

(1) Motivation

Problem formulation for training Wasserstein GANs (WGAN):

$$\min_{\theta \in \Theta} \max_{\mathbf{w} \in \mathcal{W}} \mathbb{E}_{X \sim \mathbb{P}_{real}}[f_{\mathbf{w}}(X)] - \mathbb{E}_{X \in \mathbb{P}_{\theta}}[f_{\mathbf{w}}(X)]$$

But, training GANs is not easy.

- Highly unstable training.
- Lack of theory about the existence of saddle points.

(2) Proposal: Mixed Nash Equilibria (NE)

WGAN with mixed strategy a

 $\min_{\nu \in \mathcal{M}(\Theta)} \max_{\mu \in \mathcal{M}(\mathcal{W})} \mathbb{E}_{\mathbf{w} \sim \nu} \mathbb{E}_{X \sim \mathbb{P}_{real}}[f_{\mathbf{w}}(X)] - \mathbb{E}_{\mathbf{w} \sim \mu} \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim \mathbb{P}_{\theta}}[f_{\mathbf{w}}(X)]$

Define $g(\mathbf{w}) = \mathbb{E}_{X \sim \mathbb{P}_{real}}[f_{\mathbf{w}}(X)], \ G\nu(\mathbf{w}) = \mathbb{E}_{\theta \sim \nu, X \sim \mathbb{P}_{\theta}}[f_{\mathbf{w}}(X)]$ and $\langle \nu, h \rangle = \mathbb{E}_{\nu} h$, WGAN with mixed strategy can be reformulated

$$\min_{\nu \in \mathcal{M}(\Theta)} \max_{\mu \in \mathcal{M}(\mathcal{W})} \langle \mu, g \rangle - \langle \mu, G\nu \rangle$$

This is exactly an *infinite* dimensional two-player game.

How to find Mixed NE?

Start with a two-player game with *finite* actions

$$\min_{\mathbf{p}\in\Delta_m}\max_{\mathbf{q}\in\Delta_n}\langle\mathbf{q},\mathbf{a}\rangle-\langle\mathbf{q},\mathbf{A}\mathbf{p}\rangle$$

Entropic MD learns an $O(T^{-1/2})$ -NE in T iterations.

$$\begin{cases} \mathbf{p}_{t+1} = MD_{\eta}(\mathbf{p}_t, -\mathbf{A}^T \mathbf{q}_t) \\ \mathbf{q}_{t+1} = MD_{\eta}(\mathbf{q}_t, -\mathbf{a} + \mathbf{A}\mathbf{p}_t) \end{cases}$$

Here, MD_{η} is the MD iterate defined by entropy function $\phi(\mathbf{z}) =$ $\sum_{i=1}^{d} z_i \log z_i$ and its Fenchel dual $\phi^*(\mathbf{y}) = \log \sum_{i=1}^{d} e^{y_i}$.

$$\mathbf{z}' \equiv MD_{\eta}(\mathbf{z}, \mathbf{b}) = \nabla \phi^* (\nabla \phi(\mathbf{z}) - \eta \mathbf{b})$$
$$\mathbf{z}'_i = \frac{\mathbf{z}_i e^{-\eta \mathbf{b}_i}}{\sum_{i=1}^d \mathbf{z}_i e^{-\eta \mathbf{b}_i}}$$

Can Entropic MD generalize to *infinite* dimensional two-player game formulation of WGAN and enjoy the same convergence rate?

Answer is Yes!

Finding the Mixed Nash Equilibria of Generative Adversarial Networks

Ya-Ping Hsieh EPFL

Chen Liu EPFL

Volkan Cevher EPFL

(4) From Theory to Practice

Four steps to make the algorithm implementable.

$$d_{\mu_t} = \frac{exp\{(t-1)g - C_{t-1}\}}{\int exp\{(t-1)g - C_{t-1}\}}$$

 γ, ϵ and ξ_t are step size, thermal noise and Gaussian noise.

Mirror Descent

1. Using the property of Shannon entropy, the property measure of μ_t and ν_t can be expressed in terms of the history.

 $\frac{-G\sum_{s=1}^{t-1}\nu_s\}d_{\mathbf{w}}}{-G\sum_{s=1}^{t-1}\nu_s\}d_{\mathbf{w}}}, d_{\nu_t} = \frac{\exp\{G^T\sum_{s=1}^{t-1}\mu_s\}d_{\theta}}{\int \exp\{G^T\sum_{s=1}^{t-1}\mu_s\}d_{\theta}}$

2. We use unbiased empirical average to estimate expectation over $\{\mu_t\}_{t=1}^T$ and $\{\nu_t\}_{t=1}^T$ if we can sample from them.

3. For distributions of density function $e^{-h}d_{\mathbf{z}}$, we can use Stochastic Gradient Langevin Dynamics (SGLD) to obtain samples.

 $\mathbf{z}_{t+1} = \mathbf{z}_t - \gamma \hat{\nabla} h(\mathbf{z}_t) + \sqrt{2\gamma} \epsilon \xi_t$

4. To avoid memory overflow because of storing model samples in each iteration, we summary each distribution only by its mean.

LSUN Bedroom

RMSProp

			A		
1					R.L.
1-1					
The second se					
-		Cana			
No.			-		
I)		-	din the	- Al	E.
14	فعد				
	1000			P	
A.	Rite		>		
	AP II		N		
-U		ł			
P	M		T		T
			all	K	
			N	-	
I	To all	11	ĨL	Dim	
		H			
			N	4	
			Sec.		
- C					
82	11=		11-	- Josef -	in F

Mirror Descent

^aAlthough we use WGAN here as example, our methods can be applied to other GANs as well.