

Mixture of Adversarial LoRAs: Boosting Robust Generalization in Meta-Tuning

Xu Yang

City University of Hong Kong

Chen Liu^{*}

City University of Hong Kong

Zhejiang University

*Corresponding authors

Outline

Meta-Tuning in Large-scale Pre-trained Models

- Background
- > Large-scale pre-trained vision transformers have revolutionized the few-shot learning area^[1] > Meta-tuning equips pre-trained models with quick adaptation capability by training on a handful of few-shot tasks

[1] Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. In CVPR, 2022

In-Distribution

Concept shift: training and test samples are collected from the same environment yet from mutually exclusive classes

Out-of-Distribution

Domains of images (e.g., from IN to QuickDraw) or granularity of categories (e.g., from iNaturalist to Plant Disease) in unseen tasks deviate from those in the training tasks.

Robustness

- **Adversarial Vulnerability:** human-imperceptible perturbations
- Visual corruptions: weather, noise, blur, etc.

Performance on Meta-Dataset in the Variable-Way-Variable-Shot setting

What is Relationship between Adversarial Robustness & Distribution Shift?

 \triangleright Meta-train on ImageNet using adversarial examples generated under different perturbation budgets ϵ > Meta-test on in-domain and out-of-domain datasets f_{θ} : classifier with parameters θ

$$\min_{\theta} \max_{\|\delta\|_{\infty} \leq \epsilon} \mathcal{L}(f_{\theta}(x+\delta), y)$$

$$\delta \leftarrow \Pi_{\epsilon} \left(\delta + \alpha \cdot \operatorname{sign}(\nabla_{\delta} \mathcal{L}(f_{\theta}(x+\delta), y)) \right)$$

$$\mathcal{L}: \operatorname{CE loss} \\ \delta: \text{ perturbations} \\ \epsilon: \text{ robustness level} \\ \alpha: \text{ step size} \\ \Pi_{\epsilon}: \text{ projection for constraints}$$

 \mathcal{L} : CE loss

OOD performance can be improved with suitable robustness levels

What is Relationship between Adversarial Robustness & Distribution Shift?

 \triangleright Meta-train on ImageNet using adversarial examples generated under different perturbation budgets ϵ \blacktriangleright Meta-test on OOD datasets

 $\min_{\theta} \max_{\|\delta\|_{\infty} \le \epsilon} \mathcal{L}(f_{\theta}(x+\delta), y)$

$$\delta \leftarrow \Pi_{\epsilon} \left(\delta + \alpha \cdot \operatorname{sign} (\nabla_{\delta} \mathcal{L}(f_{\theta}(x + \delta), y)) \right)$$

 f_{θ} : classifier with parameters θ \mathcal{L} : CE loss δ : perturbations ϵ : robustness level α : step size Π_{ϵ} : projection for constraints

6

Training Objective

$$\mathcal{L}_{clean} = \mathcal{L}_{CE}(f_{W^{res}+AB}(S, x_q), y_q) \ (Clean \ Cross-Entropy \ loss)$$

$$\mathcal{L}_{adv} = D_{\mathrm{KL}}(f_{W^{res}+AB}(S, x_q^{adv}) \parallel f_{W^{res}+AB}(S, x_q))$$

$$\mathcal{L} = \mathcal{L}_{clean} + \lambda_{adv} \mathcal{L}_{adv}$$

$$(Adversarial \ Kullback-Leibler \ divergence \ loss)$$

Generate Adversarial Query Set $\max_{\|\delta\|_{\infty} \leq \epsilon_{i}} \mathcal{L}(f_{\theta}(\mathcal{S}, x_{q} + \delta), y_{q})$ $\delta \leftarrow \Pi_{\epsilon_i} \Big(\delta + \alpha \cdot \operatorname{sign} \Big(\nabla_{\delta} \mathcal{L} \big(f_{\theta} \big(\delta, x_q + \delta \big), y_q \big) \Big) \Big)$

(Sample the i-th attack configuration candidates to generate adversarial query sets with different robustness strength)

