
Fast Adversarial Training against Sparse Attacks
Requires Loss Smoothing

Xuyang Zhong, Yixiao Huang, Chen Liu∗

City University of Hong Kong, Hong Kong, China
{xuyang.zhong, yixiao.huang}@my.cityu.edu.hk, chen.liu@cityu.edu.hk

Abstract

This paper studies fast adversarial training against sparse adversarial perturbations bounded
by l0 norm. We demonstrate the challenges of employing 1-step attacks on l0 bounded per-
turbations for fast adversarial training, including degraded performance and the occurrence
of catastrophic overfitting (CO). We highlight that CO in l0 adversarial training is caused by
sub-optimal perturbation locations of 1-step attack. Theoretical and empirical analyses reveal
that the loss landscape of l0 adversarial training is more craggy compared to its l∞, l2 and l1
counterparts. Moreover, we corroborate that the craggy loss landscape can aggravate CO. To
address these issues, we propose Fast-LS-l0 that incorporates soft labels and the trade-off loss
function to smooth the adversarial loss landscape. Extensive experiments demonstrate our
method can overcome the challenge of catastrophic overfitting, achieve state-of-the-art per-
formance, and narrow down the performance gap between 1-step and multi-step adversarial
training against sparse attacks.

1 Introduction

Deep neural networks have been shown vulnerable to adversarial perturbations [1]. To achieve
robust models, comprehensive evaluations [2–4] have demonstrated that adversarial training [5]
and its variants [6–12] are the most effective methods. However, adversarial training is generally
computationally expensive because generating adversarial perturbations in each training step needs
multiple forward and backward passes of the model. Such efficiency issues hinder the scalability
of adversarial training to large models and large datasets.

Improving the efficiency of adversarial training is tricky. Some works [13–16] employ faster but
weaker 1-step attacks to generate adversarial perturbations for training. However, such methods
may suffer from catastrophic overfitting (CO) [17]: the model overfits these weak attacks instead
of achieving true robustness against adaptive and stronger attacks.

On the other hand, most existing works [5, 18, 19] focus on studying adversarial perturbations
bounded by l∞, l2 or l1 norms. In these scenarios, the set of allowable perturbations is convex,
which facilitates optimizing adversarial perturbations and thus adversarial training. However, there
are many scenarios in real-world applications where sparse perturbations, bounded by the l0 norm,
need to be considered [20–23]. Since the l0 norm is not a proper norm, the set of all allowable
perturbations in this case is not convex. Consequently, from an optimization perspective, obtaining
robust models against sparse perturbations becomes more challenging. Compared with the l∞, l2
and l1 counterparts, more steps are needed to generate strong l0 bounded perturbations, making
the corresponding adversarial training even more computationally expensive.

Among algorithms aiming at obtaining robust models against sparse perturbations, sAT and
sTRADES [23] stand out as the most effective ones. These methods employ adversarial training
against Sparse-PGD (sPGD) [23]. However, they still require 20 steps to generate adversarial
perturbations in each training step to achieve decent performance. As demonstrated in Table 1,
naively decreasing the number of steps to 1 leads to a significant performance decline for both sAT
and sTRADES.

In this work, we investigate the challenges associated with fast adversarial training against
sparse perturbations, including training instability caused by catastrophic overfitting (CO) and

∗Correspondence author.

1

ar
X

iv
:2

50
2.

21
04

1v
1

 [
cs

.L
G

]
 2

8
Fe

b
20

25

Table 1: Robust accuracy of sAT and sTRADES [23] with different steps (t). The evaluation is based on
Sparse-AutoAttack (sAA) [23], where the sparsity level is ϵ = 20. The models are PreactResNet-18 [24]
trained on CIFAR-10 [25].

sAT (t = 1) sAT (t = 20) sTRADES (t = 1) sTRADES (t = 20)

Robust Accuracy 0.0 36.2 31.0 61.7

performance decline in both robust and clean accuracy. Specifically, we highlight that CO in l0
adversarial training is caused by sub-optimal perturbation locations of 1-step attack. Our obser-
vation indicates that adjusting the perturbation magnitudes alone cannot help mitigate CO in
this context, so some existing CO mitigation methods [26–29] used in other cases do not work
in the l0 scenario. Although the multi-ϵ strategy can mitigate sub-optimal perturbation loca-
tions, it suffers from unstable training and degraded clean accuracy. In light of these findings,
we present empirical and theoretical evidence to illustrate that the loss landscape of adversarial
training against l0 bounded perturbations is markedly more craggy compared to its l∞, l2, and
l1 counterparts. Furthermore, we corroborate that the craggy loss landscape aggravates CO in l0
adversarial training.

Drawing from these insights, we propose to utilize soft labels and a trade-off loss function to
enhance the smoothness of the adversarial loss objective function, thereby improving the perfor-
mance of fast adversarial training against sparse perturbations. In addition to the performance,
we showcase that these techniques can eliminate CO, thus improving training stability. Finally,
our extensive experiments demonstrate that smoothing the loss landscape can effectively narrow
the performance gap between 1-step adversarial training and its multi-step counterparts.

To the best of our knowledge, this work is the first to investigate fast adversarial training in
the context of l0 bounded perturbations. We summarize the contributions of this paper as follows:

1. We highlight that catastrophic overfitting (CO) in fast l0 adversarial training is caused by
sub-optimal perturbation locations of 1-step attack. Popular techniques in fast l∞, l2 and l1
adversarial training are ineffective in the l0 case. Although the multi-ϵ strategy can mitigate sub-
optimal perturbation locations, it suffers from unstable training and degraded clean accuracy.

2. We theoretically and empirically demonstrate that the adversarial loss landscape is more craggy
in the l0 cases than in other cases, which further aggravates CO in l0 adversarial training. In
this regard, we propose Fast-LS-l0 which incorporates labels and the trade-off loss function to
provably smooth the adversarial loss landscape.

3. Comprehensive experiments demonstrate that smoothing the adversarial loss landscape greatly
narrows the performance gap between 1-step l0 adversarial training and its multi-step coun-
terpart. Our method establishes a new state-of-the-art performance for efficient adversarial
training against sparse perturbations.

Notation and Terminology Consider a classification model F (x,θ) = {fi(x,θ)}K−1
i=0 , where

x ∈ Rd is the input, θ represents the parameters of the model, and K is the number of classes,
fi(x,θ) is the logit of the i-th class. Correspondingly, we use {hi}K−1

i=0 to represent the output

probability of each class, which is the result of softmax function applied to {fi}K−1
i=0 . Therefore,

the loss objective function L based on the cross-entropy is calculated as follows:

L(x,θ) def
= −

K−1∑
i=0

yi log hi(x,θ)
def
= −

K−1∑
i=0

yi log
exp(fi(x,θ))∑K−1

j=0 exp(fj(x,θ))
(1)

where y = [y1, y2, ..., yC] is the label of x in a simplex, i.e.,
∑

i yi = 1. In the context of adversarial

perturbation, we use S(p)
ϵ (x)

def
= {δ|∥δ∥p ≤ ϵ, 0 ≤ x + δ ≤ 1} to represent the adversarial budget,

i.e., the set of all allowable input perturbations for the input x. The adversarial loss function is

L(p)
ϵ (x,θ)

def
= max

δ∈S(p)
ϵ (x)

L(x+ δ,θ). Despite no guarantee to obtain the optimal perturbation in

practice, to simplify the notation, we denote the term L(p)
ϵ also as the adversarial loss induced by

the actual attack algorithms and omit the superscript (p) when there is no ambiguity.

2

2 Related Works

Adversarial Attacks: The existence of adversarial examples is first identified in Szegedy et al.
[1], which focuses on l2 norm-bounded adversarial perturbations. Fast gradient sign method
(FGSM) [30] introduces an efficient approach by generating perturbations bounded by its l∞ norm
in a single step. Furthermore, projected gradient descent (PGD) [5] extends and improves FGSM
[31] by iterative updating and random initialization. In addition to these white-box attacks where
the attackers have full access to the models, there are also several black-box attacks [32, 33] where
the attackers’ access is restricted. AutoAttack (AA) [3] is an ensemble of both white-box and
black-box attacks to ensure a more reliable evaluation of model’s robustness.

Adversarial Training: Adversarial training [5–12] has emerged as a popular and reliable
framework to obtain robust models [2, 3]. Under this framework, we first generate adversarial
examples and update model parameters based on these examples in each mini-batch update. Dif-
ferent adversarial training variants, such as TRADES [34] and MART [35], may have different
loss objective functions for generating adversarial examples and updating model parameters. Fur-
thermore, compared with training on clean inputs, adversarial training is shown to suffer more
from overfitting [36, 37]. In this regard, self-adaptive training (SAT) [38], which utilizes historical
predictions as the soft label, has demonstrated its efficacy in improving the generalization.

