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Mixture of Adversarial LoRAs: Boosting Robust Generalization in Meta-Tuning

➢Grounded on large-scale pre-trained models, meta-tuning helps models 

quickly adapt to new tasks in few-shot scenarios.

➢Meta-tuning on single domain yields marginal OOD improvements 

over pre-trained models.

➢Meta-tunning suffers from vulnerability in adversarial attacks and 

common visual corruptions under distribution shifts.

➢ We propose AMT, a novel adversarial meta-tuning approach for 

enhancing the robust generalization of pre-trained vision transformers 

across diverse domains.

➢ We construct the adaptive robust LoRAPool by injecting the adversarial 

perturbations on the inputs, singular values and vectors of the weight 

matrices under varying perturbation budgets during meta-tuning. 

➢ The discriminative components of the pool are integrated into the pre-

trained model via a simple yet effective test-time merging mechanism 

for task adaptation.
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Table 3. Few-shot classification robustness against adversarial attacks under distribution shifts.

Table 1. Few-shot classification clean accuracy (%) on Meta-Dataset in the 5-way 1-shot setting. 

Table 2. Few-shot classification clean accuracy (%) on BSCD-FSL and fine-grained datasets in the 5-way 1-shot setting. 

Figure 1. Few-shot classification robustness against image corruptions under distribution shifts.
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➢ Generate Adversarial Query Set: Use PGD to generate adversarial query 

images with different robustness strength.

➢ Adversarial Perturbation on Singular Values and Vectors

Initialize LoRA parameters with the SVD results and freeze the residual part.

Incorporate worst-case perturbation on A and B using gradient ascent.
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