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Introduction
Adversarial Training

Definition (Robustness Problem)

Given a classification model f (θ, x) : Θ× RH → RK parameterized by θ, data points drawn from the
distribution (x, y) ∼ D and loss function L, robustness problem is formulation as follows:

min
θ

E(x,y)∼D max
x′∈Sϵ(x)

L(f (θ, x′), y) (1)

where Sϵ(x) is called the adversarial budget: Sϵ(x) = {x′|∥x− x′∥∞ ≤ ϵ}.

Adversarial Training: generate optimal x ′ and then optimize θ on x ′.
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Introduction
Overfitting in Adversarial Training
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Figure: The training (dashed line) and test (solid line) curve in error (left) and loss (right). The model is
ResNet18; the dataset is CIFAR10.
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Introduction

Adversarial overfitting is universal: it happens in all kinds of adversarial budgets, datasets
and model architectures!

There are several works mitigating adversarial overfitting: some are still valid, some are
proven invalid by adaptive attacks.

The reason behind adversarial overfitting is still poorly understood.

We mainly study this phenomenon from the aspect of training instances.
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Empirical Investigation
Metric Measuring Difficulty

Use the average loss as the basis of the metric.

Given the dataset D, the instance x and its average loss L̄(x), the difficulty metric is defined as:

d(x) =P(L(x) < L(x̃)|x̃ ∼ U(D)) +
1

2
P(L(x) = L(x̃)|x̃ ∼ U(D)) , (2)

It is a normalized metric: 0 for the hardest and 1 for the easiest.

Empirically, it mainly depends on the data itself and the perturbation applied. Training
algorithm and model architecture hardly change the difficulty value.
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Empirical Investigation
Easy / Hard Examples

plane, 0.000 bird plane, 0.002 frog plane, 0.002 frog

plane, 0.003 bird plane, 0.003 ship plane, 0.005 truck

plane, 0.005 truck plane, 0.006 frog plane, 0.006 deer

plane, 0.006 truck plane, 0.007 frog plane, 0.007 ship

plane, 0.007 car plane, 0.007 cat plane, 0.008 bird

plane, 0.008 deer plane, 0.008 horse plane, 0.009 frog

plane, 0.999 plane plane, 0.999 plane plane, 0.998 plane

plane, 0.996 plane plane, 0.995 plane plane, 0.995 plane

plane, 0.995 plane plane, 0.995 plane plane, 0.994 plane

plane, 0.994 plane plane, 0.993 plane plane, 0.993 plane

plane, 0.991 plane plane, 0.989 plane plane, 0.989 plane

plane, 0.989 plane plane, 0.988 plane plane, 0.986 plane

Figure: Hard (left) and easy (right) examples in CIFAR10.
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Empirical Investigation
Easy / Hard Examples

0, 0.000 3 0, 0.000 5 0, 0.000 7

0, 0.001 5 0, 0.001 2 0, 0.002 1

0, 0.004 7 0, 0.004 3 0, 0.004 1

0, 0.005 1 0, 0.005 1 0, 0.006 5

0, 0.007 1 0, 0.007 6 0, 0.009 5

0, 0.010 1 0, 0.010 5 0, 0.012 7

0, 0.998 0 0, 0.997 0 0, 0.997 0

0, 0.997 0 0, 0.997 0 0, 0.997 0

0, 0.996 0 0, 0.995 0 0, 0.995 0

0, 0.994 0 0, 0.994 0 0, 0.993 0

0, 0.993 0 0, 0.993 0 0, 0.993 0

0, 0.992 0 0, 0.992 0 0, 0.990 0

Figure: Hard (left) and easy (right) examples in SVHN.
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Empirical Investigation
Training on a Subset

