

Mixture of Adversarial LoRAs: Boosting Robust Generalization in Meta-Tuning

Xu Yang Chen Liu* Ying Wei*

City University of Hong Kong City University of Hong Kong Zhejiang University

*Corresponding authors

Outline

Meta-Tuning in Large-scale Pre-trained Models

- Background
- \triangleright Large-scale pre-trained vision transformers have revolutionized the few-shot learning area [1] ➢ Meta-tuning equips pre-trained models with quick adaptation capability by training on a handful of few-shot tasks

[1] Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. In CVPR, 2022

• **Meta-tuning shows limited improvement for out-ofdomain tasks** • **Meta-tuning on single domain yields marginal improvements over pre-trained models** Datase Domain Type Out-of-domair Pre-trained Meta-tuning (single domain) Meta-tuning (multi domain)

Performance on Meta-Dataset in the Variable-Way-Variable-Shot setting

In-Distribution Out-of-Distribution

• **Concept shift:** training and test samples are collected from the same environment yet from mutually exclusive classes

• **Domains** of images (e.g., from IN to QuickDraw) or **granularity** of categories (e.g., from iNaturalist to Plant Disease) in unseen tasks deviate from those in the training tasks.

- **Adversarial Vulnerability:** human-imperceptible perturbations
- **Visual corruptions:** weather, noise, blur, etc.

Robustness

Puffer, 97.99% **crab**, 100%

$$
\min_{\theta} \max_{\|\delta\|_{\infty} \leq \epsilon} \mathcal{L}(f_{\theta}(x+\delta), y)
$$

$$
\delta \leftarrow \Pi_{\epsilon} \left(\delta + \alpha \cdot \text{sign} \big(\nabla_{\delta} \mathcal{L} (f_{\theta}(x + \delta), y) \big) \right)
$$

 f_{θ} : classifier with parameters θ \mathcal{L} : CE loss δ : perturbations **: robustness level** α : step size Π_{ϵ} : projection for constraints

What is Relationship between Adversarial Robustness & Distribution Shiften and Shiften Shipter 2007

 \triangleright Meta-train on ImageNet using adversarial examples generated under different perturbation budgets ϵ ➢Meta-test on in-domain and out-of-domain datasets

can be improved with suitable robustness levels

What is Relationship between Adversarial Robustness & Distribution Shiften and Shiften Shipter 2007

 \triangleright Meta-train on ImageNet using adversarial examples generated under different perturbation budgets ϵ ➢Meta-test on OOD datasets

min $_{\theta}$ max_{∥ $_{\delta}$ ∥_∞≤ $_{\epsilon}$ £(f $_{\theta}$ (x + δ), y)}

 $\delta \leftarrow \Pi_{\epsilon} \left(\delta + \alpha \cdot \text{sign} \big(\nabla_{\delta} \mathcal{L} (f_{\theta}(x + \delta), y) \big) \right)$

 f_{θ} : classifier with parameters θ $L:$ CE loss δ : perturbations **: robustness level** α : step size Π_{ϵ} : projection for constraints

Generate Adversarial Query Set max $_{\|\delta\|_{\infty}\leq\epsilon_{i}}\mathcal{L}(f_{\theta}(\mathcal{S}, x_{q}+\delta), y_{q})$ $\delta \leftarrow \Pi_{\epsilon_i} \big(\delta + \alpha \cdot \text{sign} \big(\nabla_{\delta} \mathcal{L} (f_{\theta}(\mathcal{S}, x_q + \delta), y_q) \big)$

Training Objective

$$
A = U_{[:r]} \text{diag}\left(S_{[:r]}^{1/2}\right)
$$

$$
B = \text{diag}\left(S_{[:r]}^{1/2}\right) V_{[:r]}^T
$$

$$
W^{\text{res}} = U_{[r:]} \text{diag}(S_{[r:]}) V_{[r:]}^T
$$

Adversarial Perturbation on Singular Values and Vectors

$$
\mathcal{L}_{clean} = \mathcal{L}_{CE}(f_{W^{res}+AB}(\mathcal{S}, x_q), y_q)
$$
 (Clear Cross-Entropy loss)

$$
\mathcal{L}_{adv} = D_{KL}(f_{W^{res}+AB}(\mathcal{S}, x_q^{adv}) || f_{W^{res}+AB}(\mathcal{S}, x_q))
$$

$$
\mathcal{L} = \mathcal{L}_{clean} + \lambda_{adv}\mathcal{L}_{adv}
$$
 (Adversarial Kullback-Leibler divergence loss)