Sparse Perturbations: Adversarial budget defined by l1 norm is the tightest convex hull of
the one defined by l0 norm. In this context, SLIDE [18] extends PGD and employs k-coordinate
ascent to generate l1 bounded perturbations. Similarly, AutoAttack-l1 (AA-l1) [39] extends AA
to the l1 case. However, AA-l1 is found to generate non-sparse perturbations that SLIDE fails to
discover [19], indicating that l1 bounded perturbations are not necessarily sparse. Therefore, we
use l0 norm to strictly enforce sparsity. It is challenging to optimize over an adversarial budget
defined by l0 norm, because of non-convex adversarial budgets. While naively applying PGD in
this case turns out sub-optimal, there are several black-box attacks, including CornerSearch [21]
and Sparse-RS [22], and white-box attacks, including Sparse Adversarial and Interpretable Attack
Framework (SAIF) [40] and Sparse-PGD (sPGD) [23], which address the optimization challenge of
finding l0 bounded perturbations. Ultimately, Sparse-AutoAttack (sAA) [23], combining the most
potent white-box and black-box attacks, emerges as the most powerful sparse attack.

Fast Adversarial Training: While effective, adversarial training is time-consuming due to
the use of multi-step attacks. To reduce the computational overhead, some studies [13, 14] em-
ploy faster one-step attacks in adversarial training. However, the training based on these weaker
attacks may suffer from catastrophic overfitting (CO) [17], where the model overfits to these weak
attacks instead of achieving true robustness against a variety of attacks. CO is shown to arise
from distorted decision boundary caused by sub-optimal perturbation magnitudes [26]. There are
several methods proposed to mitigate CO, including aligning the gradients of clean and adversarial
samples [27], adding stronger noise to clean sample [41] , adaptive step size [29], regularizing ab-
normal adversarial samples [42], adding layer-wise weight perturbations [43], and penalizing logits
discrepancy [44]. Furthermore, compared to its l2 and l∞ counterparts, CO is caused by overfitting
to sparse perturbations during l1 adversarial training [19]. To address this issue, Fast-EG-l1 [19]
is introduced to generate l1 bounded perturbations by Euclidean geometry instead of coordinate
ascent. In this work, we investigate fast adversarial training against l0 bounded perturbations.

3 Challenges in Fast l0 Adversarial Training

To obtain robust models against sparse perturbations, preliminary efforts use 20-step sPGD in
adversarial training, which introduces significant computational overhead. To accelerate training,
we explore using 1-step sPGD in adversarial training. However, as reported in Table 1, the models
obtained in this way exhibit weak robustness against stronger and comprehensive sparse attacks
such as sAA. In this section, we study the underlying factors that make fast l0 adversarial training
challenging by both numerical experiments and theoretical analyses.

3.1 Catastrophic Overfitting in Fast l0 Adversarial Training

We plot the learning curves of adversarial training using 1-step sPGD in Figure 1. Specifically, we
adopt the multi-ϵ strategy [19, 23] and allow for different adversarial budget sizes, i.e., ϵ, during
training and testing. The results in Figure 1 indicate that CO happens in all configurations.

3

Moreover, our observations of CO in l0 cases are different from other cases in several aspects. First,
random initialization of adversarial perturbation, proven effective in l∞, l2 and l1 cases, does not
yield similar results in the l0 case. In addition, Figure 1 showcases that the training accuracy on
the inputs perturbed by 1-step sPGD is even higher than their clean counterparts. What’s more,
when CO happens in l∞, l2 and l1 cases, the model sharply achieves perfect robustness against 1-
step attacks but zero robustness against multi-step attacks, both in few mini-batch updates. Such
phenomenon is not observed in l0 cases. By contrast, we observe dramatic performance fluctuations
on clean examples throughout the training process, even in the fine-tuning phase. Such training
instability indicates a non-smooth landscape of the loss function in the parameter space: a subtle
change in parameters θ leads to abrupt fluctuation in the loss.

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(a) ϵtrain = 20

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(b) ϵtrain = 40

0 20 40 60 80 100
Epoch

0

20

40

60

80

100

Ac
cu

ra
cy

Clean Acc.
Robust Acc.

(c) ϵtrain = 120

Figure 1: The learning curves of adversarial training against 1-step sPGD [23] with random noise initial-
ization. The models are PreactResNet-18 [24] trained on CIFAR-10 [25]. The dashed and the solid lines
represent the accuracy of the training and the test set, respectively. The test robust accuracy is based on
sAA with ϵ = 20. The values of ϵ used in training are shown as ϵtrain in captions, the training robust
accuracy is based on the 1-step sPGD with ϵtrain.

Table 2: Robust accuracy of the models obtained by 1-step sAT with different ϵtrain against the interpo-
lation between perturbations generated by 1-step sPGD (ϵ = 20) and their corresponding clean examples,
where α denotes the interpolation factor, i.e., xinterp = x+ α · δ. The results of sAA are also reported.

α 0.0 0.1 0.2 0.3 0.4 0.6 0.8 1.0 sAA

ϵtrain = 20 77.5 69.8 69.1 73.7 80.4 88.0 90.2 90.4 0.0
ϵtrain = 40 70.2 63.1 64.3 70.9 79.8 87.4 89.6 89.6 0.0
ϵtrain = 120 32.5 26.5 24.5 29.4 41.5 65.2 72.8 67.6 0.0

In l∞ and l2 cases, CO occurs due to distorted decision boundary caused by sub-optimal
perturbation magnitudes [26]. To ascertain if this applies to l0 adversarial training, we evaluate
the robustness accuracy of models trained by 1-step sAT with varying ϵtrain against interpolations
between the clean inputs and the perturbed ones by 1-step sPGD. Table 2 shows that we cannot find
successful adversarial examples through such simple interpolations. In addition, the substantial l0
distance between 1-step sPGD and sAA perturbations (see in Appendix E.1) suggests that CO in l0
adversarial training is primarily due to sub-optimal perturbation locations rather than magnitudes.
Consequently, existing CO mitigation methods like GradAlign [27], ATTA [28], and adaptive step
size [29] turn out ineffective or insufficient for l0 scenarios. We defer the detailed evaluation to
Appendix E.4.

Despite that, we find that multi-ϵ strategy [23] mitigate the sub-optimality of perturbation
location resulting from 1-step attacks to some extent. The detailed discussion is deferred to Ap-
pendix E.2. However, as illustrated in Figure 1, a larger ϵtrain, in turn, leads to unstable training
and degraded clean accuracy. To address this challenge, we investigate the loss landscape in the
subsequent sections.

3.2 Theoretical Analyses on the Smoothness of Adversarial Loss Func-
tions

We first provide theoretical analyses on the smoothness of adversarial loss function. Similar to
[45], we assume the first-order smoothness of the model’s outputs {fi}K−1

i=0 .

4

Assumption 3.1. (First-order Lipschitz condition) ∀i ∈ {0, 1, ...,K − 1}, the function fi
satisfies the following first-order Lipschitz conditions, with constants Lθ, Lx:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥, (2)

∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥. (3)

We then study the first-order smoothness of the adversarial loss objective function Lϵ(x,θ).

Lemma 3.2. (Lipschitz continuity of adversarial loss) If Assumption 3.1 holds, we have:

∀x,θ1,θ2, ∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (4)

The Lipschitz constant Aθ = 2
∑

i∈S+
yiLθ where S+ = {i | yi > 0, hi(x+δ1,θ2) > hi(x+δ1,θ1)},

δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ).

The proof is deferred to Appendix B.1, in which we can see the upper bound in Lemma 3.2
is tight and can be achieved in the worst cases. Lemma 3.2 indicates that the adversarial loss
Lϵ(x,θ) is Lipschitz continuous, which is consistent with [45].

To study the second-order smoothness of Lϵ(x,θ), we start with the following assumption.

Assumption 3.3. (Second-order Lipschitz condition) ∀i ∈ {0, 1, ...,K − 1}, the function fi
satisfies the following second-order Lipschitz conditions, with constants Lθθ, Lθx:

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥, (5)

∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥. (6)

Lemma 3.4. (Lipschitz smoothness of adversarial loss) If Assumption 3.1 and 3.3 hold,
we have:

∀x,θ1,θ2, ∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ. (7)

The Lipschitz constant Aθθ = Lθθ and Bθδ = Lθx∥δ1 − δ2∥+ 4Lθ where δ1 ∈ argmaxδ∈Sϵ
L(x+

δ,θ1) and δ2 ∈ argmaxδ∈Sϵ
L(x+ δ,θ2).

The proof is deferred to Appendix B.2. Lemma 3.4 indicates the adversarial loss objective
function Lϵ(x,θ) w.r.t. the model parameter θ is no longer smooth. That is to say, gradients in
arbitrarily small neighborhoods in the θ-space can change discontinuously. Furthermore, the degree
of discontinuity is indicated by the value of Bθδ. Given the expression of Bθδ, we can conclude
that a larger ∥δ1 − δ2∥ can intensify the gradient discontinuity. Additionally, as elucidated by
Theorem 2 in [45], the gradients are non-vanishing in adversarial training. A large Bθδ introduces
large gradient magnitudes asymptotically, making optimization challenging.

