
MT

N (1−β)1/4 in ASGDBCA and

Gx,2Dx,∞
√

MT
N in SGDBCA. The difference between them is:

Ratio = (1−β)1/4

√√√√(∑N
i=1 Gxi ,2

N

)2 /∑N
i=1 G2

xi ,2

N
(5.27)

120

5.2. Instance-Adaptive Fast Adversarial Training

The Cauchy-Schwarz inequality indicates the value inside the squared root is always no bigger

than 1 and gets smaller when Gxi ,2 has long-tailed distribution, which indicates the faster

convergence of ATAS in this case. In the experimental part, we demonstrate the long-tailed

distribution for common datasets.

We provide the detailed proofs for Theorem 5.3 and Theorem 5.4 below.

Proofs of Theorem 5.3 and Theorem 5.4

To facilitate the proof, we first introduce the several notations:

ĝθ(θ,xi) :=OθL(f (θ,xi), yi),

gθ(θ,X) := 1

N

N∑
i=1

ĝθ(θ,xi),

g∆(θ,∆i) :=−O∆iL(f (θ,xi +∆i), yi),

g∆(θ,∆) := [g∆(θ,x1), g∆(θ,x2), · · · , g∆(θ,xN)] =−NO∆L(θ,X).

(5.28)

We first prove Theorem 5.4 below

Proof: Let hx = ηx

ηθ
. At step t , SGDBCA picks a random instance indexed by k from {1,2, · · · , N },

then we have the following inequality:

‖∆(t+1)
k −∆∗

k‖2
2 = ‖ΠSε(∆

(t+1)
k −hxηθg∆(θ(t),xk +∆(t)

k))−∆∗
k‖2

2

≤ ‖∆(t+1)
k −hxηθg∆(θ(t),xk +∆(t)

k)−∆∗
k‖2

2.
(5.29)

Rearrange this inequality, we obtain the following:

2ηθg∆(θ(t),xk +∆(t)
k)T (∆(t)

k −∆∗
k) ≤

‖∆(t)
k −∆∗

k‖2
2 −‖∆(t+1)

k −∆∗
k‖2

2

hx
+hxη

2
θ‖g∆(θ(t),xk +∆(t)

k)‖2
2.

(5.30)

We apply the similar inequality on the model parameter updates, then have:

2ηθg∆(θ(t),xk +∆(t+1)
k)T (θ(t) −θ∗) ≤ ‖θ(t) −θ∗‖2

2 −‖θ(t+1) −θ∗‖2
2 +η2

θ‖ĝθ(θ(t),xk +∆(t+1)
k)‖2

2.

(5.31)

We take the expectation over k, which is uniformly sampled from {1,2, · · · , N }, on the left hand

side of (5.30) and (5.31), we get:

Ek

[
g∆(θ(t),xk +∆(t)

k)T (∆(t)
k −∆∗

k)
]
= 1

N

[
g∆(θ(t),X+∆)T (∆−∆∗)

]
Ek

[
g∆(θ(t),xk +∆(t+1)

k)T (θ(t) −θ∗)
]
= gθ(θ(t),X+∆(t+1))T (θ(t) −θ∗)

(5.32)

121

Efficient Robust Learning

Then, we consider the expectation of the right hand side of (5.30), we have the following

equations:

Ek

[
‖∆(t)

k −∆∗
k‖2

2 −‖∆(t+1)
k −∆∗

k‖2
2

]
= 1

N

[‖∆(t) −∆∗‖2
2 −‖∆(t+1) −∆∗‖2

2

]
Ek

[
‖g∆(θ(t),xk +∆(t)

k)‖2
2

]
= 1

N
‖g∆(θ(t),X+∆(t))‖2

2

(5.33)

Consider the convexity and concavity of the loss function L in Assumption 5.1:

OθL(θ(t),X+∆(t+1)
)T (θ∗−θ(t)) ≤L(θ∗,X+∆(t+1))−L(θ(t),X+∆(t+1))

L(θ(t),X+∆∗)−L(θ(t),X+∆(t)) ≤O∆L(θ(t),X+∆(t))T (∆∗−∆(t))
(5.34)

Re-arrange the following inequalities and combine them with (5.28), we get:

gθ(θ(t),X+∆(t+1)
)T (θ(t) −θ∗)+ 1

N
g∆(θ(t),X+∆(t))T (∆∗−∆(t))

≥L(θ(t),X+∆∗)−L(θ(t),X+∆(t+1))+L(θ(t),X+∆(t+1))−L(θ(t),X+∆(t)).
(5.35)

Combining (5.30) to (5.35), we obtain the following inequality:

2ηθ

(
L(θ(t),X+∆∗)−L(θ∗,X+∆(t+1))

)
≤ Ek

[
‖θ(t) −θ∗‖2

2 −‖θ(t+1) −θ∗‖2
2 +η2

θ‖gθ(θ(t),xk +∆(t+1)
k)‖2

2+
1

N hx

(‖∆(t) −∆∗‖2
2 −‖∆(t+1) −∆∗‖2

2

)+ 1

N
hxη

2
θ‖g∆(θ(t),X+∆(t))‖2

2+

2ηθ
(
L(θ(t),X+∆(t))−L(θ(t),X+∆(t+1))

)]
(5.36)

Consider the update rule of xk , and collectively X, we have:

Ek [L(θ(t),X+∆(t))−L(θ(t),X+∆(t+1))]

≤Ek

[
Lx

2N
‖∆(t)

k −∆(t+1)
k ‖2

2 +
1

N
g∆(θ(t),xk +∆(t)

k)T (∆(t+1)
k −∆(t)

k)

]
=Ek

[
Lx(hxηθ)2

2N
‖g∆(θ(t),xk +∆(t)

k)‖2
2 −

hxηθ

N
‖g∆(θ(t),X+∆(t))‖2

2

]
=Lx(hxηθ)2

2N 2 ‖g∆(θ(t),X+∆(t))‖2
2 −

hxηθ

N 2 ‖g∆(θ(t),X+∆(t))‖2
2.

(5.37)

122

5.2. Instance-Adaptive Fast Adversarial Training

The above inequality can be re-arranged as:

2

(
L(θ(t),X+∆∗)−L(θ∗,X+∆(t+1))

)
≤ Ek

[
1

ηθ

(‖θ(t) −θ∗‖2
2 −‖θ(t+1) −θ∗‖2

2

)+ηθ‖gθ(θ(t),X+∆(t+1))‖2
2+

1

N hxηθ

(‖∆(t) −∆∗‖2
2 −‖∆(t+1) −∆∗‖2

2

)+
N −2

N 2 hxηθ‖g∆(θ(t),X+∆(t))‖2
2 +

Lx(hxηθ)2

N 2 ‖g∆(θ(t),X+∆(t))‖2
2

]
(5.38)

Summing the bound over t , the regret is then bounded by:

R(T) ≤ 1

2ηθ
‖θ(1) −θ∗‖2

2 +
1

2Nηx
‖∆(1) −∆∗‖2

2+

1

2
E

[
T∑

t=1
ηθ‖gθ(θ(t),X+∆(t+1))‖2

2

]
+ 1

2
E

[
T∑

t=1

[(N −2)ηx +Lxη
2
x]

N 2 ‖g∆(θ(t),X+∆(t))‖
] (5.39)

Plug Assumption 5.1 and hx = ηx

ηθ
into the inequality above, we obtain:

R(T) ≤
D2
θ,2

2ηθ
+ MD2

x,∞
2ηx

+
TηθG2

θ,2

2
+

TθxG2
x,2

2N
+

T Lxη
2
xG2

x,2

2N 2
(5.40)

Using the inequality of arithmetic and geometric means, the optimal choice is ηθ = Dθ,2

Gθ,2
p

T
and

ηx =
p

N MDx,∞
Gx,2

p
T

, then:

R(T) ≤Gθ,2Dθ,2

p
T +Gx,2Dx,∞

√
MT

N
+ MLxD2

x,∞
2N

(5.41)

�

Now we are ready to prove Theorem 5.3 as shown below. We can directly utilize some technique

from the proof above.