We divide the training set into ten non-overlapping groups: {Gi}9i=0 where
Gi = {x ∈ D|0.1× i ≤ d(x) < 0.1× (i + 1)}.
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(b) FGSM Adversarial Training
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Figure: Learning curves obtained by training on the 10000 easiest, random and hardest instances of CIFAR10 under
different scenarios. The training error (dashed lines) is the error on the selected instances, and the test error (solid lines)
is the error on the whole test set.
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Empirical Investigation
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(a) ϵ = 2/255
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(b) ϵ = 4/255
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Figure: Learning curves of training on PGD-perturbed inputs against different sizes of l∞ norm based adversarial budgets
using the easiest, the random and the hardest 10000 training instances. The instance difficulty is determined by the
corresponding adversarial budget and is thus different under different adversarial budgets. The dashed lines are robust
training error on the selected training set, the solid lines are robust test error on the entire test set.
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Empirical Investigation
Training on the Whole Training Set
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(a) Average loss.
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(b) Average l2 norm of extracted features.

Figure: Analysis on the groups G0, G3, G6 and G9 in the training set. The right vertical axis corresponds to the training
(dashed grey line) and test (solid grey line) error under adversarial attacks for both plots. Left plot: The left vertical axis
represents the average loss of different groups. Right plot: The left vertical axis represents the average l2 norm of
features extracted during training for different groups.
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Empirical Investigation
Take-Away

Harder the training data is, larger the generalization gap is.

The gap between models trained by easy and hard data increases with the adversarial
budget.

In the early phase of training, the model tends to fit easy training instances; in the late
phase of training, the model fits harder and harder training instances, when adversarial
overfitting happens.

The above phenomenon always happens for different dataset, adversarial budget (l∞, l2) and
model architectures.
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Theoretical Analysis
Setup

We use {xi , yi}ni=1 to represent the m-dimensional training data, and (X, y) as its matrix form.

{x ′
i , yi}ni=1 and (X′, y) are their adversarial counterparts.

Here, xi ∈ Rm, yi ∈ {−1,+1}, X ∈ Rn×m and y ∈ {−1,+1}n.
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Theoretical Analysis
A Toy Example: Logistic Regression fit Gaussian Mixture Model

Model: A linear model parameterized by w ∈ Rm, it outputs sign(wTx) given the input x .

Data: A Gaussian mixture model with K -mode components. Specifically, the k-th component
has a probability pk of being sampled and is formulated as follows:

if yi = +1, xi ∼ N (rkη, I); if yi = −1, xi ∼ N (−rkη, I). (3)

Without the loss of generality, r1 < r2 < ... < rK−1 < rK . Therefore, the first component is
the hardest one while the K − th one is the easiest one.
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Theoretical Analysis
A Toy Example: Logistic Regression fit Gaussian Mixture Model

Theorem

If a logistic regression model is adversarially trained on n separable training instances sampled from the
l-th component of the GMM model described in (3). If m

n log n is sufficiently largea, then with probability

1− O( 1n ), the expected adversarial test error R under the adversarial budget S(2)(ϵ), which is a
function of rl and ϵ, on the whole GMM model described in (3) is given by

R(rl , ϵ) =
K∑

k=1

pkΦ (rkg(rl)− ϵ) , g(rl) = (C1 −
1

C2r2l + o(r2l )
)

1
2 , C1,C2 ≥ 0. (4)

C1, C2 are independent of ϵ and rl . The function Φ is defined as Φ(x) = P(Z > x), Z ∼ N (0, 1).

aSpecifically, m and n need to satisfy m > 10n log n + n − 1 and m > Cnrl
√
log 2n∥η∥. The

constant C is derived in the proof of Theorem 1 in [3].

C. Liu et. al. (EPFL & HKUST) Overfitting by Hard Adversarial Instances December 20, 2021 16 / 28



Theoretical Analysis
A Toy Example: Logistic Regression fit Gaussian Mixture Model

R(rl , ϵ) =
K∑

k=1

pkΦ (rkg(rl)− ϵ) , g(rl) = (C1 −
1

C2r2l + o(r2l )
)
1
2 , C1,C2 ≥ 0.