Adversarial Perturbation on Singular Values and Vectors

$$A = U_{[:r]} \operatorname{diag}\left(S_{[:r]}^{1/2}\right)$$
$$B = \operatorname{diag}\left(S_{[:r]}^{1/2}\right) V_{[:r]}^{T}$$

$$W^{\text{res}} = U_{[r:]} \text{diag}(S_{[r:]})$$

(Initialize LoRA parameters with the singular value decomposition results)

$$\delta_A = \eta_1 \cdot \frac{1}{M} \sum_{q=1}^M \nabla_A \mathcal{L}(f_W \text{res})$$
$$A \leftarrow A - \eta_2 \cdot \frac{1}{M} \sum_{q=1}^M \nabla_A \mathcal{L}(f_W \text{res})$$

(Incorporate worst-case perturbation on A and B in the similar way)

$V_{[r:]}^T$

$_{+AB}(\mathcal{S}, x_q^{adv}), y_q)$ $W^{res} + (A + \delta_A)B(S, x_q^{adv}), y_q)$

Weight Merging

support images mean of class samples $C_{i} = \frac{1}{NK} \sum_{s=1}^{NK} \gamma \left(\mathbf{f}_{W^{res}} + A_{i}B_{i}(x_{s}), \mathbf{p}_{i,y_{s}} \right)$ $V_{i} = \frac{1}{NK} \sum_{s=1}^{K} \sum_{\substack{c=1 \ c \neq y_{s}}}^{N} \gamma \left(\mathbf{f}_{W^{res}} + A_{i}B_{i}(x_{s}), \mathbf{p}_{i,c} \right)$

cosine similarity

$$\zeta_{i} = \frac{\operatorname{Top}_{k} (\exp(-\beta(1-(\lambda C))))}{\sum_{i=1}^{k} \operatorname{Top}_{k} (\exp(-\beta(1-(\lambda C))))}$$

merging coefficient

$$W' = W^{res} + \sum_{i=1}^{P} \zeta_i A_i B_i.$$

Singular Value Trimming

$$\widehat{W} = \operatorname{trim}(W')$$

(Reset redundant singular values to zero)

Inference: Nearest-Centroid Classification

$$y_j^q = \operatorname*{argmin}_i cos\left(\mathbf{f}_{\widehat{W}}(x_j^q), \mathbf{p}_{i,y_s}\right)$$

Framework Robust Proposed Background Motivation Experiments Generalizatio Methods Analysis