Proof: Let hx = ηx

ηθ
. At step t , ASGDABCA picks a random instance indexed by k from

{1,2, · · · , N }, then we have the following inequality:

‖∆(t+1)
k −∆∗

k‖2
2 = ‖ΠSε

(
∆(t)

k −hx
ηθp

v̂ (t+1)
g∆(θ,xk)

)
−∆∗

k‖2
2

≤ ‖∆(t)
k −hx

ηθp
v̂ (t+1)

g∆(θ,xk)−∆∗
k‖2

2

(5.42)

123

Efficient Robust Learning

Re-arrange this inequality, we then obtain:

2g∆(θ(t),∆(t)
k)T (∆(t)

k −∆∗
k) ≤

∥∥∥∆(t)
k −∆∗

k

∥∥∥2

2
−

∥∥∥∆(t+1)
k −∆∗

k

∥∥∥2

2

hxηθ

√
v̂ (t+1)

k +hxηθ

∥∥∥g∆(θ(t),∆(t)
k)

∥∥∥2

2√
v̂ (t+1)

k
(5.43)

We apply the same inequality for the update rule of model parameters.

2gθ(θ(t),x(t+1)
k)T (θ(t) −θ∗) ≤

∥∥θ(t) −θ∗∥∥2
2 −

∥∥θ(t+1) −θ∗∥∥2
2

ηθ
+ηθ

∥∥∥gθ(θ(t),x(t+1)
k)

∥∥∥2

2
. (5.44)

Let

V̂ (t) = di ag ([v̂ (t)
1 , · · · , v̂ (t)

1︸ ︷︷ ︸
d

, v̂ (t)
2 , · · · , v̂ (t)

2︸ ︷︷ ︸
d

, · · · , v̂ (t)
N , · · · , v̂ (t)

N︸ ︷︷ ︸
d

]),

denote the pre-conditioner of all the coordinates of X. Take the expectation over k on the right

hand side, then we have the following equality:

Ek


∥∥∥∆(t)

k −∆∗
k

∥∥∥2

2
−

∥∥∥∆(t+1)
k −∆∗

k

∥∥∥2

2

hx

√
v̂ (t+1)

k

= 1

N

[∥∥∆(t) −∆∗∥∥2p
V̂ (t+1)

hx

−∥∥∆(t+1) −∆∗∥∥2p
V̂ (t+1)

hx

]
,

(5.45)

and

Ek

hxη
2
θ

∥∥∥g∆(θ(t),∆(t)
k)

∥∥∥2

2√
v̂ (t+1)

k

= η2
θ

N

∥∥g∆(θ(t),∆(t))
∥∥2

hxp
V̂ (t+1)

. (5.46)

Similar to the convergence proof for SGDBCA, we have:

L(θ(t),X+∆∗)−L(θ∗,X+∆(t+1))

≤ Ek

[
1

2ηθ

(‖∆(t) −∆∗‖2
2 −‖∆(t+1) −∆∗‖2

2

)+ ηθ

2
‖gθ(θ(t),X+∆(t+1))‖2

2+
1

2N hxηθ
‖∆(t) −∆∗‖2p

V̂ (t+1)
+ 1

2N hxηθ
‖∆(t+1) −∆∗‖2p

V̂ (t+1)
+

N −2

2N 2 hxηθ‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1/2 +

Lx(hxηθ)2

2N 2 ‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1

]
.

(5.47)

Summing the inequality from 1 to T , the regret R(T) = Rθ(T)+Rx(T) is then upper bounded

by the following inequalities where Rθ(T) represents the first two terms in the right hand side

124

5.2. Instance-Adaptive Fast Adversarial Training

of (5.47), Rx(T) represents the rest terms.

Rθ(T) ≤ 1

2ηθ
‖θ(1) −θ∗‖2

2 +
ηθ

2
E

T∑
t=1

‖ĝθ(θ(t),xk +∆(t+1)
k)‖2

2

≤
D2
θ,2

2ηθ
+
ηθTG2

θ,2

2

(5.48)

Rx(T) ≤
T∑

t=1

[
1

2Nηx

(
‖∆(t) −∆∗‖2p

V̂ (t+1)
−‖∆(t+1) −∆∗‖2p

V̂ (t+1)

)
+

N −2

2N 2 ηx‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1/2 +

Lxη
2
x

2N 2 ‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1

] (5.49)

Rθ(T) is the same as SGDBCA. Similarly, we set ηθ = Dθ,2

Gθ,2
p

T
to minimize the right hand side of

(5.48), we then have:

Rθ(T) ≤Gθ,2Dθ,2

p
T . (5.50)

We then focus on the upper bound of Rx(T), we the first term on the right hand side of (5.49):

T∑
t=1

(
‖∆(t) −∆∗‖2p

V̂ (t+1)
−‖∆(t+1) −∆∗‖2p

V̂ (t+1)

)

=
N∑

i=1

(T∑
t=2

(
√

v̂ (t+1)
i −

√
v̂ (t)

i)‖∆(t)
i −∆∗

i ‖2
2 +

√
v̂ (2)

i ‖∆(1)
i −∆∗

i ‖2
2

)

=
N∑

i=1

M∑
j=1

(T∑
t=2

(
√

v̂ (t+1)
i −

√
v̂ (t)

i)(∆(t)
i , j −∆(t)

i , j)2 +
√

v̂ (2)
i (∆(1)

i , j −∆∗
i , j)2

)
.

(5.51)

Here, ∆i , j represents the j -th element in the vector ∆i . Based on the Assumption 5.1, ∀i , j , t ,

|∆(t)
i , j −∆∗

i , j | < Dx,∞, then we have:

T∑
t=1

(
‖∆(t) −∆∗‖2p

V̂ (t+1)
−‖∆(t+1) −∆∗‖2p

V̂ (t+1)

)

≤
N∑

i=1

M∑
j=1

(√
v̂ (2)

i D2
x,∞+

T∑
t=2

(
√

v̂ (t+1)
i −

√
v̂ (t)

i)D2
x,∞

)

=
N∑

i=1

M∑
j=1

(√
v̂ (T+1)D2

x,∞
)

≤
N∑

i=1

(
MD2

x,∞
√

v̂ (T+1)
i

)

≤ MD2
x,∞

N∑
i=1

Gxi ,2

(5.52)

125

Efficient Robust Learning

We now turn to the second term on the right hand side of (5.49).

‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1/2 =

N∑
i=1

M∑
j=1

(g∆(θ(t),xi +∆(t)
i) j)2√

v̂ (t+1)
i

≤
N∑

i=1

M∑
j=1

(g∆(θ(t),xi +∆(t)
i) j)2√

1−β
√∑d

j=1((g∆(θ(t),xi +∆(t)
i)) j)2

= 1√
1−β

N∑
i=1

‖g∆‖2

≤ 1√
1−β

N∑
i=1

Gxi ,2.

(5.53)

where (g∆(θ(t),xi +∆(t)
i)) j represents the j -th coordinate of g∆(θ(t),xi +∆(t)

i). Summing over t ,

we can then bound this term by:

T∑
t=1

‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1/2 ≤

T√
1−β

N∑
i=1

Gxi ,2 (5.54)

Finally, we bound the third term on the right hand side of (5.49) by:

‖g∆(θ(t),X+∆(t))‖2
(V̂ (t+1))−1 =

N∑
i=1

M∑
j=1

(g∆(θ(t),xi +∆(t)
i) j)2

v̂ (t+1)
i

≤
N∑

i=1

M∑
j=1

(g∆(θ(t),xi +∆(t)
i) j)2

(1−β)
∑M

j=1(g∆(θ(t),xi +∆(t)
i)) j)2

= 1

1−β

(5.55)

Combining the bound of three components of Rx(T), we obtain:

Rx(T) ≤ ηxT

2N
√

1−β
N∑

i=1
Gxi ,2 +

D2
x,∞M

2Nηx

N∑
i=1

Gxi ,2 +
η2

xLxT

2N 2(1−β)
(5.56)

Similar to Rθ(T), the right hand side of (5.56) is achieved when ηx = Dx,∞
p

M(1−β)1/4
p

T
:

Rx(T) ≤
Dx,∞∑N

i=1 Gxi ,2
p

T M

N (1−β)1/4
+ L∞MD2

x,∞
2N 2

√
1−β

. (5.57)

126

5.2. Instance-Adaptive Fast Adversarial Training

Combining Rθ(T) and Rx(T), the regret of ASGDBCA is bounded by:

R(T) ≤Gθ,2Dθ,2

p
T + Dx,∞

∑N
i=1 Gxi ,2

p
T M

N (1−β)1/4
+ LxMD2

x,∞
2N 2

√
1−β

(5.58)

�

5.2.4 Experimental Results

In this section, we compare our proposed ATAS (Algorithm 5.3) with the state-of-the-art accel-

erated adversarial training algorithms, including FreeAT [130], YOPO [177], FGSM-RS [158],

FGSM-GA [6] and ATTA [182]. In addition, we also use standard adversarial training [98] using

10-iteration PGD as the reference.