R(rl , ϵ) increases with the decrease of rl , indicating hard adversarial training instances lead to
larger generalization gap.

Corollary

Under the conditions of the previous theorem and the definition of R in Equation (4), if
ϵ1 < ϵ2, then we have ∀ 0 ≤ i < j ≤ K ,R(ri , ϵ1)−R(rj , ϵ1) < R(ri , ϵ2)−R(rj , ϵ2).

The gap in performance between the models trained by the easy and hard instances increases
with the size of the adversarial budget ϵ. Adversarial training is more sensitive to the
instance difficulty.
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Theoretical Analysis
General Nonlinear Model

Model: A general nonlinear model parameterized by w ∈ Rb, it outputs sign(f (w , x)) where
f represents a neural network.

Data: The dataa distribution is a mixture of K c-isoperimetric components.

Assumption

The data distribution µ is a composition of K c-isoperimetric distributions on Rm, each of
which has a positive conditional variance. That is, µ =

∑K
k=1 αkµk , where αk > 0 and∑K

k=1 αk = 1. We define σ2
k = Eµk

[Var [y |x ]], and without loss of generality assume that
σ1 ≥ σ2 ≥ ... ≥ σK > 0. Furthermore, given any L-Lipschitz function fw , i.e.,
∀x1, x2, ∥fw (x1)− fw (x2)∥ ≤ L∥x1 − x2∥, we have

∀k ∈ {1, 2, ...,K} P(x ∼ µk , ∥fw (x)− Eµk
(fw )∥ ≥ t) ≤ 2e−

mt2

2cL2 . (5)
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Theoretical Analysis
General Nonlinear Model

Definition

Given the dataset {xi , yi}ni=1, the model fw , the adversarial budget S(p)(ϵ) and a positive
constant C , we define the function h(C , ϵ) as

h(C , ϵ) = min
w∈T (C ,ϵ)

min
i

hi ,w (ϵ) s.t. T (C , ϵ) =

{
w |1

n

n∑
i=1

(fw (x ′
i )− yi )

2 ≤ C

}
,

where hi ,w (ϵ) = max ζ, s.t. [fw (xi )− ζ, fw (xi ) + ζ] ⊂
{
fw (xi +∆)|∆ ∈ S(p)(ϵ)

}
.

(6)

Here, x ′
i is the adversarial example of x . We omit the superscript (p) for notation simplicity.

h(C , ϵ) monotonically increases with the increase of ϵ but with the decrease of C .
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Theoretical Analysis
General Nonlinear Model

We use the Lipschitz constant as the proxy to measure the generalization performance.

∀x1, x2, ∥f (w , x1)− f (w , x2)∥ ≤ L∥x1 − x2∥
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Theoretical Analysis
General Nonlinear Model

Theorem

Given n training pairs {xi , yi}ni=1 sampled from the l-th component µl of the distribution in
Assumption, the parametric model fw , the adversarial budget S(p)(ϵ) and the corresponding function h
defined in Definition, we assume that the model fw is in the function space F = {fw ,w ∈ W} with
W ⊂ Rb having a finite diameter diam(W) ≤ W and, ∀w1,w2 ∈ W, ∥fw1 − fw2∥∞ ≤ J∥w1 − w2∥∞.
We train the model fw adversarially using these n data points. Let x ′ be the adversarial example of the
data point x and δ ∈ (0, 1). If we have 1

n

∑n
i=1(fw (x

′
i )− yi )

2 = C and γ := σ2
l + h2(C , ϵ)− C ≥ 0,

then with probability at least 1− δ, the Lipschitz constant of fw is lower bounded as

Lip(fw ) ≥
γ

27

√
nm

c
(
b log(4WJγ−1)− log

(
δ/2− 2e−2−11nγ2

)) , (7)

where Lip(fw ) is the Lipschitz constant of fw : ∀x1, x2, ∥fw (x1)− fw (x2)∥ ≤ Lip(fw )∥x1 − x2∥.
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Theoretical Analysis
General Nonlinear Model

