

Understanding and Improving Fast Adversarial Training against l_0 Bounded Perturbations

Xuyang Zhong ¹ Yixiao Huang ¹ Chen Liu ¹

¹City University of Hong Kong

{xuyang.zhong, yixiao.huang}@my.cityu.edu.hk chen.liu@cityu.edu.hk

Unique Challenges in Fast l_0 Adversarial Training

Fast adversarial training is efficient but usually encounters catastrophic overfitting (CO) – The model trained by 1-step attack, e.g., sPGD, shows zero robustness to a stronger attack, e.g., sAA.

Most methods designed for other l_p norms ($p \ge 1$) turn out **ineffective** at all in the l_0 scenario.

Table 1. Comparison between existing CO mitigation methods and multi-step method (sTRADES) in robust accuracy (%) by sAA. The target sparsity level $\epsilon=20$.

Method	ATTA	Free-AT	GA	Fast-BAT	FLC Pool	N-AAER	N-LAP	NuAT	sTRADES
Robust Acc.	0.0	8.9	0.0	14.1	0.0	0.1	0.0	51.9	61.7

CO in l_0 adversarial training is primarily due to **sub-optimal perturbation locations rather than magnitudes**:

(1) We cannot find successful adversarial examples through simple interpolations.

Table 2. Robust accuracy of the models obtained by 1-step sAT against the interpolation between perturbations generated by 1-step sPGD and clean examples, where α denotes the interpolation factor, i.e., $\mathbf{x}_{interp} = \mathbf{x} + \alpha \cdot \boldsymbol{\delta}$.

α	0.0	0.2	0.4	0.6	8.0	1.0	sAA
$\epsilon_{train} = 20$ $\epsilon_{train} = 40$ $\epsilon_{train} = 120$	77.5	69.1	80.4	0.88	90.2	90.4	0.0
$\epsilon_{train} = 40$	70.2	64.3	79.8	87.4	89.6	89.6	0.0
$\epsilon_{train} = 120$	32.5	24.5	41.5	65.2	72.8	67.6	0.0

(2) Perturbations generated by 1-step sPGD are almost completely different from those generated by sAA in location.

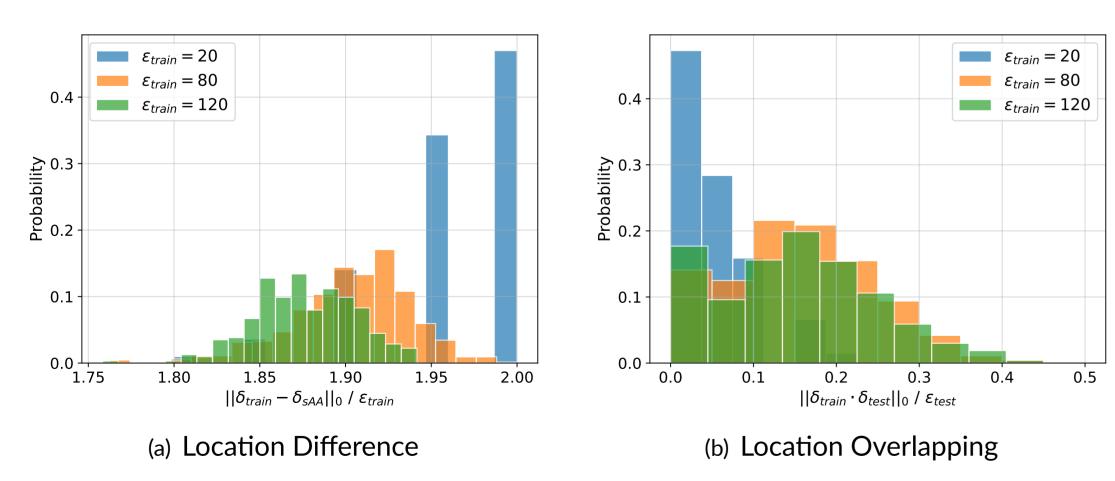


Figure 1. Visualization of location difference and location overlapping.

The sub-optimal location issue can be mitigated to some extent by multi- ϵ strategy. However, a larger ϵ_{train} , in turn, leads to **unstable training and degraded clean accuracy**. To address this challenge, we investigate the loss landscape of l_0 adversarial training.