For evaluation, we consider three attacks: 10-iteration PGD attack (PGD10), 50-iteration PGD

attack (PGD50) and AutoAttack (AA) [33]. PGD is a white box attacks, while black-box attack is

also included in AA, where Square Attack [5] is used to eliminate the effect of gradient masking.

Our proposed ATAS is based on ATTA: the adversarial perturbations are accumulated across

epochs. Following previous works [158, 182], we consider the l∞ adversarial budget Sε. Our

experiments are based on CIFAR10 and CIFAR100 [83] with the widely-used WideResNet-28-

10 (WRN28) [176] and ResNet-18 (RN18) and on ImageNet [35] with ResNet-18 (RN18) and

ResNet-50 (RN50).

While early stopping [118] is widely used to improve the performance of standard adversarial

training [98], it is rarely used in the accelerated algorithms. This is because using PGD to

evaluate the model’s performance on a separate validation set is large. Besides, considering

the small budget of training time in fast AT, even if early stopping is applied to terminate the

training before catastrophic overfitting occurs, the training is far from convergence, result-

ing in poor performance [6]. As a result, we do not use early stopping here and report the

performance of the checkpoints when the training stops.

For ImageNet dataset, it contains more than one million images whose resolution is relatively

high (224× 224). As a result, storing every details of the perturbations in ATTA and ATAS

is not feasible due to the limited GPU memory. To solve this problem, we utilize the local

property of the adversarial examples [75, 73] and only store the interpolated perturbations in

the memory. Specifically, we compress the perturbation into 32×32 for storage in the memory

and up-sample it back when using it as the initialization for the next epoch.

We train 30 epochs for CIFAR10 and CIFAR100 datasets and 90 epochs for ImageNet. For

methods utilizing batch replaying such as FreeAT and YOPO, we keep the number of forward

and backward passes the same as the other methods so that the total training time is com-

parable. For learning rate scheduling, we use both the piece-wise decay [182] and the cyclic

127

Efficient Robust Learning

Methods
ResNet-18 WideResNet-28-10

Clean PGD10 PGD50 AA Time Clean PGD10 PGD50 AA Time
PGD10 80.13 50.59 48.94 45.97 1.23 85.00 55.51 53.53 51.27 8.49
FreeAT 78.37 40.90 39.02 36.00 0.33 84.54 46.09 43.80 41.19 2.31
YOPO 74.72 37.51 35.79 33.21 0.28 82.92 44.62 42.14 40.23 1.90
FGSM-RS 83.99 48.99 46.36 42.95 0.22 80.21 0.01 0.00 0.00 1.67
FGSM-GA 80.10 49.14 47.21 43.44 0.57 75.84 45.57 43.28 39.44 3.82
ATTA 82.16 47.47 45.32 42.51 0.30 85.90 51.52 48.94 46.84 1.70
ATAS 81.22 50.03 48.18 45.38 0.30 85.96 53.43 51.03 48.72 1.63

(a) CIFAR10 with adversarial budget ε= 8/255.

Methods
ResNet-18 WideResNet-28-10

Clean PGD10 PGD50 AA Time Clean PGD10 PGD50 AA Time
PGD10 54.08 28.03 27.23 23.04 1.32 60.04 31.70 30.67 27.11 8.53
FreeAT 50.56 19.57 18.58 15.09 0.33 59.38 24.41 23.00 19.60 2.30
YOPO 51.55 20.65 19.17 16.05 0.29 50.35 19.44 18.36 15.43 1.92
FGSM-RS 59.35 26.40 24.29 19.73 0.21 51.83 0.00 0.00 0.00 1.60
FGSM-GA 50.61 24.48 24.07 19.42 0.57 54.29 25.86 24.56 20.74 3.80
ATTA 57.21 25.76 24.90 21.03 0.28 63.04 28.93 27.18 24.42 1.63
ATAS 55.49 27.68 26.60 22.62 0.31 62.34 29.89 28.35 25.03 1.61

(b) CIFAR100 with adversarial budget ε= 8/255.

Methods
ResNet-18 ResNet-50

Clean PGD10 PGD50 AA Time Clean PGD10 PGD50 AA Time
FreeAT 58.80 35.56 34.78 31.77 40.01 65.81 44.12 43.34 40.80 108.3
YOPO 47.69 28.50 28.10 25.22 48.22 55.68 33.46 32.19 29.56 111.8
FGSM-RS 55.26 37.33 36.98 33.28 43.46 67.83 46.12 45.56 43.58 115.0
FGSM-GA 37.01 24.15 24.05 19.98 182.7 / / / / /
ATTA 58.32 39.62 38.32 36.08 45.83 66.62 48.27 47.65 45.00 111.7
ATAS 61.20 40.84 39.86 37.25 45.70 69.10 49.05 48.05 46.01 120.4

(c) ImageNet with adversarial budget ε= 2/255.

Table 5.11 – Accuracy (in %) and training time (in hours) of different fast AT methods on
CIFAR10, CIFAR100 and ImageNet. ATAS improves the robust accuracy under various attacks
including PGD10, PGD50 and AutoAttack (AA). The method “PGD10" refers to the standard AT
using PGD10 for the inner maximization. Note that, we do not have enough computational
resources to perform standard AT on ImageNet because of computational complexity. Besides,
we are unable to train the ResNet-50 on ImageNet with FGSM-GA as its memory requirement
exceeds the maximum GPU memory of our devices (NVIDIA Tesla V100). For CIFAR10 and
CIFAR100, the training time is evaluated on a single GPU. And we use two GPUs to train the
models for ImageNet. We use default step size from the original papers for the baselines so
that catastrophic overfitting seldom happens in these methods.

learning rate [158], and report the best performance. The initial learning rate is always 0.1.

The piece-wise decay scheduler divides the learning rate by 10 in the 24th, 28th epoch for

CIFAR10, CIFAR100, and 50th, 75th epochs for ImageNet. The weight decay is 5×10−4 for

128

5.2. Instance-Adaptive Fast Adversarial Training

CIFAR10, CIFAR100 models, and 1×10−4 for ImageNet models.

For FreeAT, we replays the mini-batch for 8 times on CIFAR10, CIFAR100 and 4 times for

ImageNet. This means we train the model for 10 epochs on CIFAR10, CIFAR100 and 45 epochs

for ImageNet. For YOPO, we use the hyper-parameter settings in YOPO-5-3 in [177] as it

achieves the best performance. YOPO-5-3 trains CIFAR10 and CIFAR100 models for 12 epochs

and ImageNet models for 36 epochs. We the publicly available codes 5 to reproduce the results

for FGSM-RS and FGSM-GA. For different sizes of the adversarial budgets Sε, we always set

the step size α as α= 1.25ε. For the coefficient of the gradient-align regularization in FGSM-

GA, we use the same as in [6] for CIFAR10. On CIFAR100 and ImageNet, we search for the

optimal choices and set the coefficient as 0.5, 0.005, respectively. For ATTA, we follow the

hyper-parameter settings for ATTA-1 as in [182] and set the step size α= 4/255.

For our proposed ATAS, the hyper-parameter γ and C jointly determine the effective step

size. When the gradient norm is small, we can approximate the step size by γ/C . In this

regard, we set γ/C = 16/255 in all our experiments. Considering the ImageNet inputs have

higher dimensionality than CIFAR10 and CIFAR100, we set higher value of C (0.1) for ImageNet

models than CIFAR10, CIFAR100 models (0.01). The momentum factor β is always 0.5 for all

experiments.

Our main experimental results are demonstrated in Table 5.11. The robust accuracy of FreeAT

and YOPO is much lower than the other methods. While FGSM-RS maintains non-trivial

robust accuracy when using RN18 and RN50, it suffers from catastrophic overfitting when

using large networks such as WRN28. The regularizer in FGSM-GA prevents catastrophic

overfitting. However, it may over-regularize the network so that the clean accuracy and the

robust accuracy decrease on WRN28. In addition, the regularizer also brings computational

overhead: FGSM-GA needs nearly double training time compared with other methods. ATAS

achieves the best robust accuracy among all accelerated adversarial training algorithms while

keeping the training time nearly the same. Furthermore, for small networks like RN18, the

performance of ATAS is on par with standard AT (PGD10) but needs only one fifth of the

training time.