$\frac{(L-(1-\lambda)V))_i}{(\lambda C-(1-\lambda)V))_i}$

Few-shot Clean Accuracy on Meta-Dataset benchmark

1_shot	Backhone	TTE	In-domain				0	ut-of-dom	ain			1	Ava
1-51101	Backbone	111	ImageNet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	coco	Avg.
PM [12]	ViT-small	-	65.07	59.03	38.13	76.18	61.56	57.29	56.03	80.41	55.17	54.42	60.35
StyleAdv [83]	ViT-small	-	56.10	62.25	40.38	66.62	55.94	57.93	53.19	81.10	54.20	48.08	57.58
AMT	ViT-small	-	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16
PMF 🛄	ViT-small	Y	65.07	71.52	38.67	76.15	61.62	59.82	56.03	80.41	59.71	54.41	62.34
PMF+AMT-FT	ViT-small	Y	68.80	77.83	42.90	79.95	63.77	63.72	59.06	85.37	63.87	57.37	66.26
ATTNSCALE [56]	ViT-small	Y	63.66	72.51	40.09	73.59	61.04	60.26	54.88	82.52	59.91	55.10	62.36
ATTNSCALE+AMT-FT	ViT-small	Y	68.80	79.43	42.90	79.95	63.08	65.66	59.06	85.37	64.13	58.24	66.66
	Backhone TTF												
E chot	Backhana	TTE	In-domain				0	ut-of-dom	ain				4.00
5-shot	Backbone	TTF	In-domain ImageNet	Omglot	Acraft	CUB	O DTD	ut-of-dom QDraw	ain Fungi	Flower	Sign	coco	Avg.
5-shot PM [12]	Backbone	TTF	In-domain ImageNet 80.71	Omglot 78.77	Acraft 56.56	CUB 92.23	0 DTD 79.92	ut-of-dom QDraw 76.16	ain Fungi 76.98	Flower 96.61	Sign 74.66	COCO 71.77	Avg . 78.44
5-shot PM [12] StyleAdv [83]	Backbone ViT-small ViT-small	TTF	In-domain ImageNet 80.71 74.51	Omglot 78.77 80.22	Acraft 56.56 58.78	CUB 92.23 87.60	0 DTD 79.92 78.67	ut-of-dom QDraw 76.16 75.57	ain Fungi 76.98 73.80	Flower 96.61 96.18	Sign 74.66 71.99	COCO 71.77 63.93	Avg. 78.44 76.12
5-shot PM [12] StyleAdv [83] AMT	Backbone ViT-small ViT-small ViT-small	TTF	In-domain ImageNet 80.71 74.51 81.35	Omglot 78.77 80.22 88.47	Acraft 56.56 58.78 61.73	CUB 92.23 87.60 93.12	01 DTD 79.92 78.67 80.34	ut-of-dom QDraw 76.16 75.57 79.59	ain Fungi 76.98 73.80 80.04	Flower 96.61 96.18 96.99	Sign 74.66 71.99 80.85	COCO 71.77 63.93 74.56	Avg. 78.44 76.12 81.70
5-shot PM [2] StyleAdv [8] AMT PMF [2]	Backbone ViT-small ViT-small ViT-small ViT-small	TTF	In-domain ImageNet 80.71 74.51 81.35 79.92	Omglot 78.77 80.22 88.47 93.54	Acraft 56.56 58.78 61.73 67.45	CUB 92.23 87.60 93.12 92.22	00 DTD 79.92 78.67 80.34 80.86	ut-of-dom QDraw 76.16 75.57 79.59 81.64	ain Fungi 76.98 73.80 80.04 77.25	Flower 96.61 96.18 96.99 96.61	Sign 74.66 71.99 80.85 87.68	COCO 71.77 63.93 74.56 75.33	Avg. 78.44 76.12 81.70 83.25
5-shot PM [12] StyleAdv [83] AMT PMF [12] PMF+AMT-FT	Backbone ViT-small ViT-small ViT-small ViT-small ViT-small	TTF Y Y Y	In-domain ImageNet 80.71 74.51 81.35 79.92 81.51	Omglot 78.77 80.22 88.47 93.54 94.89	Acraft 56.56 58.78 61.73 67.45 67.99	CUB 92.23 87.60 93.12 92.22 93.23	00 DTD 79.92 78.67 80.34 80.86 80.41	ut-of-dom QDraw 76.16 75.57 79.59 81.64 83.02	ain Fungi 76.98 73.80 80.04 77.25 79.76	Flower 96.61 96.18 96.99 96.61 96.93	Sign 74.66 71.99 80.85 87.68 89.37	COCO 71.77 63.93 74.56 75.33 76.20	Avg. 78.44 76.12 81.70 83.25 84.33
5-shot PM [2] StyleAdv [83] AMT PMF [2] PMF+AMT-FT ATTNSCALE [54]	Backbone ViT-small ViT-small ViT-small ViT-small ViT-small	TTF	In-domain ImageNet 80.71 74.51 81.35 79.92 81.51 79.30	Omglot 78.77 80.22 88.47 93.54 94.89 93.48	Acraft 56.56 58.78 61.73 67.45 67.99 69.42	CUB 92.23 87.60 93.12 92.22 93.23 90.49	00 DTD 79.92 78.67 80.34 80.86 80.41 81.04	ut-of-dom QDraw 76.16 75.57 79.59 81.64 83.02 82.66	ain Fungi 76.98 73.80 80.04 77.25 79.76 77.44	Flower 96.61 96.99 96.99 96.61 96.93 96.51	Sign 74.66 71.99 80.85 87.68 89.37 89.78	COCO 71.77 63.93 74.56 75.33 76.20 76.48	Avg. 78.44 76.12 81.70 83.25 84.33 83.66