Analysis on the Smoothness of Adversarial Loss

If the model's output logits $\{f_i\}_{i=0}^{K-1}$ is Lipschitz continuous and smooth w.r.t. model parameter θ and input x.

Theorem 1 (Lipschitz continuity of adversarial loss function)

$$\forall \boldsymbol{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ \|\mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta}_1) - \mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta}_2)\| \leq A_{\boldsymbol{\theta}} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\|,$$
 (1)

The constant $A_{\theta} = 2\sum_{i \in \mathcal{S}_{+}} y_{i}L_{\theta}$ where $\mathcal{S}_{+} = \{i \mid y_{i} \geq 0, h_{i}(\boldsymbol{x} + \boldsymbol{\delta}_{1}, \boldsymbol{\theta}_{2}) > h_{i}(\boldsymbol{x} + \boldsymbol{\delta}_{1}, \boldsymbol{\theta}_{1})\}$, $\boldsymbol{\delta}_{1} \in \arg\max_{\boldsymbol{\delta} \in \mathcal{S}_{\epsilon}} \mathcal{L}(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{\theta})$ and $\boldsymbol{\delta}_{2} \in \arg\max_{\boldsymbol{\delta} \in \mathcal{S}_{\epsilon}} \mathcal{L}(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{\theta})$. h is the output probability after softmax.

Theorem 2 (Lipschitz smoothness of adversarial loss function)

 $\forall \boldsymbol{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ \|\nabla_{\boldsymbol{\theta}} \mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta}_1) - \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta}_2)\| \leq A_{\boldsymbol{\theta}\boldsymbol{\theta}} \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| + B_{\boldsymbol{\theta}\boldsymbol{\delta}}$ (2) The constants $A_{\boldsymbol{\theta}\boldsymbol{\theta}} = L_{\boldsymbol{\theta}\boldsymbol{\theta}}$ and $B_{\boldsymbol{\theta}\boldsymbol{\delta}} = L_{\boldsymbol{\theta}\boldsymbol{x}} \|\boldsymbol{\delta}_1 - \boldsymbol{\delta}_2\| + 4L_{\boldsymbol{\theta}}$ where $\boldsymbol{\delta}_1 \in \arg\max_{\boldsymbol{\delta} \in \mathcal{S}_{\epsilon}} \mathcal{L}(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{\theta}_1)$ and $\boldsymbol{\delta}_2 \in \arg\max_{\boldsymbol{\delta} \in \mathcal{S}_{\epsilon}} \mathcal{L}(\boldsymbol{x} + \boldsymbol{\delta}, \boldsymbol{\theta}_2)$.

The upper bound of $\|\boldsymbol{\delta}_1 - \boldsymbol{\delta}_2\|$ in the l_0 case is significantly larger than other cases, indicating a more craggy loss landscape in l_0 adversarial training.

Numerical results also validate the conclusions in theoretical analyses.

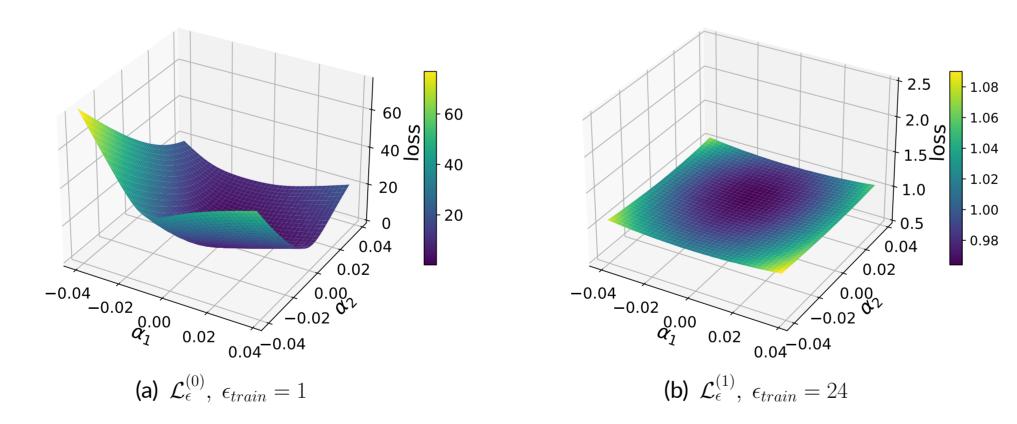


Figure 2. The loss landscape of $\mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta} + \alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2)$ where \boldsymbol{v}_1 and \boldsymbol{v}_2 are the eigenvectors associated with the top 2 eigenvalues of $\nabla^2_{\boldsymbol{\theta}} \mathcal{L}_{\epsilon}(\boldsymbol{x}, \boldsymbol{\theta})$, respectively.