0 5000 10000
Iterations

1.75

2.50

Lo
ss

 U
nd

er
 P

GD
10

RN-18 = 8/255

0 5000 10000
Iterations

1.5

2.5

3.5

RN-18 = 12/255

0 5000 10000
Iterations

3.0

4.5
RN-18 = 16/255

0 5000 10000
Iterations

1.75

3.00
WRN-28-10 = 8/255

0 5000 10000
Iterations

2.25

3.50

WRN-28-10 = 12/255

0 5000 10000
Iterations

1.5

3.0

4.5
WRN-28-10 = 16/255

FreeAT
YOPO
FGSM-RS
FGSM-GA
ATTA
ATAS

Figure 5.6 – Robust loss under PGD10 on the CIFAR10 training set under different network
architectures and the adversarial budgets. The loss function is the softmax cross-entropy
function. ATAS shows faster convergence in all cases.

Figure 5.6 shows the curve of the training loss function on CIFAR10, where we use PGD-

5FGSM-RS: https://github.com/locuslab/fast_adversarial. FGSM-GA: https://github.com/tml-epfl/
understanding-fast-adv-training.

129

https://github.com/locuslab/fast_adversarial
https://github.com/tml-epfl/understanding-fast-adv-training
https://github.com/tml-epfl/understanding-fast-adv-training

Efficient Robust Learning

generated adversarial examples to approximate the optimal perturbed inputs and mini-batch

to approximate the loss on the whole training set. It is clear that ATAS achieves the smaller

robust training loss under different settings, which demonstrate the faster convergence of

ATAS and is consistent with the theoretical analyses in Section 5.2.3.

5.3 Summary and Broader Impact

In this chapter, we have discussed the efficiency of robust learning, especially in the framework

of adversarial training. In Section 5.1, we have extended the Strong Lottery Ticket hypothesis

in the context of adversarial training. We have also proposed adaptive pruning and a binary

initialization scheme for improving the performance of the sub-networks inside the randomly-

initialized large network under adversarial attacks. In Section 5.2, we have proposed ATAS

algorithm for stabilizing and improving the accelerated adversarial training.

Although our proposed methods are still far from ideal, they introduce additional hyper-

parameters for tuning and cannot jointly solve several efficiency challenges, and they inspire

some feasible directions for the improvement of the efficiency of robust learning. We can use

encode adversarial robustness to the methods that intrinsically improve the efficiency in order

to achieve robustness and efficiency at the same time. Our proposed methods, in Section 5.1,

use pruning as a way of adversarial training to improve robustness. Note that it is important to

figure out the fundamental reasons of the efficiency issue in robust learning. In Section 5.2, we

have noted that training instances with large input gradients causes catastrophic overfitting,

which directly inspires our proposed method. We believe that other efficiency challenges

in robust learning, including those mentioned in Section 1.3, can be solved or mitigated in

similar ways.

130

6 Conclusion

6.1 Summary

In this thesis, we have focused on the robust learning problem in the context of deep neural

networks; this can be formulated as a min-max optimization problem in (1.2). Due to the

non-convexity of deep neural networks, it is NP-hard to perfectly solve the inner maximization

problem in (1.2). We choose to minimize alternatively either the upper bound or the lower

bound of the inner maximization problem.

By minimizing the upper bound of the inner maximum, we can obtain models that are provably

robust. The corresponding verified robust accuracy is the lower bound of the true robust

accuracy. The key challenge here is to efficiently estimate the upper bound of the loss objective

for a deep neural network, which is highly non-convex, under the given adversarial budget. In

Chapter 3, we have studied this problem from the aspect of geometry. We bound, specifically,

the decision boundaries, which is untrackable in general, by an envelope represented by a

hyper-cube or a polyhedron, both consisting of several hyper-planes. By maximizing the

envelope’s volume, we developed algorithms to study the geometric properties of the decision

boundary. The envelope is represented by several linear constraints. We can efficiently

calculate the distance between the input instance and the envelope’s boundary as the lower

bound of the distance between the input instance and the decision boundary. As this distance

is differentiable with respect to model parameters, we can then train the model to enlarge this

distance so as to obtain provably robust deep neural networks.

In addition to verified robustness, we can obtain empirically robust models by minimizing

the lower bound of the inner maximum. The corresponding empirical robust accuracy is the

upper bound of the true robust accuracy. Adversarial training, i.e., training the model against

adversarially perturbed examples, is the most popular framework to obtain empirically robust

models. In Chapter 4, we have investigated the convergence and generalization properties of

adversarial training, in comparison to classic empirical risk minimization. For convergence,

we are the first, to the best of our knowledge, to point out the non-smooth nature of the

adversarial loss landscape in the model parameter space; as this loss landscape leads to

131

Conclusion

scattered gradients and slow down the convergence. We have also numerically shown the

sharper and more isolated local minima in adversarial training. To overcome these challenges,

we have proposed a warm-up strategy in the adversarial budget and periodical scheduler to

ensemble intermediate model checkpoints, which correspond to different local minima, to

boost the performance. For the much more severe overfitting observed in adversarial training,

we find that it is a result of the model’s fitting hard adversarial training instances, i.e., instances

with large loss values. Our findings are confirmed theoretically and empirically in various

settings. We discovered that existing methods successfully mitigating adversarial overfitting

implicitly avoid fitting hard adversarial training instances.

To achieve either verified or empirical robustness presents certain challenges, including but

not limited to larger model capacity needs, larger training data needs, much larger compu-

tational complexity, and degradation in clean accuracy. In order to improve the efficiency

of robust learning, in Chapter 5, we have introduced two methods, in different aspects. To

mitigate the large model capacity needs for adversarial training, we extend the strong Lot-

tery Ticket Hypothesis to the adversarial cases. We use, specifically, pruning as a means of

training in order to obtain robust sub-networks inside a randomly-initialized large network,

without actually updating its model parameters. Compared with the non-adversarial case,

to obtain random-initialized robust sub-networks is more challenging. In this regard, we

have proposed adaptive pruning, a binary initialization scheme, and have added an addi-

tional batch normalization layer on top of the network to obtain competitive performance.

To accelerate adversarial training and avoid stability issues, such as catastrophic overfitting,

we have proposed to use instance-adaptive step size when perturbing the input instances

for training. We find that catastrophic overfitting results from using a too-large step size to

perturb training instances, and this step size’s input gradients have a large magnitude, which

leads to sub-optimal input perturbation for training. We have introduced an Adam-style

pre-conditioner to adaptively assign different step sizes for perturbing the input. Our method

has been shown to eliminate catastrophic overfitting, converge faster, and to obtain better

performance.

Despite many efforts devoted to robust learning, the current state-of-the-art are still far from

ideal. The challenges discussed in Section 1.3 are still not satisfactorily solved. In the final

section, we will discuss the key unsolved challenges and our future directions.

6.2 Unsolved Challenges and Future Work

Figure 6.1 demonstrates some key challenges of robust learning, as well as some related fields

and directions for future explorations. Among these points, the algorithm complexity and

model capacity needs for robustness are the most extensively studied fields. Although there are

still some detailed open problems, such as structured pruning while maintaining robustness

(mentioned in Section 5.1) , we mainly discuss the other relatively underexplored points in

Figure 6.1.

132

6.2. Unsolved Challenges and Future Work

Interpretability
Domain

Generalization …

Fundamental Analysis of Deep Learning

Applications

Robustness

Algorithm
Complexity

Model
Capacity

Data
Need

Adversarial
Budget …

Figure 6.1 – The diagrams showing the related fields and directions for exploration in the
future, from theoretical understandings to practical applications. The points inside the box
are closely related to reliable machine learning.

Data Needs The sample complexity required by adversarial robustness is much higher than

that of classic empirical risk minimization [126]. This means that using more training in-

stances might improve the robustness performance. As of today, there are mainly three ways

of obtaining more training instances, but they all have limitations or disadvantages. First,

we can use external data, even unlabeled [18, 56], to boost adversarial training. However, it

is usually difficult or expensive to obtain sufficient data that follows the same distribution

as the training set. External data with a too-large distributional shift can even undermine

adversarial training. Second, to generate more training data, we can train a generative model

by using the training set. For example, to improve the performance, [57] generates, based on

CIFAR10 training set, one million synthetic data. This category of methods can be applied

only when we have a relatively large “original” training set to train a good generator. Training a

generator also introduces considerable computational overhead. Third, we can use traditional

data augmentation techniques to diversify the training data. [114] uses spatial transformation,

especially CutMix [175], to achieve the state-of-the-art performance on CIFAR10. This tech-

nique, however, works only with model weight averaging and needs careful tuning. It is not

clear if the method in [114] can be generalized to other kinds of datasets. In summary, there

are still some open problems unsolved in this field, such as how to boost, without introducing

too much computational overhead, adversarial training by more data, and how to improve,

based on a very small training set, the model robustness.