Background

$$
\delta_A = \eta_1 \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_A \mathcal{L} (f_W \text{res})
$$

$$
A \leftarrow A - \eta_2 \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_A \mathcal{L} (f_W \text{res})
$$

(Sample the i-th attack configuration candidates to generate adversarial query sets with different robustness strength)

(Initialize LoRA parameters with the singular value decomposition results)

(Incorporate worst-case perturbation on A and B in the similar way)

$V_{\lceil r\cdot\rceil}^T$

$_{q=1}^{M} \nabla_{A} \mathcal{L}(f_{W}$ res _{+AB}(S, x^{adv}), y_q $_{q=1}^{M}\nabla_{\!A}\mathcal{L}\big(f_{W^{res}+(A+\delta_{A})B}\big(\mathcal{S},\mathcal{X}_{q}^{adv}\big),$ \mathcal{Y}_{q}

$$
\zeta_i = \frac{\text{Top}_k(\exp(-\beta(1 - (\lambda C - (1 - \lambda)V)))_i)}{\sum_{i=1}^k \text{Top}_k(\exp(-\beta(1 - (\lambda C - (1 - \lambda)V)))_i)}
$$

 $C_i =$ 1 $\frac{1}{NK} \sum_{s=1}^{NK} \gamma(\mathbf{f}_{W^{res}} + A_i B_i(x_s), \mathbf{p}_{i,y_s})$ $V_i =$ 1 $\frac{1}{NK} \sum_{s=1}^{K} \sum_{c=1}^{N}$ $c \neq y_s$ $_{c=1}^N \gamma$ (f_{W} res + $A_i B_i(x_s)$, $p_{i,c}$ *support images mean of class samples*

$$
\widehat{W}=\mathrm{trim}(W')
$$

$$
W' = W^{res} + \sum_{i=1}^{P} \zeta_i A_i B_i.
$$

Weight Merging

Singular Value Trimming

merging coefficient

(Reset redundant singular values to zero)

cosine similarity

Inference: Nearest-Centroid Classification

$$
y_j^q = \operatorname*{argmin}_{i} \cos \left(\mathbf{f}_{\widehat{W}} \left(x_j^q \right), \mathbf{p}_{i, y_s} \right)
$$

Few-shot Clean Accuracy on Meta-Dataset benchmark

Few-shot Clean Clean Accuracy on BSCD-FSL benchmark and fine-grained datasets

- clean meta-tuning[1]
- parameter-efficient adaption^[2]
- adversarial few-shot learning methods^[3]
- **Does not sacrifice in-domain clean accuracy**
- **Good performance in clean OOD Generalization**

Competitive methods: compared against three categories of related works:

[1] Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. In CVPR, 2022

[2] StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning. In CVPR, 2023

[3] Strong Baselines for Parameter Efficient Few-Shot Fine-tuning. In AAAI, 2024

Few-shot Robustness Against Adversarial Attacks

• **AMT handles adversarial attacks across varying perturbation budgets**

Few-shot Robustness Against Natural Corruptions

Average of *15 types of corruptions* × *5 multiple levels* × *10 domains*

• **AMT consistently outperforms counterparts across various common corruptions**

- APQ: adversarial perturbation on query set
- APSV: adversarial perturbation on singular values and vectors
- RLP: Robust LoRAPool
- TTM: test-time merging
- STr: singular value trimming.

Alternative Test-time Merging Strategies

The Influence of Attack Pool Strategy

Component Effectiveness

Effective for Other Pre-training Methods

Loss Coefficient LoRA Rank

(a) Clean Few-shot Accuracy

(b) Adversarial Few-shot Accuracy

Pool Size Top-k

Thanks!