Recipe: Soft Label and Trade-off Loss Function

- 1. Let $y_h \in \{0,1\}^K$ and $y_s \in (0,1)^K$ denote the hard and soft label, respectively. We find that soft label y_s leads to a reduced first-order Lipschitz constant.
- 2. Introduce a trade-off loss function $\mathcal{L}_{\epsilon,\alpha}(\boldsymbol{x},\boldsymbol{\theta}) = (1-\alpha)\mathcal{L}(\boldsymbol{x},\boldsymbol{\theta}) + \alpha \max_{\boldsymbol{\delta} \in \mathcal{S}_{\epsilon}(\boldsymbol{x})} \mathcal{L}(\boldsymbol{x}+\boldsymbol{\delta},\boldsymbol{\theta}), \text{ where } \alpha \in [0,1] \text{ is the interpolation factor. We find that trade-off loss function can improve the Lipschitz smoothness.}$

Experiments

We try different techniques incorporating soft labels or/and trade-off loss function, and name the best combination **Fast-LS-** l_0 , i.e., 1-step sTRADES + SAT + N-FGSM.

Compared to traditional CO-mitigation methods, Fast-LS- l_0 successfully mitigate CO in the l_0 case, and greatly narrow down the performance gaps between 1-step and multi-step adversarial training. Additionally, our method can improve the performance of multi-step adversarial training.

Table 3. Robust accuracy (%) against sparse attacks. (a) PreActResNet-18 trained on CIFAR-10, where the attack sparsity level $\epsilon = 20$. (b) ResNet-34 trained on ImageNet-100, where $\epsilon = 200$. CornerSearch (CS) is not evaluated due to its high computational complexity. Cost times are recorded on one NVIDIA RTX 6000 Ada.

(a) CIFAR-10, $\epsilon=20$									(b) ImageNet-100, $\epsilon=200$									
Model	Time Cost	Clean	Bla CS	ack RS	SAIF	σ -zero	hite $sPGD_p$	$sPGD_u$	sAA	Model	Time Cost	Clean	Black RS		σ -zero	$^{\prime}$ hite $_{ extsf{sPGD}_{p}}$	$sPGD_u$	sAA
Multi-step										Multi-step								
sAT +S&N	5.3 h 5.5 h	84.5 80.8	52.1 64.1		76.6 76.1	79.8 78.7	75.9 76.8	75.3 75.1	36.2 61.0	sAT +S&N	325 h 336 h	86.2 83.0	61.4 75.0	69.0 76.4	78.6 80.8	78.0 78.8	77.8 79.2	61.2 74.8
sTRADES +S&N	5.5 h	89.8 82.2	69.9	61.8	84.9	85.9	84.6	81.7	61.7 65.5	sTRADES + S&N	359 h 360 h	84.8	76.0 78.2	77.4 79.2	81.6	80.6 78.2	81.4 79.8	75.8 77.8
One-step										One-step	30011	02.4	70.2	79.2		70.2	79.0	77.0
Fast-LS- l_0	0.8 h	82.5	69.3	65.4	75.7	73.7	67.2	67.7	63.0	Fast-LS- l_0	44 h	82.4	76.8	75.4	74.0	74.6	74.6	72.4

Takeaway Messages

- 1. Catastrophic overfitting (CO) in fast l_0 AT arises from **sub-optimal perturbation locations**. Although multi- ϵ strategy can mitigate this issue to some extent, it leads to unstable training.
- 2. We prove that the adversarial loss landscape is more craggy in l_0 cases. In this regard, soft labels and the trade-off loss function can be used to provably smooth the adversarial loss landscape.
- 3. Experiments show that our method can not only mitigate CO issue but also improve the performance of multi-step adversarial training.

Extension - Structured Sparse Perturbation

Our work "Sparse-PGD: A Unified Framework for Sparse Adversarial Perturbations Generation" was recently accepted by TPAMI. Please scan the QR code for details.

