

Mixture of Adversarial LoRAs: Boosting Robust Generalization in Meta-Tuning

Background & Motivation

- > Grounded on large-scale pre-trained models, meta-tuning helps models quickly adapt to new tasks in few-shot scenarios.
- > Meta-tuning on single domain yields marginal OOD improvements over pre-trained models.
- > Meta-tunning suffers from vulnerability in adversarial attacks and common visual corruptions under distribution shifts.

Contributions

- > We propose AMT, a novel adversarial meta-tuning approach for enhancing the robust generalization of pre-trained vision transformers across diverse domains.
- > We construct the **adaptive robust LoRAPool** by injecting the adversarial perturbations on the inputs, singular values and vectors of the weight matrices under varying perturbation budgets during meta-tuning.
- > The discriminative components of the pool are integrated into the pretrained model via a simple yet effective test-time merging mechanism for task adaptation.

Adaptive Robust LoRAPool

Generate Adversarial Query Set: Use PGD to generate adversarial query images with different robustness strength.

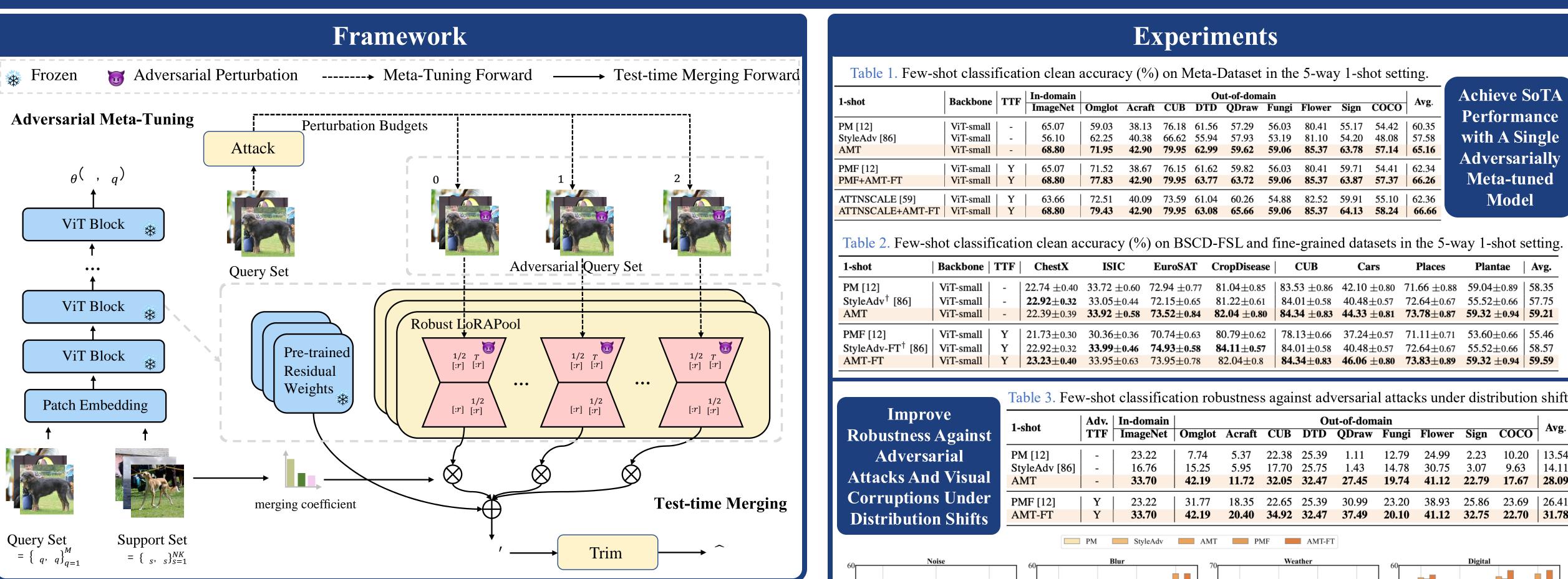
$$\max_{\|\delta\|_{\infty} \leq \epsilon_{i}} \mathcal{L}(f_{\theta}(\mathcal{S}, x_{q} + \delta), y_{q})$$

$$\delta \leftarrow \Pi_{\epsilon_{i}} \left(\delta + \alpha \cdot \operatorname{sign}\left(\nabla_{\delta} \mathcal{L}(f_{\theta}(\mathcal{S}, x_{q} + \delta), y_{q})\right) \right)$$
(1)

> Adversarial Perturbation on Singular Values and Vectors

Initialize LoRA parameters with the SVD results and freeze the residual part.

$$A = U_{[:r]} \operatorname{diag} \left(S_{[:r]}^{1/2} \right)$$


$$B = \operatorname{diag} \left(S_{[:r]}^{1/2} \right) V_{[:r]}^{T}$$
(2)

$$W^{\text{res}} = U_{[r:]} \text{diag}(S_{[r:]}) V_{[r:]}^T$$

Incorporate worst-case perturbation on A and B using gradient ascent.