Competitive methods: compared against three categories of related works:

- clean meta-tuning^[1]
- parameter-efficient adaption^[2]
- adversarial few-shot learning methods^[3]
- Does not sacrifice in-domain clean accuracy
- Good performance in clean OOD Generalization

Few-shot Clean Clean Accuracy on BSCD-FSL benchmark and fine-grained datasets

1-shot	Backbone	TTF	ChestX	ISIC	EuroSAT	CropDisease	CUB	Cars	Places	Plantae	Avg.
PM [12]	ViT-small	-	22.74 ±0.40	33.72 ± 0.60	72.94 ± 0.77	$81.04 {\pm} 0.85$	83.53 ±0.86	42.10 ± 0.80	71.66 ± 0.88	59.04±0.89	58.35
StyleAdv [†] [83] AMT	ViT-small ViT-small	-	22.92±0.32 22.39±0.39	33.05±0.44 33.92±0.58	72.15±0.65 73.52±0.84	81.22±0.61 82.04±0.80	84.01±0.58 84.34±0.83	40.48±0.57 44.33±0.81	72.64±0.67 73.78±0.87	55.52±0.66 59.32±0.94	57.75 59.21
DMC (PA)	L VET en ell	l v	1 21 72 1 0 20	20.26 1.0.26	70.74 + 0.72	80.70 + 6.62	70.12 10.00	27.04 1.0.67	71.11.10.71	52 60 L0 66	65.46
PMP [12]	VII-small		21.75±0.30	30.30±0.36	70.74±0.63	80.79±0.62	/8.13±0.66	37.24±0.57	71.11±0.71	55.00±0.66	50.40
AMT-FT	ViT-small	Y	22.92 ± 0.32 23.23±0.40	33.95±0.46	73.95±0.58	82.04±0.8	84.01±0.58 84.34±0.83	40.48±0.57 46.06±0.80	72.04±0.67 73.83±0.89	55.52±0.66	59.57
		1									
5-shot	Backbone	TTF	ChestX	ISIC	EuroSAT	CropDisease	CUB	Cars	Places	Plantae	Avg.
PM [12]	ViT-small	-	26.61 ±0.43	47.60 ±0.57	$89.19{\scriptstyle\pm0.41}$	93.90±0.46	95.01 ±0.40	$63.44{\scriptstyle\pm0.81}$	88.73 ± 0.51	78.31 ± 0.71	72.85
StyleAdv [†] [83]	ViT-small	-	26.97±0.33	47.73 ± 0.44	88.57 ± 0.34	94.85 ± 0.31	95.82±0.27	61.73 ± 0.62	$88.33 {\pm} 0.40$	75.55 ± 0.54	72.44
AMT	ViT-small	-	27.54 ± 0.45	50.22 ± 0.63	88.38 ± 0.48	94.67 ± 0.40	94.86±0.39	62.94 ± 0.82	$88.88{\scriptstyle\pm0.51}$	79.32±0.7	73.35
PMF [†] [22]	ViT-small	Y	27.27	50.12	85.98	92.96	.	-	-	-	-
PMF [12]	ViT-small	Y	26.17 ± 0.45	50.32 ± 0.63	89.97 ± 0.40	94.77 ± 0.41	95.10±0.42	65.76 ± 0.84	89.02 ± 0.53	79.93 ± 0.64	73.88
StyleAdv-FT [†] [83]	ViT-small	Y	26.97±0.33	51.23 ± 0.51	90.12 ± 0.33	95.99±0.27	95.82±0.27	66.02 ± 0.64	88.33 ± 0.40	78.01 ± 0.54	74.06
AMT-FT	ViT-small	Y	27.54 ± 0.45	51.56 ± 0.68	90.62 ± 0.40	94.67 ±0.40	95.21 ±0.39	67.18 ± 0.79	89.22 ± 0.50	80.36 ± 0.64	74.54

[1] Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference. In CVPR, 2022

[2] StyleAdv: Meta Style Adversarial Training for Cross-Domain Few-Shot Learning. In CVPR, 2023