However, in practice, we may use non-smooth activations, like ReLU, which do not strictly
satisfy Assumption 3.3. For example, the gradient of ReLU changes abruptly in the neighbor-
hood around 0. In this regard, we provide a more detailed analysis of this case in Appendix C,
which suggests that our analyses can be straightforwardly extended to networks with non-smooth
activations.

Without the loss of generality, the Lipschitz properties in Assumption 3.1 and 3.3 can be based
on any proper lp norm, i.e., p ∈ [1,+∞], which, however, does not include l0 norm. Correspond-
ingly, ∥δ1 − δ2∥ in the expression of Bθδ is based on the same norm as in the assumptions. On
the popular benchmark CIFAR-10, the commonly used values of ϵ in the l0, l1, l2 and l∞ cases
are 3601, 24, 0.5 and 8/255, respectively [5, 19, 23, 39]. In Appendix D, we discuss the numerical
upper bound of ∥δ1 − δ2∥ when the Lipschitz assumptions are based on different proper norms.
The results demonstrate that the upper bound of ∥δ1 − δ2∥ in the l0 case is always significantly
larger than other cases, indicating a more craggy adversarial loss function in l0 adversarial train-
ing. Moreover, to corroborate the Lipschitz smoothness assumption in Inequality (6), we compare
the distances between the gradients induced by one-step and multi-step attacks with different
adversarial budgets in Appendix E.3.

1In Zhong et al. [23], the l0 adversarial budget for training on CIFAR-10 is 120 in the pixel space of RGB images,
so the l0 norm in the feature space is 360.

5

0 2 4 6 8
Index

0.0

0.2

0.4

0.6

0.8

1.0
Va

lu
e

1e5

train = 1
train = 20
train = 40
train = 120

(a) Eigenvalues of ∇2
θL

(0)
ϵ

0 2 4 6 8
Index

101

102

103

104

Va
lu

e l0
l1

l2
l

(b) Eigenvalues of ∇2
θL

(p)
ϵ

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(c) L(0)
ϵ , ϵtrain = 1

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

1

2

3

4

1.4

1.6

1.8

2.0

2.2

(d) L(1)
ϵ , ϵtrain = 24

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0.0

0.5

1.0

1.5

2.0

0.65

0.70

0.75

0.80

(e) L(2)
ϵ , ϵtrain = 0.5

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0.5

1.0

1.5

2.0

2.5

0.98

1.00

1.02

1.04

1.06

1.08

(f) L(∞)
ϵ , ϵtrain = 8/255

Figure 2: Smoothness of adversarial loss objective functions under different settings. All losses are
calculated on the training set of CIFAR-10 [25] by PreactResNet-18 [24]. The l0, l1, l2 and l∞ models
are obtained by 1-step sAT [23], Fast-EG-l1 [19], 1-step PGD [36] and GradAlign [33], respectively. (a)

Top 10 eigenvalues of ∇2
θL

(0)
ϵ (x,θ) with different values of ϵtrain in the l0 case. (b) Top 10 eigenvalues

of ∇2
θL

(p)
ϵ (x,θ) under different choices of p, including l0 (ϵtrain = 1), l1 (ϵtrain = 24), l2 (ϵtrain =

0.5) and l∞ (ϵtrain = 8/255). The y-axis is shown in the log scale. (c) - (f) The loss landscape of
Lϵ(x,θ + α1v1 + α2v2) where v1 and v2 are the eigenvectors associated with the top 2 eigenvalues of
∇2

θLϵ(x,θ), respectively. The y-scales for different sub-figures are different. (c) l0 case, ϵtrain = 1. (d) l1
case, ϵtrain = 24. (e) l2 case, ϵtrain = 0.5. (f) l∞ case, ϵtrain = 8/255.

3.3 Numerical Analyzes on the Smoothness of Adversarial Loss Func-
tions

To validate the conclusions in theoretical analyses, we conduct numerical experiments to study the
properties of loss landscape of l0 adversarial training and compare it with the l∞, l2 and l1 cases.

We first study the curvature in the neighborhood of model parameters, which reflects the
second-order smoothness of the loss function and is dominated by top eigenvalues of Hessian
matrix ∇2

θLϵ(x,θ). Numerically, we employ the power method [45–47] to iteratively estimate the
eigenvalues and the corresponding eigenvectors of Hessian matrices. We plot the top-10 eigenvalues
of the Hessian matrices ∇2

θLϵ(x,θ) under different ϵ in l0 cases in Figure 2 (a). In addition, we
compare the Hessian spectrum in the l0 case with l∞, l2 and l1 cases in Figure 2 (b). Our results
in Figure 2 (a) demonstrate that eigenvalues of Hessian matrices in l0 cases increase as ϵ grows,
indicating a higher degree of non-smoothness for a larger ϵ. Moreover, Figure 2 (b) indicates that
the adversarial loss landscape in the l0 case is more craggy than its l∞, l2 and l1 counterparts,
even when we set ϵ = 1, i.e., perturbing only a single pixel. These observations corroborate that
l0 adversarial training exhibits worse second-order smoothness than other cases.

To study the first-order smoothness, we visualize the loss landscape of different settings in
Figures 2 (c)-(f), which demonstrate that the loss in the l0 case abruptly increases even with
subtle changes in the model parameters. This further suggests the non-smooth nature of the
l0 adversarial loss landscape. More loss landscape visualizations of l0 adversarial training with
different ϵ are provided in Appendix E.8. The observations are consistent with that in Figure 2.
Accordingly, we confirm that the loss landscape of l0 adversarial loss function is more craggy than
other cases from both theoretical and empirical perspectives. In addition, among the cases studied
in Figure 3, the l0 cases are the only ones suffering from CO, while the l∞, l2 and l1 cases do not.
This indicates that the craggy loss landscape aggravates CO.

On the other side, we show in Figure 3 that successful attempts to obtain robust models
against l0 bounded perturbation also include elements that help improve the smoothness of the loss
landscape. 20-step sAT in Zhong et al. [23] uses an early stopping (ES) strategy to avoid CO and to

6

0 20 40 60 80 100
Epoch t

0
1
2
3
4
5
6
7

||
t

|| 2

1e6

20-step sAT
20-step sAT w/o ES

(a) Gradient Norm

0 20 40 60 80 100
Epoch t

0

5

10

15

20

25

Te
st

 ro
bu

st
 a

cc
ur

ac
y

(%
) 20-step sAT

20-step sAT w/o ES

(b) Test Robust Accuracy

Figure 3: Relationship between craggy loss landscape and CO. (a) Gradient norm ∥∇θtLϵ∥2, which
indicates the first-order smoothness of Lϵ. (b) Test robust accuracy against sAA (ϵ = 20). The results
are obtained from PreactResNet-18 trained on CIFAR-10, where ϵtrain = 40. Note that since the training
of 20-step sAT w/o ES diverges under ϵtrain = 120, the results are presented under ϵtrain = 40 instead.

achieve competitive performance. Specifically, ES interrupts the attack iteration once the current
perturbed input is misclassified. ES is shown to circumvent the potential for excessive gradient
magnitude while maintaining the efficacy of the generated perturbations. Figure 3 compares the
cases with and without ES in terms of gradient norm and robust accuracy on the test set by
sAA. We can observe from Figure 3 that 20-step sAT without ES still suffer from CO and the
corresponding gradient magnitude during training indicates a craggy loss landscape. This finding
further highlights a strong correlation between CO and the craggy nature of the loss landscape in
l0 adversarial training.

In summary, our results suggest that the l0 adversarial training exhibits a more craggy loss
landscape than other cases, which shows a strong correlation with CO. Additionally, despite the
non-trivial performance of 20-step sAT with ES, its performance still exhibits considerable fluc-
tuation and can be further improved, underscoring the need for a smoother loss function. In the
next section, we will propose our method to address the CO issue in fast l0 adversarial training.

4 Soft Label and Trade-off Loss Smooth Adversarial Loss

Notice that Aθ in Lemma 3.2 can be regarded as a function of the label y. Thus, we first study
how different y affects the properties of the adversarial loss objective function Lϵ(x,θ). Let
yh ∈ {0, 1}K and ys ∈ (0, 1)K denote the hard and soft label, respectively. That is to say, yh is a
one-hot vector, while ys is a dense vector in a simplex. Then, we have the following theorem:

Theorem 4.1. (Soft label improves Lipschitz continuity) Based on Lemma 3.2, given a hard
label vector yh ∈ {0, 1}K and a soft label vector ys ∈ (0, 1)K , we have Aθ(ys) ≤ Aθ(yh).

The proof is deferred to Appendix B.3. Theorem 4.1 indicates that soft labels lead to a reduced
first-order Lipschitz constant, thereby enhancing the Lipschitz continuity of the adversarial loss
function. However, as indicated by Lemma 3.4, the second-order Lipschitz constant remains unaf-
fected by variations in y. Considering the poor performance on clean inputs when CO happens,
we introduce a trade-off loss objective function Lϵ,α which interpolates between the loss on the
clean inputs and that on the adversarial inputs.