$$\delta_{A} = \eta_{1} \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_{A} \mathcal{L} \left(f_{W} \operatorname{res}_{+AB} \left(\mathcal{S}, x_{q}^{adv} \right), y_{q} \right)$$
(3)
$$A \leftarrow A - \eta_{2} \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_{A} \mathcal{L} \left(f_{W}^{res} + (A + \delta_{A})_{B} \left(\mathcal{S}, x_{q}^{adv} \right), y_{q} \right)$$

Adv	versa
	V
	V
	V
	Patch

Alg	orithm 1
1:	Input: So
2:	of attack of Output :
	Initialize
4:	for $i = 1$
5:	Sample
6:	Initializ
7:	while n
8:	Sam
9:	Gene
10:	// P
11:	$\delta_A =$
12:	$\delta_B =$
13:	// U
14:	$A \leftarrow$
15:	$B \leftarrow$
16:	end wh
17:	$\phi = \phi$ (
18:	end for

Xu Yang¹ Chen Liu^{1*} Ying Wei^{2*} ¹City University of Hong Kong ²Zhejiang University

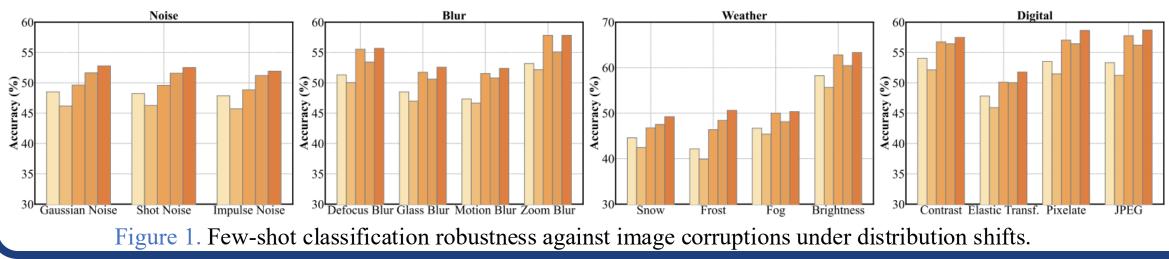
Pseudo-code

Algorithm 1 Robust LoRAPools

- burce training domain \mathcal{D}_{tr}^{seen} ; pre-trained weight residual matrix W^{res} ; P sets configuration candidates: Adversarially meta-trained LoRAPool;
- adversarial LoRAPool: $\phi = \{\}$ to P (in parallel) do e the *i*-th set of ϵ_i , α_i from attack configuration candidates. ze the LoRA parameter AB via Eq. (2); not converged **do** nple a task $\mathcal{T} = \{\mathcal{S}, \mathcal{Q}\} \sim \mathcal{D}_{tr}^{seen}$ herate adversarial query set $Q_{adv} = \{x_q^{adv}, y_q\}_{q=1}^M$ with ϵ_i , α_i via Eq. (1) erturb singular value and vectors $= \eta_1 \cdot \frac{1}{M} \sum_{q=1}^M \nabla_A \mathcal{L}(f_{W^{res} + AB}(\mathcal{S}, x_q^{adv}), y_q))$ $= \eta_1 \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_B \mathcal{L}(f_{W^{res} + AB}(\mathcal{S}, x_q^{adv}), y_q))$ Jpdate AB via SGD $- A - \eta_2 \cdot \frac{1}{M} \sum_{q=1}^M \nabla_A \mathcal{L}(f_{W^{res} + (A + \delta_A)B}(\mathcal{S}, x_q^{adv}), y_q))$ $B - \eta_2 \cdot \frac{1}{M} \sum_{q=1}^{M} \nabla_B \mathcal{L}(f_{W^{res} + A(B + \delta_B)}(\mathcal{S}, x_q^{adv}), y_q))$ hile AB

Algorithm 2 Test-Time Merging

- 1: Input: Support set of meta-test task S = $\{x_i^s, y_i^s\}_{i=1}^{NK}$, pre-trained residual weight matrix W^{res} , adaptive robust LoRAPool $\phi =$ $[A_1B_1,\ldots,A_P\hat{B_P}]$
- 2: for $i = 1, \ldots, P$ (in parallel) do
- // Calculate the intra-class compactness
- $C_{i} = \frac{1}{NK} \sum_{s=1}^{NK} \gamma \left(\mathbf{f}_{W^{res} + A_{i}B_{i}} \left(x_{s} \right), \mathbf{p}_{y_{s}} \right)$ // Calculate the inter-class divergence
- $V_{i} = \frac{1}{NK} \sum_{s=1}^{K} \sum_{\substack{c=1\\c \neq y_{s}}}^{N} \gamma \left(\mathbf{f}_{W^{res} + A_{i}B_{i}} \left(x_{s} \right), \mathbf{p}_{c} \right)$
- 7: end for 8: $\zeta_i = \frac{\operatorname{Top}_k(\exp(-\beta(1-(\lambda C (1-\lambda)V)))_i)}{\sum_{i=1}^k \operatorname{Top}_k(\exp(-\beta(1-(\lambda C (1-\lambda)V)))_i)}$
- 9: $W' = W_{\text{res}} + \sum_{i=1}^{P} \zeta_i A_i B_i$ 10: // Singular Value Trimming
- 11: $\widehat{W} = \operatorname{trim}(W')$