[3] Strong Baselines for Parameter Efficient Few-Shot Fine-tuning. In AAAI, 2024

				Framework
nd	Robust Generalization	Motivation	Proposed Methods	Experiments
				Analysis

Few-shot Robustness Against Adversarial Attacks

Few-shot Robustness Against Natural Corruptions

AMT consistently outperforms counterparts across • various common corruptions

Average of 15 types of corruptions \times 5 multiple levels \times 10 domains

AMT handles adversarial attacks across varying ٠ perturbation budgets

Component Effectiveness

- APQ: adversarial perturbation on query set
- APSV: adversarial perturbation on • singular values and vectors
- **RLP: Robust LoRAPool** ٠
- TTM: test-time merging ٠
- STr: singular value trimming. •

۸DO	ADSV	DID	TTM	с. Тr	In-domain				Ou	t-of-dom	ain				Ava
Αrų	ALPA	KLF	1 1 1 1 1	511	INet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	COCO	Avg.
X	×	X	X	×	65.07	59.03	38.13	76.18	61.56	57.29	56.03	80.41	55.17	54.42	60.35
1	×	×	×	X	64.57	62.47	38.53	76.23	60.47	57.97	56.22	81.72	57.04	53.96	60.92
1	×	-	1	X	65.56	63.92	39.74	76.06	61.73	58.64	55.99	80.93	56.96	54.28	61.38
1	×	1	1	1	64.95	70.80	40.55	75.19	60.73	59.66	56.92	83.63	57.66	56.04	62.61
1	1	1	X	X	67.95	62.16	39.13	79.27	61.77	58.75	56.59	79.74	55.45	54.63	61.54
1	1	1	1	×	68.46	65.75	42.63	79.43	63.10	58.23	55.69	78.93	63.67	56.28	63.22
1	1	1	1	1	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16

Alternative Test-time Merging Strategies

Merging Strategies	In-domain				Ou	t-of-dom	ain				
weiging Suategies	INet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	COCO	Avg
Weight Average	63.96	64.49	40.57	74.23	59.99	57.36	55.73	80.50	59.87	53.04	60.97
Logit Average	65.84	66.05	40.70	78.72	60.79	59.02	57.42	82.41	58.41	55.09	62.44
Linear classifier	67.22	64.60	37.99	77.96	62.65	57.11	56.62	80.23	58.36	56.10	61.89
AMT	68.46	65.75	42.63	79.43	63.10	58.23	55.69	78.93	63.67	56.28	63.22

The Influence of Attack Pool Strategy

Method	In-domain	n-domain Out-of-domain												
Method	ImageNet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	сосо	Avg.			
Uniform LoRAPool Random LoRAPool Separate LoRAPool	63.12 64.30 68.80	73.28 72.28 71.95	42.45 43.05 42.90	73.59 79.03 79.95	59.21 58.75 62.99	60.22 60.31 59.62	53.91 57.15 59.06	80.77 84.02 85.37	59.47 60.01 63.78	54.04 58.07 57.14	62.01 63.70 65.16			

Effective for Other Pre-training Methods

Method	In-domain				O	ut-of-don	nain				Δυσ
wiethou	INet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	COCO	Avg.
DINO 🛄	62.91	59.13	37.11	73.59	60.67	57.57	54.88	78.40	53.62	53.98	59.19
DINO+AMT	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16
Δ	+5.89	+12.82	+5.79	+6.36	+2.32	+2.05	+4.18	+6.97	+10.16	+3.16	+5.97
iBOT [2]	65.09	61.57	35.40	70.85	60.36	57.37	54.47	78.04	55.00	55.00	59.32
iBOT+AMT	69.95	69.89	38.84	79.96	61.65	62.35	58.34	79.67	61.88	56.49	63.90
Δ	+4.86	+8.32	+3.44	+9.11	+1.29	+4.98	+3.87	+1.63	+6.88	+1.49	+4.58
DeIT [99]	74.23	57.32	35.20	69.36	51.73	56.08	45.52	64.31	53.82	54.64	56.22
DeIT+AMT	81.11	65.50	38.36	75.80	56.53	62.16	53.19	76.09	58.98	58.57	62.63
Δ	+6.88	+8.18	+3.16	+6.44	+4.80	+6.08	+7.67	+11.78	+5.16	+3.93	+6.41
AdvPre [25]	58.59	69.40	33.97	61.71	46.41	61.69	45.51	68.18	50.03	52.62	54.81
AdvPre+AMT	73.35	73.72	37.16	69.79	52.41	63.87	49.91	75.62	59.69	56.16	61.17
Δ	+14.76	+4.32	+3.19	+8.08	+6.00	+2.18	+4.40	+7.44	+9.66	+3.54	+6.36