Lϵ,α(x,θ) = (1− α)L(x,θ) + α max
δ∈Sϵ(x)

L(x+ δ,θ) (8)

where α ∈ [0, 1] is the interpolation factor. Then, we have the following theorem:

Theorem 4.2. (Trade-off loss function improves Lipschitz smoothness) If Assumption
3.1 and 3.3 hold, we have:

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ (9)

The Lipschitz constant Aθθ = Lθθ and B′
θδ = αLθx∥δ1−δ2∥+2(1+α)Lθ where δ1 ∈ argmaxδ∈Sϵ(x)L(x+

δ,θ1) and δ2 ∈ argmaxδ∈Sϵ(x)L(x+ δ,θ2).

7

The proof is deferred to Appendix B.4. According to Theorem 4.2, the trade-off loss function
Lϵ,α enhances the second-order smoothness of adversarial loss objective function. The interpolation
factor α controls the balance between the loss on the clean inputs and the loss on the adversarial
inputs. On one hand, a smaller value of α results in a smoother loss objective function, but it
assigns less weight to the loss of the adversarial inputs and potentially hurts the robustness of the
obtained model. On the other hand, a bigger value of α assigns more weight to the adversarial loss
to focus on robustness, but it makes the corresponding adversarial loss objective function more
challenging for optimization. Furthermore, compared with l1, l2 and l∞ cases, the trade-off loss
function is particularly useful and necessary in the l0 case. This is supported by the analyses
in Section 3.2 and Appendix D, which demonstrate that ∥δ1 − δ2∥ is much larger in l0 bounded
perturbations than other cases. Therefore, we expect the trade-off loss function Lϵ,α can help
mitigate CO by improving smoothness.

Similar to Lemma 3.4, Theorem 4.2 can be straightforwardly extended to the networks with
non-smooth activations, where Assumption 3.3 is not strictly satisfied. We provide a more detailed
analysis in Appendix C to demonstrate the generality of our conclusions.

In summary, soft labels and the trade-off loss function can improve the first-order and second-
order smoothness, respectively. Therefore, we can stabilize and improve the performance of fast
adversarial training against l0 bounded perturbations by combining both techniques together.

Among various approaches available, we mainly exploit trade-off loss function, self-adaptive
training (SAT) [38] and TRADES [34]. Specifically, SAT utilizes the moving average of previous
predictions as the soft label to calculate the loss. TRADES combines the soft label and the trade-
off loss function. It utilizes the trade-off loss function to balance the clean and robust accuracy
and employs the prediction on the clean inputs as the soft label when calculating the loss for
adversarial inputs. In Appendix A, we provide the pseudo-codes of both SAT and TRADES and
the formulation of their combination as a reference.

5 Experiments

In this section, we perform extensive experiments to investigate various approaches that can sta-
bilize and improve the performance of fast adversarial training against l0 bounded perturbations.
Furthermore, we compare the performance of 1-step adversarial training with the multi-step coun-
terpart on different datasets. Our results demonstrate that approaches combining soft labels and
trade-off loss function significantly enhance the stability and efficacy of 1-step adversarial training,
even surpassing some baselines of multi-step adversarial training. Finally, we validate the efficacy
of our method on different networks in Appendix E.7, visualize the loss landscape when using soft
label and trade-off loss function in Appendix E.9 to demonstrate its improved smoothness, and
conduct ablation studies for analysis in Appendix E.10.

5.1 Approaches to Improving 1-Step l0 Adversarial Training

Table 3: Comparison of different approaches and their combinations in robust accuracy (%) by sAA. The
target sparsity level ϵ = 20. We compare PreAct ResNet-18 [24] models trained on CIFAR-10 [25] with
100 epochs. The italic numbers indicate catastrophic overfitting (CO) happens.

Method sAT Tradeoff sTRADES (T) sTRADES (F)

1-step 0.0 2.6 31.0 55.4
+ N-FGSM 0.3 17.5 46.9 55.9
+ SAT 29.3 30.3 61.4 59.4
+ SAT & N-FGSM 43.8 39.2 63.0 62.6

We begin our analysis by evaluating the effectiveness of different approaches and their combina-
tions, focusing on those that incorporate either soft labels or trade-off loss functions. Additionally,
we explore the data augmentation technique N-FGSM [41], known for its ability to improve the
performance of fast adversarial training without imposing significant computational overhead. Our
findings, summarized in Table 3, are all based on 1-step adversarial training. The robust accuracy
is measured using the sparse-AutoAttack (sAA) method, with ϵ set to 20.

In Table 3, we investigate the following approaches and their combinations: (1) sAT: adversar-
ial training against 1-step sPGD [23]. (2) Tradeoff : 1-step adversarial training with the trade-off

8

loss function defined in Eq. (8). (3) sTRADES: the 1-step sTRADES [23]. As discussed in
Appendix A, it incorporates both soft label and trade-off loss function. We include two variants
of sTRADES for comparison: sTRADES (T) is the training mode where we only use the loss
objective function of TRADES for training but still use the cross-entropy loss to generate adver-
sarial examples; sTRADES (F) is the full mode where we use the KL divergence loss function for
generating adversarial perturbations. Compared with 1-step sAT, sTRADES (T) introduces 25%
overhead while sTRADES (F) introduces 50% overhead. (4) SAT: self-adaptive training [38]. As
discussed in Appendix A, it introduces soft labels based on the moving average of the historical
predictions and uses adaptive weights for training instances of different prediction confidence. (5)
N-FGSM: data augmentation technique by adding random noise to the training data. It is proven
effective in 1-step adversarial training [41] and may mitigate the sub-optimality of perturbation lo-
cation by randomly perturbing more pixels. The implementation details are deferred to Appendix
F.

The results in Table 3 indicate that using trade-off loss function alone still suffers from CO. In
contrast, using soft label, either by SAT or sTRADES, can eliminate CO and achieve notable robust
accuracy. This suggests that the soft label has a more prominent role in mitigating overfitting
than the trade-off loss function in 1-step l0 adversarial training. Furthermore, sTRADES (F) alone
outperforms sTRADES (T) along by a substantial margin of 24.4%, which can be attributed to the
generation of higher-quality adversarial examples for training by sTRADES (F). Finally, both SAT
and N-FGSM can enhance the performance of all approaches, demonstrating their effectiveness.

It is important to note that all the results presented in Table 3 are obtained using sAA, which is
known for generating the strongest attacks in terms of sparse perturbations. Our findings demon-
strate that incorporating soft labels and trade-off loss function yields substantial performance
improvements in 1-step l0 adversarial training. Among various combinations of methods explored,
the model trained with sTRADES (T) in combination with SAT and N-FGSM achieves the highest
robust accuracy against sAA, reaching an impressive 63.0%. This establishes a new state-of-the-
art performance in the context of fast robust learning methods against l0 bounded perturbations.
For convenience, we name this combination (i.e., 1-step sTRADES + SAT + N-FGSM) Fast-Loss
Smoothing-l0 (Fast-LS-l0) in the subsequent sections. Its pseudo-code is given in Algorithm 3 of
Appendix A. Additionally, the comparison with more baselines that either mitigate CO or smooth
the loss function is undertaken in Appendix E.4. The results demonstrate that our method is the
most effective approach for fast l0 adversarial training.

5.2 Comparison with Multi-Step Adversarial Training

In this section, we compare 1-step adversarial training with its multi-step counterpart. For multi-
step adversarial training, we follow the settings in [23] and use 20-step sPGD based on cross-entropy
to generate adversarial perturbations in sAT and sTRADES. Similar to Table 3, we incorporate
SAT and N-FGSM into multi-step adversarial training as well. For 1-step adversarial training, we
focus on the configurations with the best performance in Table 3, i.e., Fast-LS-l0.

We conduct extensive experiments on various datasets. The results on CIFAR-10 and ImageNet-
100 [48] are demonstrated in Table 4. More results on CIFAR-100 [25] and GTSRB [49] are in Table
7 and 8 of Appendix E.5, respectively. Following the settings in [23], and given the prohibitively
high complexity involved, we exclude multi-step sTRADES from the evaluation on ImageNet-
100. In addition to the performance under sAA, we report the robust accuracy of these models
under various black-box and white box attacks, including CornerSearch (CS) [21], Sparse-RS (RS)
[22], SAIF [40] and two versions of sPGD [23]. Note that, we do not include SparseFool [20]
and PGD0 [21] for evaluation, because they only have trivial attack success rates on our models.
Moreover, we report the clean accuracy and the total running time for reference. Finally, to more
comprehensively validate the effectiveness of our results, we report the standard deviation of the
performance in Table 9 of Appendix E.6.

