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1 Motivation
Problem formulation for training Wasserstein GANs (WGAN):

min
θ∈Θ

max
w∈W

EX∼Preal [fw(X)]− EX∈Pθ [fw(X)]

But, training GANs is not easy.

• Highly unstable training.

• Lack of theory about the existence of saddle points.

2 Proposal: Mixed Nash Equilibria (NE)
WGAN with mixed strategy a

min
ν∈M(Θ)

max
µ∈M(W)

Ew∼νEX∼Preal [fw(X)]− Ew∼µEθ∼νEX∼Pθ [fw(X)]

Define g(w) = EX∼Preal [fw(X)], Gν(w) = Eθ∼ν,X∼Pθ [fw(X)] and
〈ν, h〉 = Eνh, WGAN with mixed strategy can be reformulated

min
ν∈M(Θ)

max
µ∈M(W)

〈µ, g〉 − 〈µ,Gν〉

This is exactly an infinite dimensional two-player game.
——————————————————————————————-
How to find Mixed NE? . Entropic Mirror Descent (MD)

Start with a two-player game with finite actions

min
p∈∆m

max
q∈∆n

〈q,a〉 − 〈q,Ap〉

Entropic MD learns an O(T−1/2)-NE in T iterations.{
pt+1 = MDη(pt,−ATqt)

qt+1 = MDη(qt,−a + Apt)

Here, MDη is the MD iterate defined by entropy function φ(z) =∑d
i=1 zi log zi and its Fenchel dual φ∗(y) = log

∑d
i=1 e

yi .

z′ ≡MDη(z,b) = Oφ∗(Oφ(z)− ηb)

z′i =
zie
−ηbi∑d

i=1 zie
−ηbi

Can Entropic MD generalize to infinite dimensional two-player game
formulation of WGAN and enjoy the same convergence rate?

Answer is Yes!
aAlthough we use WGAN here as example, our methods can be applied to other

GANs as well.

3 Main Theory
Entropic MD for Mix-strategy WGAN

Initial distribution µ1, ν1, learning rate η given
for t = 1, 2, . . . , T do

νt+1 = MDη(νt,−GTµt) . Update ν
µt+1 = MDη(µt,−g +Gνt) . Update µ

return µ̄ = 1
T

∑T
t=1 µt and ν̄ = 1

T

∑T
t=1 νt.

——————————————————————————————
Main Theorem (informal)
Assmue −GTµt and −g +Gνt are bounded and smooth.

1. If we have access to deterministic values of −GTµt and −g+Gνt,
then Entropic MD achieves O(T−1/2) - NE in T iterations with
proper learning rate.

2. If we have access to unbiased stochastic values with bounded
variance of −GTµt and −g + Gνt, then Entropic MD achieves
O(T−1/2) - NE in expectation in T iterations with proper learn-
ing rate.

4 From Theory to Practice
Four steps to make the algorithm implementable.

1. Using the property of Shannon entropy, the property measure of
µt and νt can be expressed in terms of the history.

dµt =
exp{(t− 1)g −G

∑t−1
s=1 νs}dw∫

exp{(t− 1)g −G
∑t−1
s=1 νs}dw

, dνt =
exp{GT

∑t−1
s=1 µs}dθ∫

exp{GT
∑t−1
s=1 µs}dθ

2. We use unbiased empirical average to estimate expectation over
{µt}Tt=1 and {νt}Tt=1 if we can sample from them.

3. For distributions of density function e−hdz, we can use Stochastic
Gradient Langevin Dynamics (SGLD) to obtain samples.

zt+1 = zt − γÔh(zt) +
√

2γεξt

γ, ε and ξt are step size, thermal noise and Gaussian noise.

4. To avoid memory overflow because of storing model samples in
each iteration, we summary each distribution only by its mean.

5 Experiments
We name our method Mirror-GAN and compare it with other method to train GANs.

Iterations 25 Mixed Gaussians Iterations LSUN Bedroom

SGD Adam Mirror Descent RMSProp Mirror Descent
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