1-shot	Backbone	TTF	In-domain ImageNet	Out-of-domain Avg. Omglot Acraft CUB DTD QDraw Fungi Flower Sign COCO Avg.									Avg.
DM [10]	ViT-small	 	65.07	59.03	38.13			57.29	56.03	80.41	55.17		60.35
PM [12] StyleAdv [86]	ViT-small	-	56.10	62.25	40.38	76.18 66.62		57.29 57.93	56.05 53.19	80.41	54.20	54.42 48.08	57.58
AMT	ViT-small	-	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16
PMF [12]	ViT-small	Y	65.07	71.52	38.67	76.15	61.62	59.82	56.03	80.41	59.71	54.41	62.34
PMF+AMT-FT	ViT-small	Y	68.80	77.83	42.90	79.95	63.77	63.72	59.06	85.37	63.87	57.37	66.26
ATTNSCALE [59]	ViT-small	Y	63.66	72.51	40.09	73.59	61.04	60.26	54.88	82.52	59.91	55.10	62.36
ATTNSCALE+AMT-FT	ViT-small	Y	68.80	79.43	42.90	79.95	63.08	65.66	59.06	85.37	64.13	58.24	66.66
													/

1-shot	Backbone	TTF	ChestX	ISIC	EuroSAT	CropDisease	CUB	Cars	Places	Plantae	Avg.
PM [12]	ViT-small	-	22.74 ±0.40	33.72 ± 0.60	72.94 ± 0.77	$81.04 {\pm} 0.85$	83.53 ±0.86	42.10 ± 0.80	71.66 ± 0.88	59.04±0.89	58.35
StyleAdv [†] [86]	ViT-small	-	$22.92{\pm}0.32$	$33.05 {\pm} 0.44$	$72.15 {\pm} 0.65$	$81.22 {\pm} 0.61$	84.01 ± 0.58	$40.48 {\pm} 0.57$	$72.64 {\pm} 0.67$	$55.52 {\pm} 0.66$	57.75
AMT	ViT-small	-	22.39 ± 0.39	$\textbf{33.92} \pm \textbf{0.58}$	$73.52{\pm}0.84$	$\textbf{82.04} \pm \textbf{0.80}$	84.34 ± 0.83	44.33 ± 0.81	$73.78{\pm}0.87$	59.32 ± 0.94	59.21
PMF [12]	ViT-small	Y	21.73 ± 0.30	$30.36 {\pm} 0.36$	70.74±0.63	80.79±0.62	78.13±0.66	37.24±0.57	71.11±0.71	$53.60{\pm}0.66$	55.46
StyleAdv-FT [†] [86]	ViT-small	Y	22.92 ± 0.32	33.99 ±0.46	74.93±0.58	$84.11 {\pm} 0.57$	84.01 ± 0.58	$40.48 {\pm} 0.57$	$72.64 {\pm} 0.67$	$55.52 {\pm} 0.66$	58.57
AMT-FT	ViT-small	Y	$23.23{\pm}0.40$	$33.95{\pm}0.63$	$73.95{\pm}0.78$	82.04 ± 0.8	84.34±0.83	$\textbf{46.06} \pm \textbf{0.80}$	73.83±0.89	59.32 ± 0.94	59.59

Analysis

APQ	APSV	RLP	TTM	STr	In-domain INet	Omglot	Acraft	CUB		t-of-dom QDraw		Flower	Sign	COCO	Avg.
×	×	X	X	X	65.07	59.03	38.13	76.18	61.56	57.29	56.03	80.41	55.17	54.42	60.35
 Image: A set of the set of the	×	×	×	X	64.57	62.47	38.53	76.23	60.47	57.97	56.22	81.72	57.04	53.96	60.92
 Image: A set of the set of the	×	1	1	X	65.56	63.92	39.74	76.06	61.73	58.64	55.99	80.93	56.96	54.28	61.38
 Image: A set of the set of the	×	1	1	1	64.95	70.80	40.55	75.19	60.73	59.66	56.92	83.63	57.66	56.04	62.61
 Image: A set of the set of the	1	1	×	X	67.95	62.16	39.13	79.27	61.77	58.75	56.59	79.74	55.45	54.63	61.54
1	1	1	1	×	68.46	65.75	42.63	79.43	63.10	58.23	55.69	78.93	63.67	56.28	63.22
1	1	1	1	1	68.80	71.95	42.90	79.95	62.99	59.62	59.06	85.37	63.78	57.14	65.16

