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ADVERSARIAL ROBUSTNESS

Given the training set {(xi, yi)}Ni=0, an adversar-
ial budget Sϵ = {∆|∥∆∥p ≤ ϵ}, the loss function
L and a model parameterized by w ∈ Rn, adver-
sarial training is solving the min-max problem:

min
w

1

N

N∑
i=1

max
∆i∈Sϵ

L(w, (xi +∆i, yi)). (1)

ROBUST OVERFITTING
Much slower convergence and larger generaliza-
tion gaps are observed in adversarial training.
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Figure 1: Learning curves of vanilla and adversarial
training on CIFAR10. Solid lines and dashed lines rep-
resent the test and training accuracy, respectively.

CODE ON GITHUB:

Repository name on Github:

RobustOverfit-HardInstance

CONCLUSIONS AND IMPLICATIONS FOR PRACTITIONERS

• The scope of our theorem is broad as the assumptions are weak: no assumptions for model
architectures and very weak assumptions for adversarial or random perturbation types.

• The key message is clear: It is hard adversarial instances that contribute to robust overfitting.
Methods successfully mitigating overfitting all implicitly downplay hard instances. By
contrast, methods highlighting hard instances turn out invalid eventually.

Theoretical justifications for popular methods addressing robust overfitting. Our theorem can be
the intuition to come up with more algorithms mitigating overfitting!

• Early stop → Avoid small training loss → C ↑ → H ↓.
• Self-adaptive training → Using small perturbation to hard instances → ϵ ↓ → H ↓.
• Remove ambiguous or mislabelled data → Remove hard instances → σ ↓ → H ↓.

HARDNESS → OVERFITTING
We use the average adversarial loss during train-
ing as the metric to calculate the “hardness” of
each training instance.
Empirical Observations:
• The model first fits the easy instances and then

the hard instances.
• When the model fits the hardest instances, it

suffers from significant overfitting.
• Bigger the adversarial budgets are, the more se-

vere overfitting we will see.

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
er

ag
e 

Lo
ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

0 25 50 75 100 125 150 175 200
Epoch

1

2

3

4

5

Fe
at

ur
e 

M
ag

ni
tu

de

Easiest top 10%
Easiest 30%-40%
Hardest 30%-40%
Hardest top 10%

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

Figure 2: We categorize the training instances into
10 groups and monitor the properties of each group
during training. The right axis of both figures repre-
sents the overall learning curves, with solid and dashed
curves representing the test and training accuracies.
Left: The average loss of different groups. Right: The
average l2 norm of features extracted during training.

SELECTED THEORETICAL RESULTS

1. Toy Example: Linear Models
Data: data points are drawn from a K-mode Gaussian mixture model (GMM). Specifically, the k-th
component has a probability pk of being sampled and is formulated as xi ∼ N (yirkη, I) where η
is the uniform direction for each mode and rk ∈ R+ controls the average distance between the
positive and negative instances. rk indicates the instance difficulty of each mode in this GMM.

Theorem: If a logistic regression model is adversarially trained on n separable training instances
sampled from the l-th component of the GMM. {pk}Kk=1 are the probabilities of sampling from the
k-th component of the GMM; when m

n logn is sufficiently large, then with probability 1−O( 1n ), the
expected adversarial test error R on the whole GMM under the adversarial budget {∆|∥∆∥ ≤ ϵ} as
a function of rl and ϵ is given by R(rl, ϵ) =

∑K
k=1 pkΦ (rkg(rl)− ϵ) where g(rl) = (C1− 1

C2r2l +o(r2l )
)

1
2

and C1, C2 are non-negative numbers independent of ϵ and rl. The function Φ is defined as Φ(x) =
P(Z > x), Z ∼ N (0, 1).

Corollary: Under the conditions and the definition of R defined above, if ϵ1 < ϵ2, then we have
∀ 0 ≤ i < j ≤ K,R(ri, ϵ1)−R(rj , ϵ1) < R(ri, ϵ2)−R(rj , ϵ2).

Conclusion: (1) Training on hard adversarial instances leads to more severe overfitting; (2) Large ad-
versarial budget makes the model more sensitive to hard adversarial instances regarding overfitting.

2. General Cases: Deep Neural Networks
Data: The data follows a sub-Gaussian distribution with a positive conditional variance, i.e., σ2 =
E[V ar[y|x]] > 0. The conditional variance indicates the training loss of a perfect classifier and
thus indicates the difficulty of training instances.

Simplified Theorem: Given n training instances sampled from the distribution above and the
adversarial budget ∆ = {∆|∥∆∥ ≤ ϵ}, we conduct adversarial training on a model with bounded
parameters, let C be the training loss on the adversarial examples, then the Lipschitz constant of
the model is lower bounded by H(σ, ϵ, C) where the function H monotonically increases with σ, ϵ
and monotonically decreases with C.

Remarks:
1. The Lipchitz constant has been proven to be correlated with the model’s adversarial vulnerability

on the test set. Considering our theorem is based on a small adversarial training loss, the Lipschitz
constant is a good indicator of the generalization gap.

2. Sufficiently small C: our theorem applies to the later phase of training when overfitting happens.
3. Adversarial training loss C ↓→ H ↑: training progresses, overfitting increases.
4. Training instances’ difficulty σ ↑→ H ↑: hard instances contributes to overfitting.
5. Adversarial budget’s size ϵ ↑→ H ↑: larger adversarial perturbations contributes to overfitting.