Adversarial Budget The methods we have introduced in this thesis are focused on the lp norm-

based adversarial budget S(p)
ε , which is a probably an oversimplified formulation for facilitating

mathematical analyses. Ideally, the adversarial budget should include all the perturbations

that do not change the semantic meaning of the input. However, it is very difficult to have

a unified mathematical formulation of “semantically unchanged”. Nevertheless, there are

several works that explore robustness beyond lp norm. For example, [64] studies 15 different

types of common corruptions such as zoom blur, Gaussian noise, and defocus blur. [117]

bridges the gap between the worst-case robustness and average robustness against random

perturbations. Furthermore, [156] uses the conditional variational autoencoder [139] to learn

a parameterized adversarial budget, based on a measure of its quality to capture the semantic

meaning of the input instances. Although recent work [82] has shown the effectiveness of lp

133

Conclusion

norm-based adversarial training against other common corruptions, the current notion of

the adversarial budget and the corresponding training methods are still far from the needs of

some applications in the real life.

Jointly Solving Multiple Challenges In Section 1.3, we list several challenges of robust learn-

ing. We notice that solving or mitigating one challenge can result in worsening the issue of a

different aspect. For example, to decrease the training data needs, we can generate synthetic

data to improve robustness. This, however, introduces significant computational overhead.

Another example is the learning-based adversarial budget [156] described above, it enriches

the definition of the adversarial budget and solves a more practical robustness problem. Never-

theless, we need to optimize the adversarial budget in each mini-batch update; this algorithm

converges more slowly hence needs more training time than the lp counterpart. In summary,

jointly tackling several issues of robust learning would be even more challenging, although

there are not any theorems demonstrating the strict trade-offs between them.

Interpretability and Domain Generalization To better understand deep neural networks and

to build reliable machine learning models, there are also problems other than adversarial

robustness. Here, we discuss two examples: model interpretability and domain generalization.

Figure 3.5 in Section 3.2 indicates that robust models tend to use input features that are more

aligned with human perception hence that are more easily interpretable. [145] visualize the

gradient of the loss objective with respect to the input. The gradient maps of the non-robust

models are mostly noise, whereas the gradient maps of robust models clearly reveals the

edges and shapes of the object in the input images. Both phenomena indicate that robustness

implicitly improves model interpretability. We believe methods that explicitly improve the

interpretability of the model also have other benefits, such as robustness.

In all the problems studied in this thesis, we focus on robustness on the instance level. In

other words, the adversarial perturbation is based on a specific instances, and perturbations

for different instances are independent of each other. Compared with instance-wise pertur-

bations, a domain shift is more common in real-life applications. The domain shift can arise

from a systematic sampling error, such as samples from different sources or errors introduced

by different sampling equipment. Domain generalization has been studied from different

perspectives [184]. Similarly to distributional robustness optimization (DRO) [138], it would

be interesting to study how to extend our methods against instance-wise perturbations to a

domain shift.

Fundamental Analysis of Deep Learning & Related Applications To rigorously understand

the robustness of deep neural networks, we need theoretical guarantees. The network proper-

ties related to robustness includes the Lipschitz constant [16], input neighborhood [129] and

decision boundaries. Further investigation about how to derive tighter bounds under a more

general settings would be worthwhile.

Finally, integrating adversarial robustness into some specific applications is highly non-trivial,

134

6.2. Unsolved Challenges and Future Work

because different applications define different training objectives and different adversarial

budgets. Pioneering explorations include reinforcement learning [51] and medical imag-

ing [109].

135

Bibliography

[1] Wieland Brendel *, Jonas Rauber *, and Matthias Bethge. Decision-based adversarial

attacks: Reliable attacks against black-box machine learning models. In International

Conference on Learning Representations, 2018.

[2] Abdullah Al-Dujaili and Una-May O’Reilly. Sign bits are all you need for black-box

attacks. In International Conference on Learning Representations, 2020.

[3] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stan-

forth, and Pushmeet Kohli. Are labels required for improving adversarial robustness? In

Advances in Neural Information Processing Systems, pages 12192–12202, 2019.

[4] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani B. Srivastava,

and Kai-Wei Chang. Generating natural language adversarial examples. In EMNLP,

pages 2890–2896, 2018.

[5] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein.

Square attack: a query-efficient black-box adversarial attack via random search. In

European Conference on Computer Vision, pages 484–501. Springer, 2020.

[6] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast

adversarial training. Advances in Neural Information Processing Systems, 33:16048–

16059, 2020.

[7] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false

sense of security: Circumventing defenses to adversarial examples. In International

conference on machine learning, pages 274–283. PMLR, 2018.

[8] Yogesh Balaji, Tom Goldstein, and Judy Hoffman. Instance adaptive adversarial training:

Improved accuracy tradeoffs in neural nets. arXiv preprint arXiv:1910.08051, 2019.

[9] Mislav Balunovic and Martin Vechev. Adversarial training and provable defenses: Bridg-

ing the gap. In International Conference on Learning Representations, 2020.

[10] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language

model. Advances in Neural Information Processing Systems, 13, 2000.

137

Bibliography

[11] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[12] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Practical black-box attacks

on deep neural networks using efficient query mechanisms. In Proceedings of the

European Conference on Computer Vision (ECCV), pages 154–169, 2018.

[13] George Boole. The mathematical analysis of logic. Philosophical Library, 1847.

[14] Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow, Wojciech Zaremba, Rob

Fergus, and Dumitru Erhan. Intriguing properties of neural networks. In International

Conference on Learning Representations, 2014.

[15] Thomas Brunner, Frederik Diehl, Michael Truong Le, and Alois Knoll. Guessing smart:

Biased sampling for efficient black-box adversarial attacks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 4958–4966, 2019.

[16] Sébastien Bubeck and Mark Sellke. A universal law of robustness via isoperimetry.

Advances in Neural Information Processing Systems, 34, 2021.

[17] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural net-

works. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[18] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang.

Unlabeled data improves adversarial robustness. In Advances in Neural Information

Processing Systems, pages 11190–11201, 2019.

[19] Alvin Chan, Yi Tay, Yew Soon Ong, and Jie Fu. Jacobian adversarially regularized net-

works for robustness. In International Conference on Learning Representations, 2020.

[20] Jinghui Chen, Yu Cheng, Zhe Gan, Quanquan Gu, and Jingjing Liu. Efficient robust

training via backward smoothing, 2021.

[21] Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Ro-

bust overfitting may be mitigated by properly learned smoothening. In International

Conference on Learning Representations, 2021.

[22] Tianlong Chen, Zhenyu Zhang, pengjun wang, Santosh Balachandra, Haoyu Ma, Zehao

Wang, and Zhangyang Wang. Sparsity winning twice: Better robust generalization

from more efficient training. In International Conference on Learning Representations,

2022.

[23] Zhuotong Chen, Qianxiao Li, and Zheng Zhang. Towards robust neural networks via

close-loop control. In International Conference on Learning Representations, 2021.

138

Bibliography

[24] Minhao Cheng, Thong Le, Pin-Yu Chen, Huan Zhang, JinFeng Yi, and Cho-Jui Hsieh.

Query-efficient hard-label black-box attack: An optimization-based approach. In

International Conference on Learning Representations, 2019.

[25] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-

box adversarial attacks with a transfer-based prior. Advances in neural information

processing systems, 32, 2019.

[26] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). In International Conference on

Learning Representations, 2016.

[27] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via

randomized smoothing. In International Conference on Machine Learning, pages 1310–

1320. PMLR, 2019.

[28] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training

deep neural networks with binary weights during propagations. In Advances in neural

information processing systems, pages 3123–3131, 2015.

[29] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of

relu networks via maximization of linear regions. In the 22nd International Conference

on Artificial Intelligence and Statistics, pages 2057–2066. PMLR, 2019.

[30] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti,

Nicolas Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a

standardized adversarial robustness benchmark. In Thirty-fifth Conference on Neural

Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[31] Francesco Croce, Sven Gowal, Thomas Brunner, Evan Shelhamer, Matthias Hein, and

Taylan Cemgil. Evaluating the adversarial robustness of adaptive test-time defenses.

arXiv preprint arXiv:2202.13711, 2022.

[32] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with

a fast adaptive boundary attack. In International Conference on Machine Learning,

pages 2196–2205. PMLR, 2020.

[33] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with

an ensemble of diverse parameter-free attacks. In International conference on machine

learning, pages 2206–2216. PMLR, 2020.