Loss Coefficient

LoRA Rank

(a) Clean Few-shot Accuracy

<u>\</u> .	In-domain Out-of-domain												
$\wedge adv$	ImageNet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	coco	Avg.		
0	68.50	70.95	41.53	79.74	62.02	59.29	59.11	84.72	56.14	56.57	63.85		
6*	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16		
8	67.51	72.23	42.69	79.02	62.63	59.97	58.92	78.10	61.30	57.17	63.96		

(b) Adversarial Few-shot Accuracy

λ_{adv}	In-domain Out-of-domain												
Aadv	ImageNet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	сосо	Avg.		
0	22.00	12.58	5.35	21.15	22.96	1.74	10.91	30.66	1.86	8.77	13.80		
6*	33.70	42.19	11.72	32.05	32.47	27.45	19.74	41.12	22.79	17.67	28.09		
8	31.85	54.77	21.19	34.85	34.20	39.97	26.09	54.79	37.61	24.15	35.95		

r	In-domain ImageNet	Omglot	Acraft	CUB	Ou DTD	ıt-of-dom QDraw	ain Fungi	Flower	Sign	сосо	Avg.
4	68.55	71.94	42.41	79.69	62.16	60.91	59.27	84.38	63.13	57.72	65.02
8*	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16
16	68.22	72.15	43.34	79.98	62.43	60.86	56.64	83.67	62.97	57.13	64.74
32	68.29	71.96	43.00	81.11	63.07	61.03	59.56	80.50	63.29	57.83	64.96
64	67.39	72.20	43.15	81.21	62.98	60.56	56.74	83.54	62.90	57.13	64.78
128	68.35	72.26	42.74	81.33	63.43	60.62	56.70	83.86	63.25	57.09	64.96

Pool Size

	0												
Ρ	ϵ mean	ϵ variance	In-domain ImageNet	Omglot	Acraft	CUB	O DTD	ut-of-dom QDraw	ain Fungi	Flower	Sign	сосо	Avg.
1 2 3 4* 5 6	3.50 3.05 2.04 3.53 3.52 4.02	0 8.70 7.86 12.56 10.05 11.85	58.80 65.54 67.60 68.80 67.18 65.73	67.50 72.62 72.39 71.95 71.26 71.48	39.63 43.39 43.14 42.90 42.76 42.53	64.30 76.42 79.56 79.95 80.32 73.99	54.16 62.54 60.68 62.99 63.00 60.87	59.54 59.69 60.62 59.62 61.54 59.84	51.87 55.81 56.86 59.06 58.53 55.46	78.32 82.94 85.08 85.37 82.56 85.18	60.44 59.51 63.88 63.78 61.71 60.67	50.85 56.20 56.37 57.14 57.32 55.93	58.54 63.48 64.62 65.16 64.62 63.17

top k	In-domain		Out-of-domain											
top- <i>k</i>	ImageNet	Omglot	Acraft	CUB	DTD	QDraw	Fungi	Flower	Sign	сосо	Avg.			
1	67.70	70.96	41.59	77.22	62.15	61.05	54.58	81.60	58.24	55.68	63.08			
2*	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16			
3	68.29	73.11	42.93	80.25	62.73	60.56	58.03	82.94	61.61	57.39	64.78			
4	65.97	71.89	42.65	78.50	61.80	60.12	57.43	84.84	61.83	57.38	64.24			

Thanks!