The results in Table 4, 7 and 8 suggest that both soft labels and trade-off loss function, in-
troduced by SAT and TRADES, can improve the performance of both 1-step and multi-step
adversarial training. In addition, N-FGSM, originally designed for one-step adversarial training,
also contributes to performance improvements in the multi-step scenario. Furthermore, these tech-
niques can greatly narrow down the performance gaps between 1-step and multi-step adversarial
training, making fast adversarial training more feasible and competitive in the context of sparse
perturbations. With the assistance of SAT and N-FGSM, our Fast-LS-l0 can achieve a performance

9

Table 4: Robust accuracy (%) against sparse attacks. (a) The models are PreAct ResNet-18 trained on
CIFAR-10, where the sparsity level ϵ = 20. CornerSearch (CS) is evaluated on 1000 samples due to its
high computational complexity. (b) The models are ResNet-34 trained on ImageNet-100, where the
sparsity level ϵ = 200. CS is not evaluated here due to its high computational complexity. Note that S and
N denote SAT and N-FGSM, respectively. The results of vanilla 20-step sAT and sTRADES are obtained
from [23]. All experiments are implemented on one NVIDIA RTX 6000 Ada GPU.

(a) CIFAR-10, ϵ = 20

Model
Time
Cost

Clean
Black-Box White-Box

sAA
CS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 5h 16m 84.5 52.1 36.2 76.6 75.9 75.3 36.2
+S 5h 24m 80.4 58.4 55.7 75.0 75.1 74.0 55.5

sTRADES 5h 30m 89.8 69.9 61.8 84.9 84.6 81.7 61.7
+S&N 5h 22m 82.2 66.3 66.1 77.1 74.1 72.2 65.5

One-step

Fast-LS-l0 (T) 50m 82.5 69.3 65.4 75.7 67.2 67.7 63.0
Fast-LS-l0 (F) 59m 82.6 69.6 64.1 75.2 64.6 68.4 62.6

(b) ImageNet, ϵ = 200

Model
Time
Cost

Clean
Black-Box White-Box

sAA
CS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 324h 57m 86.2 - 61.4 69.0 78.0 77.8 61.2
+S&N 336h 20m 83.0 - 75.0 76.4 78.8 79.2 74.8

sTRADES 358h 55m 84.8 - 76.0 77.4 80.6 81.4 75.8
+S&N 359h 55m 82.4 - 78.2 79.2 78.2 79.8 77.8

One-step

Fast-LS-l0 (T) 43h 48m 82.4 - 76.8 75.4 74.6 74.6 72.4
Fast-LS-l0 (F) 55h 39m 80.0 - 77.4 76.0 76.6 74.4 72.8

that is merely 2.5% lower than that of the 20-step sTRADES while requiring less than 1/6 of the
total running time.

6 Conclusion

In this paper, we highlight the catastrophic overfitting (CO) in the fast l0 adversarial training is
induced by sub-optimal perturbation locations of 1-step attacks, which is distinct from the l∞, l2
and l1 cases. Theoretical and empirical analyses reveal that the loss landscape of l0 adversarial
training is more craggy than other cases, and the craggy loss landscape strongly correlates with
CO. To address these issues, we propose Fast-LS-l0 that incorporates soft label and trade-off
loss function to smooth the adversarial loss function. Extensive experiments demonstrate the
effectiveness of our method in mitigating CO and narrowing down the performance gap between
1-step and multi-step l0 adversarial training. The models trained with our method exhibit state-
of-the-art robustness against sparse attacks in the context of fast adversarial training.

7 Future Work

Our previous work [23] and this paper investigate the generation of l0 bounded adversarial per-
turbations and the corresponding defending algorithm, respectively. Our future work will focus
on extending the algorithm we have proposed to generate structured sparse perturbations.
In addition to the sparsity constraint, the locations of perturbations are constrained to be within
specific regions, such as patches, columns, and any customized patterns, for structured sparse

10

perturbations.
Moreover, I will explore other scenarios that raise concerns in the community of trustworthy

deep learning, e.g., Machine Unlearning [50] and Adversarial Machine Learning for Social
Good [51]. Machine unlearning aims to remove the effect of a small “forget set” of training
data on a pretrained machine learning model. Whereas, adversarial machine learning for social
good leverages adversarial attacks to enhance the transparency, privacy, fairness, and reliability of
machine learning systems.

References

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[2] Anish Athalye, Nicholas Carlini, and David A. Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, 2018. URL https://api.semanticscholar.org/CorpusID:3310672.

[3] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

[4] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas
Flammarion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized
adversarial robustness benchmark. arXiv preprint arXiv:2010.09670, 2020.

[5] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

[6] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International Conference on Machine Learning, pages 2196–
2205. PMLR, 2020.

[7] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chi-
ang, and Prateek Mittal. Robust learning meets generative models: Can proxy distributions
improve adversarial robustness? In International Conference on Learning Representations.

[8] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Florian Stimberg, Olivia Wiles, and
Timothy Mann. Fixing data augmentation to improve adversarial robustness. arXiv preprint
arXiv:2103.01946, 2021.

[9] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian,
and Timothy A Mann. Improving robustness using generated data. Advances in Neural
Information Processing Systems, 34:4218–4233, 2021.

[10] Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Reduc-
ing excessive margin to achieve a better accuracy vs. robustness trade-off. In ICML 2021
Workshop on Adversarial Machine Learning, 2021. URL https://openreview.net/forum?
id=BuD2LmNaU3a.

[11] Jiequan Cui, Zhuotao Tian, Zhisheng Zhong, Xiaojuan Qi, Bei Yu, and Hanwang Zhang.
Decoupled kullback-leibler divergence loss. arXiv preprint arXiv:2305.13948, 2023.

[12] Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better
diffusion models further improve adversarial training. In International Conference on Machine
Learning, pages 36246–36263. PMLR, 2023.

[13] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free!
Advances in neural information processing systems, 32, 2019.

11

https://api.semanticscholar.org/CorpusID:3310672
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=BuD2LmNaU3a
https://openreview.net/forum?id=BuD2LmNaU3a

[14] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only prop-
agate once: Accelerating adversarial training via maximal principle. Advances in neural in-
formation processing systems, 32, 2019.

[15] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. In International Conference on Learning Representations.

[16] Gaurang Sriramanan, Sravanti Addepalli, Arya Baburaj, and Venkatesh Babu R. To-
wards efficient and effective adversarial training. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, volume 34, pages 11821–11833. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
62889e73828c756c961c5a6d6c01a463-Paper.pdf.

[17] Peilin Kang and Seyed-Mohsen Moosavi-Dezfooli. Understanding catastrophic overfitting in
adversarial training. arXiv preprint arXiv:2105.02942, 2021.

[18] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturba-
tions. Advances in neural information processing systems, 32, 2019.

[19] Yulun Jiang, Chen Liu, Zhichao Huang, Mathieu Salzmann, and Sabine Süsstrunk. Towards
stable and efficient adversarial training against l1 bounded adversarial attacks. In International
Conference on Machine Learning. PMLR, 2023.

[20] Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few
pixels make a big difference. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9087–9096, 2019.

[21] Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pages 4724–4732,
2019.

[22] Francesco Croce, Maksym Andriushchenko, Naman D Singh, Nicolas Flammarion, and
Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-box adver-
sarial attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 6437–6445, 2022.

[23] Xuyang Zhong, Yixiao Huang, and Chen Liu. Towards efficient training and evaluation of
robust models against l0 bounded adversarial perturbations. ArXiv, abs/2405.05075, 2024.
URL https://arxiv.org/abs/2405.05075.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[25] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[26] Hoki Kim, Woojin Lee, and Jaewook Lee. Understanding catastrophic overfitting in single-
step adversarial training. In AAAI Conference on Artificial Intelligence, 2020. URL https:
//api.semanticscholar.org/CorpusID:222133879.

[27] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adver-
sarial training. Advances in Neural Information Processing Systems, 33:16048–16059, 2020.

[28] Haizhong Zheng, Ziqi Zhang, Juncheng Gu, Honglak Lee, and Atul Prakash. Efficient ad-
versarial training with transferable adversarial examples. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1178–1187, 2019. URL https:
//api.semanticscholar.org/CorpusID:209501025.

[29] Zhichao Huang, Yanbo Fan, Chen Liu, Weizhong Zhang, Yong Zhang, Mathieu Salzmann,
Sabine Süsstrunk, and Jue Wang. Fast adversarial training with adaptive step size. IEEE
Transactions on Image Processing, 2023.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/62889e73828c756c961c5a6d6c01a463-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/62889e73828c756c961c5a6d6c01a463-Paper.pdf
https://arxiv.org/abs/2405.05075
https://api.semanticscholar.org/CorpusID:222133879
https://api.semanticscholar.org/CorpusID:222133879
https://api.semanticscholar.org/CorpusID:209501025
https://api.semanticscholar.org/CorpusID:209501025

[30] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. arXiv preprint arXiv:1412.6572, 2014.

[31] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
In International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=BJm4T4Kgx.

[32] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[33] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. In European confer-
ence on computer vision, pages 484–501. Springer, 2020.