[34] Francesco Croce and Matthias Hein. Mind the box: l_1-apgd for sparse adversarial

attacks on image classifiers. In International Conference on Machine Learning, pages

2201–2211. PMLR, 2021.

[35] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-

scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and

Pattern Recognition, pages 248–255, 2009.

139

Bibliography

[36] Guneet S. Dhillon, Kamyar Azizzadenesheli, Jeremy D. Bernstein, Jean Kossaifi, Aran

Khanna, Zachary C. Lipton, and Animashree Anandkumar. Stochastic activation

pruning for robust adversarial defense. In International Conference on Learning

Representations, 2018.

[37] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima

can generalize for deep nets. In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 1019–1028. JMLR. org, 2017.

[38] Yinpeng Dong, Ke Xu, Xiao Yang, Tianyu Pang, Zhijie Deng, Hang Su, and Jun Zhu. Ex-

ploring memorization in adversarial training. In International Conference on Learning

Representations, 2022.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:

Transformers for image recognition at scale. In International Conference on Learning

Representations, 2021.

[40] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no

barriers in neural network energy landscape. In International conference on machine

learning, pages 1309–1318. PMLR, 2018.

[41] Jiawei Du, Hu Zhang, Joey Tianyi Zhou, Yi Yang, and Jiashi Feng. Query-efficient

meta attack to deep neural networks. In International Conference on Learning

Representations, 2020.

[42] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online

learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[43] Ecenaz Erdemir, Jeffrey Bickford, Luca Melis, and Sergul Aydore. Adversarial robustness

with non-uniform perturbations. Advances in Neural Information Processing Systems,

34, 2021.

[44] Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss

landscapes. Advances in Neural Information Processing Systems, 32, 2019.

[45] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,

trainable neural networks. In International Conference on Learning Representations,

2019.

[46] Yonggan Fu, Qixuan Yu, Yang Zhang, Shang Wu, Xu Ouyang, David Daniel Cox, and

Yingyan Lin. Drawing robust scratch tickets: Subnetworks with inborn robustness are

found within randomly initialized networks. In A. Beygelzimer, Y. Dauphin, P. Liang,

and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,

2021.

140

Bibliography

[47] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G

Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. In Advances in

Neural Information Processing Systems, pages 8789–8798, 2018.

[48] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaud-

huri, and Martin Vechev. Ai2: Safety and robustness certification of neural networks

with abstract interpretation. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 3–18. IEEE, 2018.

[49] Mario Geiger, Stefano Spigler, Stéphane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio

Biroli, and Matthieu Wyart. Jamming transition as a paradigm to understand the loss

landscape of deep neural networks. Physical Review E, 100(1):012115, 2019.

[50] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net

optimization via hessian eigenvalue density. In International Conference on Machine

Learning, pages 2232–2241. PMLR, 2019.

[51] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Rus-

sell. Adversarial policies: Attacking deep reinforcement learning. In International

Conference on Learning Representations, 2020.

[52] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pages 249–256, 2010.

[53] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples. In International Conference on Learning Representations, 2015.

[54] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer

look at deep learning heuristics: Learning rate restarts, warmup and distillation. In

International Conference on Learning Representations, 2019.

[55] Sven Gowal, Krishnamurthy Dj Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,

Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable veri-

fied training for provably robust image classification. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 4842–4851, 2019.

[56] Sven Gowal, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet Kohli. Un-

covering the limits of adversarial training against norm-bounded adversarial examples.

arXiv preprint arXiv:2010.03593, 2020.

[57] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian,

and Timothy A Mann. Improving robustness using generated data. Advances in Neural

Information Processing Systems, 34, 2021.

[58] Shupeng Gui, Haotao Wang, Haichuan Yang, Chen Yu, Zhangyang Wang, and Ji Liu.

Model compression with adversarial robustness: A unified optimization framework.

Advances in Neural Information Processing Systems, 32, 2019.

141

Bibliography

[59] Chuan Guo, Jared S Frank, and Kilian Q Weinberger. Low frequency adversarial pertur-

bation. In Uncertainty in Artificial Intelligence, pages 1127–1137. PMLR, 2020.

[60] Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Wein-

berger. Simple black-box adversarial attacks. In International Conference on Machine

Learning, pages 2484–2493. PMLR, 2019.

[61] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten. Counter-

ing adversarial images using input transformations. In International Conference on

Learning Representations, 2018.

[62] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of the

IEEE international conference on computer vision, pages 1026–1034, 2015.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

[64] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness

to common corruptions and perturbations. In International Conference on Learning

Representations, 2019.

[65] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model

robustness and uncertainty. In International Conference on Machine Learning, pages

2712–2721, 2019.

[66] Magnus R Hestenes. Multiplier and gradient methods. Journal of optimization theory

and applications, 4(5):303–320, 1969.

[67] Dorjan Hitaj, Giulio Pagnotta, Iacopo Masi, and Luigi V Mancini. Evaluating the ro-

bustness of geometry-aware instance-reweighted adversarial training. arXiv preprint

arXiv:2103.01914, 2021.

[68] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In

The collected works of Wassily Hoeffding, pages 409–426. Springer, 1994.

[69] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,

2012.

[70] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Wein-

berger. Snapshot ensembles: Train 1, get m for free. In International Conference on

Learning Representations, 2017.

[71] Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empiri-

cal risk minimization. Advances in neural information processing systems, 33:19365–

19376, 2020.

142

Bibliography

[72] Qian Huang, Isay Katsman, Horace He, Zeqi Gu, Serge Belongie, and Ser-Nam Lim.

Enhancing adversarial example transferability with an intermediate level attack. In

Proceedings of the IEEE/CVF international conference on computer vision, pages 4733–

4742, 2019.

[73] Zhichao Huang, Yaowei Huang, and Tong Zhang. Corrattack: Black-box adversarial

attack with structured search, 2021.

[74] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial

attacks with limited queries and information. In International Conference on Machine

Learning, pages 2137–2146. PMLR, 2018.

[75] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box

adversarial attacks with bandits and priors. In International Conference on Learning

Representations, 2019.

[76] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and

Aleksander Madry. Adversarial examples are not bugs, they are features. In Advances in

Neural Information Processing Systems, pages 125–136, 2019.

[77] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable

data. In Conference on Learning Theory, pages 1772–1798. PMLR, 2019.

[78] Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant

of relu networks. Advances in Neural Information Processing Systems, 33:7344–7353,

2020.

[79] Sekitoshi Kanai, Masanori Yamada, Hiroshi Takahashi, Yuki Yamanaka, and Yasutoshi

Ida. Smoothness analysis of loss functions of adversarial training. CoRR, abs/2103.01400,

2021.

[80] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:

An efficient smt solver for verifying deep neural networks. In International conference

on computer aided verification, pages 97–117. Springer, 2017.

[81] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

ICLR (Poster), 2015.

[82] Klim Kireev, Maksym Andriushchenko, and Nicolas Flammarion. On the effectiveness

of adversarial training against common corruptions. CoRR, abs/2103.02325, 2021.

[83] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny

images. 2009.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems,

25, 2012.

143

Bibliography

[85] Nupur Kumari, Mayank Singh, Abhishek Sinha, Harshitha Machiraju, Balaji Krishna-

murthy, and Vineeth N Balasubramanian. Harnessing the vulnerability of latent layers in

adversarially trained models. In Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence, IJCAI-19, pages 2779–2785. International Joint

Conferences on Artificial Intelligence Organization, 7 2019.

[86] Alexey kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.

In International Conference on Learning Representations, 2017.

[87] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the physical

world, 2016.

[88] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,

Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip

code recognition. Neural computation, 1(4):541–551, 1989.

[89] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[90] Sungyoon Lee, Woojin Lee, Jinseong Park, and Jaewook Lee. Towards better understand-

ing of training certifiably robust models against adversarial examples. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information

Processing Systems, 2021.

[91] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the

loss landscape of neural nets. In Advances in Neural Information Processing Systems,

pages 6389–6399, 2018.

[92] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-

concave minimax problems. In International Conference on Machine Learning, pages

6083–6093. PMLR, 2020.

[93] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the

loss landscape of adversarial training: Identifying challenges and how to overcome

them. Advances in Neural Information Processing Systems, 33:21476–21487, 2020.

[94] Chen Liu, Mathieu Salzmann, and Sabine Süsstrunk. Training provably robust models

by polyhedral envelope regularization. IEEE Transactions on Neural Networks and

Learning Systems, 2021.