Theorem (Informal)

... If we have 1
n

∑n
i=1(fw (x

′
i )− yi )

2 = C and γ := σ2
l + h2(C , ϵ)− C ≥ 0, then with high probability,

the Lipschitz constant of fw is lower bounded as

Lip(fw ) ≳
γ

27

√
nm

bc log(4WJγ−1)
(8)

Training progresses: C ↓, then γ ↑, then Lip(fw ) ↑, generalization gap ↑.
Training with hard instances: σl ↑, then γ ↑, then Lip(fw ) ↑, generalization gap ↑.
Training with larger adversarial budget ϵ ↑, then γ ↑, then Lip(fw ) ↑, generalization gap ↑.
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Theoretical Analysis
General Nonlinear Model
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Figure: The curves of the Lipschitz upper bound when the model is adversarially trained by the easiest, the random and
the hardest 10000 instances. The y-axis is log-scale.
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Case Study
Existing Methods

Existing methods successfully mitigating adversarial overfitting all avoid fitting hard
input-pairs.

Instance-Adaptive Training [1]: assign different ϵ values to different training instances.

Assign smaller ϵ to training instances x whose d(x) values are small.

Self-Adaptive Training [2]: generate adaptive target instead of using one-hot label.

For easy instnaces, the adaptive target is very close to one-hot target; for hard instances, the
difference between these two values is huge.

Existing methods highlighting hard training adversarial instances are found invalid.

Geometry-Aware Adversarial Training [4]: assign larger weights to training instances close
to the decision boundary.

Proven invalid by adaptive attacks.

C. Liu et. al. (EPFL & HKUST) Overfitting by Hard Adversarial Instances December 20, 2021 24 / 28



Case Study
Existing Methods

Existing methods successfully mitigating adversarial overfitting all avoid fitting hard
input-pairs.

Instance-Adaptive Training [1]: assign different ϵ values to different training instances.

Assign smaller ϵ to training instances x whose d(x) values are small.

Self-Adaptive Training [2]: generate adaptive target instead of using one-hot label.

For easy instnaces, the adaptive target is very close to one-hot target; for hard instances, the
difference between these two values is huge.

Existing methods highlighting hard training adversarial instances are found invalid.

Geometry-Aware Adversarial Training [4]: assign larger weights to training instances close
to the decision boundary.

Proven invalid by adaptive attacks.

C. Liu et. al. (EPFL & HKUST) Overfitting by Hard Adversarial Instances December 20, 2021 24 / 28



Case Study
Existing Methods

Existing methods successfully mitigating adversarial overfitting all avoid fitting hard
input-pairs.

Instance-Adaptive Training [1]: assign different ϵ values to different training instances.

Assign smaller ϵ to training instances x whose d(x) values are small.

Self-Adaptive Training [2]: generate adaptive target instead of using one-hot label.

For easy instnaces, the adaptive target is very close to one-hot target; for hard instances, the
difference between these two values is huge.

Existing methods highlighting hard training adversarial instances are found invalid.

Geometry-Aware Adversarial Training [4]: assign larger weights to training instances close
to the decision boundary.

Proven invalid by adaptive attacks.
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Summary

Take-aways:

Hard instances leads to overfitting in adversarial training.

Compared with vanilla training, adversarial training is more sensitive to hard instances.

Methods mitigating adversarial overfitting avoids fitting adversarial input-target pairs. By
contrast, methods highlighting hard instances may not achieve true robustness.
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Summary

Some questions I am working / supervising on

Training provably robust models.

Robust compressed model.

Robustness against multiple lp norm based attacks.

Robustness on deep equilibrium models, such as Neural ODE.

Some open questions I am interested in.

Adversarial training with semi-supervised training.

Optimization properties of training provably robust models.

Fundamental reasons why adversarial examples exists for deep nonlinear models.
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Thank You!
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