[34] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael
Jordan. Theoretically principled trade-off between robustness and accuracy. In International
conference on machine learning, pages 7472–7482. PMLR, 2019.

[35] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=rklOg6EFwS.

[36] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International conference on machine learning, pages 8093–8104. PMLR, 2020.

[37] Chen Liu, Zhichao Huang, Mathieu Salzmann, Tong Zhang, and Sabine Süsstrunk. On the
impact of hard adversarial instances on overfitting in adversarial training, 2021.

[38] Lang Huang, Chao Zhang, and Hongyang Zhang. Self-adaptive training: beyond empirical
risk minimization. Advances in neural information processing systems, 33:19365–19376, 2020.

[39] Francesco Croce and Matthias Hein. Mind the box: l 1-apgd for sparse adversarial attacks on
image classifiers. In International Conference on Machine Learning, pages 2201–2211. PMLR,
2021.

[40] Tooba Imtiaz, Morgan Kohler, Jared Miller, Zifeng Wang, Mario Sznaier, Octavia Camps,
and Jennifer Dy. Saif: Sparse adversarial and interpretable attack framework. arXiv preprint
arXiv:2212.07495, 2022.

[41] Pau de Jorge Aranda, Adel Bibi, Riccardo Volpi, Amartya Sanyal, Philip Torr, Grégory Rogez,
and Puneet Dokania. Make some noise: Reliable and efficient single-step adversarial training.
Advances in Neural Information Processing Systems, 35:12881–12893, 2022.

[42] Runqi Lin, Chaojian Yu, and Tongliang Liu. Eliminating catastrophic overfitting via abnormal
adversarial examples regularization. Advances in Neural Information Processing Systems, 36,
2024.

[43] Runqi Lin, Chaojian Yu, Bo Han, Hang Su, and Tongliang Liu. Layer-aware analysis of
catastrophic overfitting: Revealing the pseudo-robust shortcut dependency. In Forty-first
International Conference on Machine Learning, 2024.

[44] Lin Li and Michael Spratling. Understanding and combating robust overfitting via input loss
landscape analysis and regularization. Pattern Recognition, 136:109229, 2023.

[45] Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss
landscape of adversarial training: Identifying challenges and how to overcome them. Advances
in Neural Information Processing Systems, 33:21476–21487, 2020.

[46] Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based
analysis of large batch training and robustness to adversaries. Advances in Neural Information
Processing Systems, 31, 2018.

[47] Xuyang Zhong and Chen Liu. Towards mitigating architecture overfitting in dataset distilla-
tion. arXiv preprint arXiv:2309.04195, 2023.

13

https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=BJm4T4Kgx
https://openreview.net/forum?id=rklOg6EFwS

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[49] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition. Neural networks, 32:
323–332, 2012.

[50] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 141–159. IEEE, 2021.

[51] Shawqi Al-Maliki, Adnan Qayyum, Hassan Ali, Mohamed Abdallah, Junaid Qadir, Dinh Thai
Hoang, Dusit Niyato, and Ala Al-Fuqaha. Adversarial machine learning for social good:
Reframing the adversary as an ally. IEEE Transactions on Artificial Intelligence, 2024.

[52] Yihua Zhang, Guanhua Zhang, Prashant Khanduri, Mingyi Hong, Shiyu Chang, and Sijia Liu.
Revisiting and advancing fast adversarial training through the lens of bi-level optimization.
In International Conference on Machine Learning, pages 26693–26712. PMLR, 2022.

[53] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[54] Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust
generalization. Advances in neural information processing systems, 33:2958–2969, 2020.

[55] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 11976–11986, 2022.

[56] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.

[57] Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust
vision transformers. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML), pages 225–253. IEEE, 2023.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

[59] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incor-
porating second-order functional knowledge for better option pricing. Advances in neural
information processing systems, 13, 2000.

14

A Algorithm Details

Algorithm 1 Self-Adaptive Training (SAT) [38]

1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling
epoch: Es; Momentum factor: α

2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: pi = softmax(f(xi))
6: if e > Es then
7: ti = α× ti + (1− α)× pi

8: end if
9: wi = maxj ti,j

10: end for
11: Calculate the loss LSAT = − 1∑

i wi

∑
i wi

∑
j ti,j log pi,j

12: Update the parameters of f on LSAT

13: until end of training

Algorithm 2 TRADES [34]

1: Input: Data: (x,y); Classifier: f ; Balancing factor: β; TRADES mode: mode; Sparse level:
ϵ

2: if mode = F then
3: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) KL(f(x), f(x̃))
4: else if mode = T then
5: Generate adversarial sample x̃ = max(x̃−x)∈Sϵ(x) CE(f(x̃),y)
6: end if
7: Calculate the loss LTRADES = CE(f(x),y) + β ·KL(f(x), f(x̃))
8: Update the parameters of f on LTRADES

The pseudo-codes of SAT [38] and TRADES [34] are provided in Algorithm 1 and 2, respectively.
For SAT, the moving average of the previous predictions {ti}n can be regarded as the soft labels.
For TRADES, f(x) can be seen as the soft label of f(x̃), and the combination of cross-entropy
and KL divergence is also a trade-off loss function. Note that when combining SAT and TRADES,
the loss LS+T for a mini-batch data {(xi,yi)}m can be written as:

LS+T = − 1∑
i wi

∑
i

wi · CE(f(xi), ti) +
β

m

∑
i

KL(f(xi), f(x̃i)) (10)

In addition, we provide the pseudo-code of the proposed Fast-LS-l0, which incorporates SAT,
TRADES and N-FGSM, in Algorithm 3.

B Proofs

B.1 Proof of Lemma 3.2

Proof. Based on the definition of δ1 and δ2, we have Lϵ(x,θ1) = L(x + δ1,θ1) and Lϵ(x,θ2) =
L(x+ δ2,θ2). In this regard, we have:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ = ∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥ (11)

15

Algorithm 3 Fast-LS-l0
1: Input: Data: {(xi,yi)}n; Initial target {ti}n = {yi}n; Batch size: m; Classifier: f ; Enabling

epoch: Es; Momentum factor: α; Balancing factor: β; TRADES mode: mode; Sparse level: ϵ
2: repeat
3: Fetch mini-batch data {(xi, ti)}m at current epoch e
4: for i = 1, ...,m do
5: ηi ∼ S2ϵ(xi)
6: xi = xi + ηi // Augment sample with additive noise
7: if mode = F then
8: x̃i = max(x̃i−xi)∈Sϵ(xi) KL(f(xi), f(x̃i))
9: else if mode = T then

10: x̃i = max(x̃i−xi)∈Sϵ(xi) CE(f(x̃i), ti)
11: end if
12: pi = softmax(f(xi))
13: if e > Es then
14: ti = α× ti + (1− α)× pi

15: end if
16: wi = maxj ti,j
17: end for
18: Calculate LS+T in Eq. (10)
19: Update the parameters of f on LS+T

20: until end of training

When L(x+ δ1,θ1) ≥ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ1,θ2) + L(x+ δ1,θ2)− L(x+ δ2,θ2)∥
≤∥L(x+ δ1,θ1)− L(x+ δ1,θ2)∥

(12)

The inequality above is derived from the optimality of δ2, which indicates L(x+δ1,θ2)−L(x+
δ2,θ2) ≤ 0 and the assumption L(x+ δ1,θ1) ≥ L(x+ δ2,θ2).

Similarly, when L(x+ δ1,θ1) ≤ L(x+ δ2,θ2) we have

∥L(x+ δ1,θ1)− L(x+ δ2,θ2)∥
=∥L(x+ δ1,θ1)− L(x+ δ2,θ1) + L(x+ δ2,θ1)− L(x+ δ2,θ2)∥
≤∥L(x+ δ2,θ1)− L(x+ δ2,θ2)∥

(13)

Without the loss of generality, we further bound ∥Lϵ(x,θ1) − Lϵ(x,θ2)∥ based on (12). The
derivation can be straightforwardly extended to (13) by replacing δ1 with δ2.

Based on the formulation of L in (1), ∥Lϵ(x,θ1)−Lϵ(x,θ2)∥ can be further derived as follows:

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤

∣∣∣∣∣∣
∑
i∈S+

yi log
hi(x+ δ1,θ2)

hi(x+ δ1,θ1)

∣∣∣∣∣∣
=
∑
i∈S+

yi

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
(14)

where S+ = {i | yi > 0, hi(x + δ1,θ2) > hi(x + δ1,θ1)}. Then, according to the mediant
inequality, we have

16

∣∣∣∣∣log 1 +
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))

1 +
∑

j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤

∣∣∣∣∣log
∑

j ̸=i exp(fj(x+ δ1,θ2)− fi(x+ δ1,θ2))∑
j ̸=i exp(fj(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣∣
≤max

k

∣∣∣∣log exp(fk(x+ δ1,θ2)− fi(x+ δ1,θ2))

exp(fk(x+ δ1,θ1)− fi(x+ δ1,θ1))

∣∣∣∣
≤max

k
|fk(x+ δ1,θ2)− fk(x+ δ1,θ1)|+ |fi(x+ δ1,θ2)− fi(x+ δ1,θ1)|

≤2Lθ∥θ1 − θ2∥

(15)

Note that the bound on the right of (15) is tight. The upper bound can be achieved asymptot-
ically if the condition in (16) and the Lipschitz bound in Assumption 3.1 are satisfied.∣∣∣|fk(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fk(x+ δ1,θ1)− fi(x+ δ1,θ1)|

∣∣∣
≫max

j ̸=k

∣∣∣|fj(x+ δ1,θ2)− fi(x+ δ1,θ2)| − |fj(x+ δ1,θ1)− fi(x+ δ1,θ1)|
∣∣∣ (16)

Combining (11)-(15), we have

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (17)

where Aθ = 2
∑

i∈S+
yiLθ.