[95] Chen Liu, Ryota Tomioka, and Volkan Cevher. On certifying non-uniform bounds

against adversarial attacks. In International Conference on Machine Learning, pages

4072–4081. PMLR, 2019.

[96] Chen Liu, Ziqi Zhao, Sabine Süsstrunk, and Mathieu Salzmann. Robust binary models

by pruning randomly-initialized networks. arXiv preprint arXiv:2202.01341, 2022.

144

Bibliography

[97] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve

neural network acoustic models. Citeseer.

[98] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian

Vladu. Towards deep learning models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018.

[99] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool:

a few pixels make a big difference. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 9087–9096, 2019.

[100] Seungyong Moon, Gaon An, and Hyun Oh Song. Parsimonious black-box adversarial at-

tacks via efficient combinatorial optimization. In International Conference on Machine

Learning, pages 4636–4645. PMLR, 2019.

[101] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.

Universal adversarial perturbations. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1765–1773, 2017.

[102] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a

simple and accurate method to fool deep neural networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[103] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and

Ling Shao. Adversarial defense by restricting the hidden space of deep neural networks.

In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

3385–3394, 2019.

[104] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.

Reading digits in natural images with unsupervised feature learning. 2011.

[105] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring

generalization in deep learning. In Advances in Neural Information Processing Systems,

pages 5947–5956, 2017.

[106] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive

bias: On the role of implicit regularization in deep learning. In ICLR (Workshop), 2015.

[107] Ozan Özdenizci and Robert Legenstein. Training adversarially robust sparse networks

via bayesian connectivity sampling. In International Conference on Machine Learning,

pages 8314–8324. PMLR, 2021.

[108] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. Rethinking

softmax cross-entropy loss for adversarial robustness. In International Conference on

Learning Representations, 2020.

145

Bibliography

[109] Magdalini Paschali, Sailesh Conjeti, Fernando Navarro, and Nassir Navab. Generalizabil-

ity vs. robustness: investigating medical imaging networks using adversarial examples.

In International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 493–501. Springer, 2018.

[110] Michael JD Powell. A method for nonlinear constraints in minimization problems.

Optimization, pages 283–298, 1969.

[111] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adver-

sarial examples. In International Conference on Learning Representations, 2018.

[112] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations

for certifying robustness to adversarial examples. Advances in Neural Information

Processing Systems, 31, 2018.

[113] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mo-

hammad Rastegari. What’s hidden in a randomly weighted neural network? In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 11893–11902, 2020.

[114] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A. Calian, Florian Stimberg, Olivia Wiles, and

Timothy A. Mann. Fixing data augmentation to improve adversarial robustness. CoRR,

abs/2103.01946, 2021.

[115] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles,

and Timothy Mann. Data augmentation can improve robustness. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information

Processing Systems, 2021.

[116] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and

beyond. In International Conference on Learning Representations, 2018.

[117] Leslie Rice, Anna Bair, Huan Zhang, and J. Zico Kolter. Robustness between the worst

and average case. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-

man Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,

pages 27840–27851. Curran Associates, Inc., 2021.

[118] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning.

In International Conference on Machine Learning, pages 8093–8104. PMLR, 2020.

[119] Volker Roth. Kernel fisher discriminants for outlier detection. Neural computation,

18(4):942–960, 2006.

[120] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability analysis of deep

neural networks with provable guarantees. In IJCAI, pages 2651–2659, 2018.

146

Bibliography

[121] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do

adversarially robust imagenet models transfer better? Advances in Neural Information

Processing Systems, 33:3533–3545, 2020.

[122] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien

Bubeck, and Greg Yang. Provably robust deep learning via adversarially trained

smoothed classifiers. Advances in Neural Information Processing Systems, 32, 2019.

[123] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex

relaxation barrier to tight robustness verification of neural networks. Advances in Neural

Information Processing Systems, 32, 2019.

[124] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-GAN: Protecting clas-

sifiers against adversarial attacks using generative models. In International Conference

on Learning Representations, 2018.

[125] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: anal-

ysis and efficient estimation. In Proceedings of the 32nd International Conference on

Neural Information Processing Systems, pages 3839–3848, 2018.

[126] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander

Madry. Adversarially robust generalization requires more data. Advances in neural

information processing systems, 31, 2018.

[127] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adver-

sarially robust neural networks. Advances in Neural Information Processing Systems,

33:19655–19666, 2020.

[128] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversari-

ally robust neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and

H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages

19655–19666. Curran Associates, Inc., 2020.

[129] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein.

Are adversarial examples inevitable? In International Conference on Learning

Representations, 2019.

[130] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,

Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training

for free! Advances in Neural Information Processing Systems, 32, 2019.

[131] Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based

on self-supervised learning. In International Conference on Learning Representations,

2021.

[132] Zhouxing Shi, Yihan Wang, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Fast certified ro-

bust training with short warmup. Advances in Neural Information Processing Systems,

34, 2021.

147

Bibliography

[133] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.

nature, 529(7587):484–489, 2016.

[134] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering

the game of go without human knowledge. nature, 550(7676):354–359, 2017.

[135] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[136] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev.

Fast and effective robustness certification. Advances in neural information processing

systems, 31, 2018.

[137] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain

for certifying neural networks. Proceedings of the ACM on Programming Languages,

3(POPL):1–30, 2019.

[138] Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robust-

ness with principled adversarial training. In International Conference on Learning

Representations, 2018.

[139] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation

using deep conditional generative models. Advances in neural information processing

systems, 28, 2015.

[140] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pix-

eldefend: Leveraging generative models to understand and defend against adversarial

examples. In International Conference on Learning Representations, 2018.

[141] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Sre-

bro. The implicit bias of gradient descent on separable data. The Journal of Machine

Learning Research, 19(1):2822–2878, 2018.

[142] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

[143] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. Evaluating robustness of neural net-

works with mixed integer programming. In International Conference on Learning

Representations, 2019.

[144] Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large

data set for nonparametric object and scene recognition. IEEE transactions on pattern

analysis and machine intelligence, 30(11):1958–1970, 2008.

148

Bibliography

[145] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander

Madry. Robustness may be at odds with accuracy. In International Conference on

Learning Representations, 2019.

[146] Ramon Van Handel. Probability in high dimension. Technical report, PRINCETON

UNIV NJ, 2014.

[147] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[148] Roman Vershynin. High-dimensional probability: An introduction with applications

in data science, volume 47. Cambridge university press, 2018.

[149] Ke Wang and Christos Thrampoulidis. Benign overfitting in binary classification of

gaussian mixtures. In ICASSP 2021-2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 4030–4034. IEEE, 2021.

[150] Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Mixtrain: Scalable training

of formally robust neural networks. arXiv preprint arXiv:1811.02625, 2018.

[151] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient

formal safety analysis of neural networks. Advances in Neural Information Processing

Systems, 31, 2018.

[152] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico

Kolter. Beta-CROWN: Efficient bound propagation with per-neuron split constraints for

complete and incomplete neural network verification. Advances in Neural Information

Processing Systems, 34, 2021.

[153] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improv-

ing adversarial robustness requires revisiting misclassified examples. In International

Conference on Learning Representations, 2020.

[154] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane

Boning, and Inderjit Dhillon. Towards fast computation of certified robustness for relu

networks. In International Conference on Machine Learning, pages 5276–5285. PMLR,

2018.

[155] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui

Hsieh, and Luca Daniel. Evaluating the robustness of neural networks: An extreme value

theory approach. In International Conference on Learning Representations, 2018.

[156] Eric Wong and J Zico Kolter. Learning perturbation sets for robust machine learning. In

International Conference on Learning Representations, 2021.

149

Bibliography

[157] Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the

convex outer adversarial polytope. In International Conference on Machine Learning,

pages 5286–5295. PMLR, 2018.

[158] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial

training. In International Conference on Learning Representations, 2020.

[159] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via

projected sinkhorn iterations. In International Conference on Machine Learning, pages

6808–6817. PMLR, 2019.

[160] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable

adversarial defenses. Advances in Neural Information Processing Systems, 31, 2018.

[161] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps

robust generalization. Advances in Neural Information Processing Systems, 33, 2020.

[162] Chang Xiao, Peilin Zhong, and Changxi Zheng. Enhancing adversarial defense by k-

winners-take-all. In International Conference on Learning Representations, 2020.

[163] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms, 2017.

[164] Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, and Aleksander Madry.

Training for faster adversarial robustness verification via inducing reLU stability. In

International Conference on Learning Representations, 2019.

[165] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating

adversarial effects through randomization. In International Conference on Learning

Representations, 2018.

[166] Cihang Xie and Alan Yuille. Intriguing properties of adversarial training at scale. In

International Conference on Learning Representations, 2020.

[167] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya

Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable

certified robustness and beyond. Advances in Neural Information Processing Systems,

33:1129–1141, 2020.

[168] Linli Xu, Koby Crammer, Dale Schuurmans, et al. Robust support vector machine

training via convex outlier ablation. In AAAI, volume 6, pages 536–542, 2006.

[169] Greg Yang, Tony Duan, J Edward Hu, Hadi Salman, Ilya Razenshteyn, and Jerry Li. Ran-

domized smoothing of all shapes and sizes. In International Conference on Machine

Learning, pages 10693–10705. PMLR, 2020.

150

Bibliography

[170] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.

Advances in neural information processing systems, 32, 2019.

[171] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-

based analysis of large batch training and robustness to adversaries. In Advances in

Neural Information Processing Systems, pages 4949–4959, 2018.

[172] Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts, Huan Zhang, Aojun

Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs. model

compression, or both? In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 111–120, 2019.

[173] Jongmin Yoon, Sung Ju Hwang, and Juho Lee. Adversarial purification with score-based

generative models. In International Conference on Machine Learning, pages 12062–

12072. PMLR, 2021.

[174] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and

defenses for deep learning. IEEE transactions on neural networks and learning systems,

30(9):2805–2824, 2019.

[175] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with local-

izable features. In Proceedings of the IEEE/CVF international conference on computer

vision, pages 6023–6032, 2019.

[176] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock

Richard C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine

Vision Conference (BMVC), pages 87.1–87.12. BMVA Press, September 2016.

[177] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only

propagate once: Accelerating adversarial training via maximal principle. In Advances

in Neural Information Processing Systems, pages 227–238, 2019.

[178] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael

Jordan. Theoretically principled trade-off between robustness and accuracy. In

International conference on machine learning, pages 7472–7482. PMLR, 2019.

[179] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane

Boning, and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust

neural networks. In International Conference on Learning Representations, 2020.

[180] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient

neural network robustness certification with general activation functions. Advances in

neural information processing systems, 31, 2018.

151

Bibliography

[181] Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankan-

halli. Geometry-aware instance-reweighted adversarial training. In International

Conference on Learning Representations, 2021.

[182] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient

adversarial training with transferable adversarial examples. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1181–1190,

2020.

[183] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:

Zeros, signs, and the supermask. Advances in Neural Information Processing Systems,

32:3597–3607, 2019.

[184] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generaliza-

tion in vision: A survey. arXiv preprint arXiv:2103.02503, 2021.

152

Curriculum Vitae

Education

École Polytechnique Fédérale de Lausanne(EPFL) Lausanne, Switzerland
Ph.D in Computer Science 2017 - 2022
Supervisors: Prof. Sabine Süsstrunk, Dr. Mathieu Salzmann

École Polytechnique Fédérale de Lausanne(EPFL) Lausanne, Switzerland
M.S in Computer Science 2015 - 2017
GPA: 5.73/6.00 Transcript

Tsinghua University Beijing, P.R.China
B.ENG in Computer Science and Technology 2011 - 2015
GPA: 91.34/100.00 Rank 9/123 Transcript

Publications

In reverse chronological order, ∗ indicates equal contributions.

Refereed Papers & Patent

Chen Liu, Mathieu Salzmann, Sabine Süsstrunk. "Training Provably Robust Models by Polyhe-
dral Envelope Regularization". IEEE Transactions on Neural Networks and Learning Systems
2021.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, Sabine Süsstrunk. "On the Loss Land-
scape of Adversarial Training: Identifying Challenges and How to Overcome Them". Neural
Information Processing Systems (NeurIPS) 2020.

Chen Liu, Ryota Tomioka, Volkan Cevher. "On Certifying Non-uniform Bounds against Adver-
sarial Attacks". International Conference on Machine Learning (ICML) 2019.

Ya-Ping Hsieh, Chen Liu, Volkan Cevher. "Finding the Mixed Nash Equilibria of Generative
Adversarial Networks". International Conference on Machine Learning (ICML) 2019. Oral in
Smooth Games Optimization and Machine Learning Workshop in NeurIPS 2018.

Chen Liu, Shun Miao, Kaloian Petkov, Sandra Sudarsky, Daphne Yu, Tommaso Mansi. "Consis-
tent 3D Rendering in Medical Imaging". European Patent No. 18160956.1 - 1208.

153

http://liuchen11.github.io/HomePage/doc/Transcript_MS_EPFL.pdf
http://liuchen11.github.io/HomePage/doc/Transcript_UG_THU.pdf

Curriculum Vitae

Preprint

Chen Liu∗, Ziqi Zhao∗, Sabine Ss̈strunk, Mathieu Salzmann. "Robust Binary Models by Prun-
ing Randomly-initialized Networks". Preprint.

Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, Sabine Süsstrunk. "On the Impact
of Hard Adversarial Instances on Overfitting in Adversarial Training". Preprint.

Zhichao Huang, Chen Liu, Tong Zhang. "Adversarial Examples are By-products of Over-
parametrization". Preprint.

Zhichao Huang, Yanbo Fan, Chen Liu, Weizhong Zhang, Yong Zhang, Mathieu Salzmann,
Sabine Süsstrunk, Jue Wang. "Fast Adversarial Training with Adaptive Steps". Preprint.

Work Experience

Swisscom Digital Lab Lausanne, Switzerland
Internship 02/2017 - 08/2017
Master’s Thesis Project: Automatic Document Summarization.

Siemens Research (USA) Priceton, NJ, USA
Research Intern 07/2016 - 02/2017
Automatic parameter tuning for a 3D medical-imaging renderer

Awards & Honors

Qualcomm Innovation Fellowship Europe 2020 Finalist (15 candidates in Europe)

ICML Travel Award (2019)

Microsoft Research Scholarship.(MSR sponsored student 2017 - 2019)

Outstanding Undergraduate Students in Department of Computer Science and Technology in
Tsinghua University. (Top 10%, 2015)

Scholarship of Academic Excellence in Tsinghua University. (2014)

Scholarship of Social Work in Tsinghua University. (2013)

Scholarship of Academic Excellence in Tsinghua University. (2013)

Teaching

Teaching Assistant at EPFL

MATH-111(e) Linear Algebra. 2019-Fall, 2020-Fall.

CS-413 Computational Photography. 2020-Spring, 2021-Spring.

EE-618 Theory and Methods for Reinforcement Learning. 2019-Spring.

EE-556 Mathematics of Data: from Theory to Computation. 2018-Fall.

154

https://www.qualcomm.com/invention/research/university-relations/innovation-fellowship/2020-europe

	Acknowledgments
	Abstract (English/Français)
	Contents
	Notation
	Introduction
	Problem Formulation
	Extra Benefits of Robustness
	Challenges in Robust Learning
	Summary of Contributions

	Related Works
	Adversarial Attacks
	Verified Robustness
	Empirical Robustness
	Efficient Robust Learning

	Verified Robustness
	Bounding Network's Output
	Linear Approximation
	Interval Bound Propagation

	Network Verification
	Verification on Non-uniform Bounds
	Experiments and Analysis

	Training Provably Robust Networks
	Geometric Bounds of Decision Boundaries
	Finer-grained and Faster Verification
	Polyhedral Envelope Regularization
	Experiments and Analysis

	Summary and Broader Impact

	Empirical Robustness
	Adversarial Training
	Adversarial Loss Landscape
	Toy Model: Logistic Regression
	Theoretical Analysis for General Models
	Numerical Experiments
	Periodic Adversarial Scheduling
	Discussion

	Adversarial Overfitting
	Measuring Instancewise Difficulty
	Empirical Observation
	Toy Model: Logistic Regression
	Theoretical Analysis for General Models
	Case Studies

	Summary and Broader Impact

	Efficient Robust Learning
	Robust Subnetwork inside Randomly-initialized Networks
	Lottery Ticket Hypothesis
	Adaptive Pruning
	Binary Initialization Scheme
	Experimental Results

	Instance-Adaptive Fast Adversarial Training
	Fast Adversarial Training and Catastrophic Overfitting
	Attack by Adaptive Step Size
	Convergence Analysis
	Experimental Results

	Summary and Broader Impact

	Conclusion
	Summary
	Unsolved Challenges and Future Work

	Bibliography
	Curriculum Vitae