B.2 Proof of Lemma 3.4

Proof. Given (1), ∇θL is computed as

∇θL(x,θ) = −
K−1∑
i=0

yi

[
∇θfi(x,θ)−

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))

]

=

∑
j exp(fj(x,θ))∇θfj(x,θ)∑

j exp(fj(x,θ))
−

K−1∑
i=0

yi∇θfi(x,θ)

def
=

K−1∑
j=0

hj(x,θ)∇θfj(x,θ)−
K−1∑
i=0

yi∇θfi(x,θ)

(18)

The second equality is based on the fact that {yi}K−1
i=0 is in a simplex. To simplify the notation,

the last equation is based on the definition that {hj}K−1
j=0 is the result of softmax function applied to

{fj}K−1
j=0 , i.e., hj(x,θ) =

exp(fj(x,θ))∑
k exp(fk(x,θ))

. Therefore, we have
∑K−1

j=0 hj(x,θ) = 1 and ∀j, hj(x,θ) >

0.
According to the triangle inequality, we have:

∥∇θ1
L(x+ δ1,θ1)−∇θ2

L(x+ δ2,θ2)∥
≤∥∇θ1L(x+ δ1,θ1)−∇θ1L(x+ δ2,θ1)∥+ ∥∇θ1L(x+ δ2,θ1)−∇θ2L(x+ δ2,θ2)∥

(19)

Plug (18) to the first term on the right hand side of (19), we obtain:

∥∇θ1L(x+ δ1,θ1)−∇θ1L(x+ δ2,θ1)∥ ≤
K−1∑
i=0

yi ∥∇θ1fi(x+ δ1,θ1)−∇θ1fi(x+ δ2,θ1)∥

+

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
(20)

17

The first term can be bounded based on Assumption 3.1. The second term can be bounded as
follows:

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)−
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ1,θ1)∇θfj(x+ δ1,θ1)

∥∥∥∥∥∥+
∥∥∥∥∥∥
K−1∑
j=0

hj(x+ δ2,θ1)∇θfj(x+ δ2,θ1)

∥∥∥∥∥∥
≤

K−1∑
j=0

hj(x+ δ1,θ1)

∥∥∥∥max
k

∇θfk(x+ δ1,θ1)

∥∥∥∥+ K−1∑
j=0

hj(x+ δ2,θ1)

∥∥∥∥max
k

∇θfk(x+ δ2,θ1)

∥∥∥∥
≤2Lθ

(21)

Note that the bound on the right of (21) is tight. The first inequality is based on the triangle
inequality. The second inequality and the third inequality can be achieved asymptotically when
the equality of first-order Lipschitz continuity in Assumption 3.1 is achieved and the following
condition is satisfied.

∃k1 ∈ argmaxiL
(i)
θ , hk1(x+ δ1,θ1) → 1,max

j ̸=k1

hj(x+ δ1,θ1) → 0

∃k2 ∈ argmaxiL
(i)
θ , hk2(x+ δ2,θ1) → 1,max

j ̸=k2

hj(x+ δ2,θ1) → 0
(22)

Note that k1 and k2 are not always the same, since there may exist more than one biggest first-order
Lipschitz constant.

Combining (20) and (21) together, we obtain:

∥∇θ1
L(x+ δ1,θ1)−∇θ1

L(x+ δ2,θ1)∥ ≤ 2Lθ + Lθx∥δ2 − δ1∥ (23)

Similarly, we have:

∥∇θ1L(x+ δ2,θ1)−∇θ2L(x+ δ2,θ2)∥ ≤ 2Lθ + Lθθ∥θ2 − θ1∥ (24)

Combing the two inequalities above, we have:

∥∇θL(x+ δ1,θ1)−∇θL(x+ δ2,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθθ (25)

where
Aθθ = Lθθ; Bθθ = 4Lθ + Lθx∥δ1 − δ2∥ (26)

B.3 Proof of Theorem 4.1

Proof. For hard label yh ∈ {0, 1}K , let that the j-th elements of yh be 1 and the rest be 0. By
the definition of Aθ in Lemma 3.2, we have

Aθ(yh) = 2Lθ. (27)

It is known that
∑K−1

i=0 hi(x,θ) = 1, which means ∃j, hj(x + δ1,θ2) ≤ hj(x + δ1,θ1). Then, for
soft label ys ∈ (0, 1)K , we have |S+| < K where S+ = {i | yi > 0, hi(x+ δ1,θ2) > hi(x+ δ1,θ1)}.
Thus, it holds

Aθ(ys) = 2
∑
i∈S+

y(i)s Lθ ≤ Aθ(yh). (28)

The equality can be achieved asymptotically if
∑

i/∈S+
y
(i)
s → 0.

18

B.4 Proof of Theorem 4.2

Proof. By the definition of Lϵ,α in (8), we have

∥∇θ1
Lϵ,α(x,θ1)−∇θ2

Lϵ,α(x,θ2)∥
≤ (1− α)∥∇θ1

L(x,θ1)−∇θ1
L(x,θ2)∥+ α∥∇θ1

Lϵ(x,θ1)−∇θ1
Lϵ(x,θ2)∥

(29)

According to (24) in the proof of Lemma 3.4, the first term of the right hand side of (29) can be
derived as

∥∇θ1L(x,θ1)−∇θ2L(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ 2Lθ. (30)

According to Lemma 3.4, the second term of the right hand side of (29) satisifies

∥∇θ1Lϵ(x,θ1)−∇θ2Lϵ(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Lθx∥δ1 − δ2∥+ 4Lθ. (31)

Combining (29), (30) and (31), we have

∥∇θ1
Lϵ,α(x,θ1)−∇θ2

Lϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ, (32)

where Aθθ = Lθθ and B′
θδ = αLθx∥δ1 − δ2∥+ 2(1 + α)Lθ.

C Theoretical Analysis of ReLU Networks

Similar to [45], we first make the following assumptions for the functions {fi}K−1
i=0 represented by

a ReLU network.

Assumption C.1. ∀i ∈ {0, 1, ...,K − 1}, the function fi satisfies the following conditions:

∀x,θ1,θ2, ∥fi(x,θ1)− fi(x,θ2)∥ ≤ Lθ∥θ1 − θ2∥, (33)

∀θ,x1,x2, ∥fi(x1,θ)− fi(x2,θ)∥ ≤ Lx∥x1 − x2∥, (34)

∀x,θ1,θ2, ∥∇θfi(x,θ1)−∇θfi(x,θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ Cθθ, (35)

∀θ,x1,x2, ∥∇θfi(x1,θ)−∇θfi(x2,θ)∥ ≤ Lθx∥x1 − x2∥+ Cθx. (36)

Compared to Assumption 3.1 and 3.3, we modify the the second-order smoothness assumptions
by adding two constants Cθθ and Cθx, respectively. They denote the upper bound of the gradient
difference in the neighborhood at non-smooth point. Thus, they quantify how drastically the
(sub)gradients can change in a sufficiently small region in the parameter space.

Based on Assumption C.1, we have the following corollary:

Corollary C.2. If Assumption C.1 is satisfied, it holds

∥Lϵ(x,θ1)− Lϵ(x,θ2)∥ ≤ Aθ∥θ1 − θ2∥, (37)

∥∇θLϵ(x,θ1)−∇θLϵ(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+Bθδ + Cθθ + Cθx. (38)

The Lipschitz constant Aθ = 2
∑

i∈S+
yiLθ, Aθθ = Lθθ and Bθδ = Lθx∥δ1 − δ2∥ + 4Lθ where

δ1 ∈ argmaxδ∈Sϵ
L(x+ δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

The proof is similar to that of Lemma 3.2 and 3.4. Corollary C.2 indicates a more craggy loss
landscape in the adversarial training of networks with non-smooth activations.

Additionally, the Theorem 4.2 can be easily extended to accommodate Assumption C.1.

Corollary C.3. If Assumption C.1 holds, then we have

∥∇θLϵ,α(x,θ1)−∇θLϵ,α(x,θ2)∥ ≤ Aθθ∥θ1 − θ2∥+B′
θδ + Cθθ + Cθx. (39)

The Lipschitz constant Aθθ = Lθθ and B′
θδ = αLθx∥δ1−δ2∥+2(1+α)Lθ where δ1 ∈ argmaxδ∈Sϵ

L(x+
δ,θ1) and δ2 ∈ argmaxδ∈Sϵ

L(x+ δ,θ2).

19

D Discussion of the Upper Bound of ∥δ1 − δ2∥

We define the lp adversarial budget for the perturbation δ ∈ Rd as S(p)
ϵ = {δ | ∥δ∥p ≤ ϵ, 0 ≤

x + δ ≤ 1}. Therefore, we have ∥δ1 − δ2∥p ≤ 2ϵ, and ∀i, 0 ≤ |δ(i)1 − δ
(i)
2 | ≤ 1 where δ

(i)
1 and δ

(i)
2

are the i-th element of δ1 and δ2, respectively. For convenience, we denote δ1 − δ2 as ∆δ and

δ
(i)
1 − δ

(i)
2 as ∆δi in the following.

Assume that ϵ ≪ d for l0, l1 and l2 bounded perturbations, and ϵ ≪ 1 for the l∞ bounded
perturbation. Then, ∀q ≥ 1, we have

l0 budget:
∑
i

|∆δi|q ≤ 2ϵ,

l1 budget:
∑
i

|∆δi|q ≤ D1 + (2ϵ−D1)
q,

l2 budget:
∑
i

|∆δi|q ≤ D2 + (4ϵ2 −D2)
q
2 ,

l∞ budget:
∑
i

|∆δi|q ≤ d× (2ϵ)q,

(40)

where D1 = ⌊2ϵ⌋ and D2 = ⌊4ϵ2⌋. The derived upper bounds are tight because
(1) l0 budget: The equality achieves when the location of non-zero elements in δ1 and δ2 has

no overlap, and the magnitude of their non-zero elements reaches ±1.
(2) l1 budget: Since 0 ≤ |∆δi| ≤ 1, the equality achieves when there exists at most one ∆δk

such that |∆δk| < 1 and ∀j ̸= k, |∆δj | = 1. The maximum number of ∆δj is ⌊2ϵ⌋. Then, according
to ∥∆δ∥1 ≤ 2ϵ, we have |∆δk| = 2ϵ− 1× ⌊2ϵ⌋.

(3) l2 budget: The derivation is similar to that of the l1 case.
(4) l∞ budget: The equality achieves when δ1 = −δ2.
On popular benchmark CIFAR-10, d = 32× 32× 3 = 3072, and the commonly used values of ϵ

in the l0, l1, l2 and l∞ cases are 360, 24, 0.5 and 8/255, respectively [5, 19, 23, 39]. Substitute these
into (40), we can easily get that ∀q ≥ 1, the upper bound of

∑
i |∆δi|q is significantly larger in the

l0 case than the other cases. For instance, (2ϵ−D1)
q, (4ϵ2−D2)

q
2 and (2ϵ)q reach their respective

maximum values when q = 1, since all of them are smaller than 1. Then, the upper bounds of∑
i |∆δi|1 in the l0, l1, l2 and l∞ cases are 720, 24, 1 and 49152/255 ≈ 192.8, respectively.
Furthermore, the lq norm of ∆δ is defined as follows:

∥∆δ∥q =

(∑
i

|∆δi|q
) 1

q

. (41)

Since the upper bound of
∑

i |∆δi|q in the l0 case is larger than 1 for all q ≥ 1, we can also derive
that ∀q ≥ 1, the upper bound of ∥∆δ∥q is always significantly larger in the l0 case than the other
cases.

E More Experimental Details

E.1 Location Difference between Adversarial Examples Generated by
1-step sPGD and sAA

As illustrated in Figure 4(a), the adversarial perturbations generated by one-step sPGD during
training are almost completely different from those generated by sAA in location rather than
magnitude. Combining with the results in Table 2, we can demonstrate that CO in l0 adversarial
training is primarily due to sub-optimal perturbation locations rather than magnitudes.

20

1.75 1.80 1.85 1.90 1.95 2.00
|| train sAA||0 / train

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
train = 20
train = 80
train = 120

(a) Location difference

0.0 0.1 0.2 0.3 0.4 0.5
|| train test||0 / test

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y

train = 20
train = 80
train = 120

(b) Location overlapping

Figure 4: Visualization of location difference and location overlapping. (a) The distribution of the
normalized l0 distance between training adversarial examples generated by 1-step sPGD and sAA. The
models trained on 20-step sAT with different training ϵ are evaluated. (b) The distribution of the location
overlapping rate between the perturbations generated by attacks used in training (20-step sPGD) and test
(sAA), where ϵtest = 20. The models trained on 20-step sAT with different training ϵ are evaluated.

E.2 Multi-ϵ Strategy Mitigating Sub-optimality of Perturbation Loca-
tions

As illustrated in Figure 4(b), the perturbations generated by 1-step attack with larger ϵtrain overlap
more with those generated by sAA with a smaller and fixed ϵtest in terms of location. Further-
more,the multi-ϵ strategy has been shown to be particularly effective in l0 adversarial training [23].
These findings suggest that the sub-optimality of perturbation locations brought by 1-step attacks
can be mitigated to some extent by multi-ϵ strategy.

E.3 Distances between Gradients Induced by 1-step and Multi-step At-
tacks

Table 5: Average l2 distances between gradients induced by 1-step and multi-step attacks, represented
by ∥∇θLϵ(x + δone) −∇θLϵ(x + δmulti)∥2. The gradients are calculated of the training set of CIFAR-10
[25]. The l0, l1, l2 and l∞ models are obtained by 1-step sAT [23], Fast-EG-l1 [19], 1-step PGD [36]
and GradAlign [33], respectively. The 1-step and multi-step l0 attacks are 1-step and 10000-step sPGD
[23], respectively. The 1-step and multi-step l1 attacks are 1-step Fast-EG-l1 and 100-step APGD [39],
respectively.The 1-step and multi-step attacks for other norms are 1-step PGD [5] and 100-step APGD [3],
respectively.

Model l0 (ϵ = 1) l1 (ϵ = 24) l2 (ϵ = 0.5) l∞ (ϵ = 8/255)

l2 distance 15.8 9.1× 10−4 3.6× 10−4 6.7× 10−4

Based on the Lipschitz smoothness assumption in Inequality (6), the gradient difference arising
from approximated adversarial perturbations is bounded by Lθx∥δ1 − δ2∥ where δ1 is the pertur-
bation generated by 1-step attack and δ2 is the optimal perturbation. Based on the same reason
that l0 norm is not a proper norm, ∥δ1 − δ2∥ is significantly larger in l0 cases than l∞, l2 and l1
cases, which makes 1-step adversarial training more challenging in l0 cases. To corroborate this, we
compare the distance between gradients induced by 1-step and multi-step attacks. As presented
in Table 5, the average distance between gradients induced by 1-step and multi-step l0 attacks is
5 orders of magnitude greater than those in the l1, l2 and l∞ cases, even when a single pixel is
perturbed. This finding indicates that the loss landscape of l0 adversarial training is significantly
more craggy than other cases in the input space.

E.4 Comparison with Other Baselines

In this section, we undertake a more comprehensive comparison between our proposed Fast-LS-l0
and other baselines (ATTA [28], GradAlign (GA) [27], Fast-BAT [52], N-AAER [42], N-LAP [43],
label smoothing (LS) [53], NuAT [16], AdvLC [44], MART [35] and AWP [54]), which either claim

21

Table 6: Comparison with other baselines in robust accuracy (%) by sAA. The target sparsity level ϵ = 20.
We compare PreAct ResNet-18 [24] models trained on CIFAR-10 [25] with 100 epochs. The italic numbers
indicate catastrophic overfitting (CO) happens.

Method ATTA
ATTA
+ S&N

GA
GA

+ S&N
Fast-BAT

FLC
Pool

N-AAER

Robust Acc. 0.0 54.7 0.0 34.4 14.1 0.0 0.1

Method N-LAP LS NuAT AdvLC MART
Ours

+ AWP
Ours

Robust Acc. 0.0 0.0 51.9 59.6 48.0 65.2 63.0

to mitigate catastrophic overfitting or claim to incorporate different smoothing techniques. Note
that all baselines are tuned through a hyperparameter search.

As demonstrated in Table 6, our method achieves the strongest robustness against sAA. First,
naive LS turns out ineffective under the l0 setting. The performance of Fast-BAT, NuAT, Ad-
vLC and MART is not as good as the method we use. Second, FLC Pool, N-AAER, N-LAP,
ATTA and GradAlign suffer from CO, since they incorporate neither soft labels nor trade-off loss
function. Combining ATTA and GradAlign with SAT and N-FGSM, which introduces soft labels,
can effectively mitigate CO, but these settings still underperform our method by a large margin.
Finally, although our method also benefits from AWP, AWP introduces additional computational
overhead, thereby not being adopted in our method.

E.5 More Results of Section 5.2

Table 7: Robust accuracy (%) of various models on different attacks that generate l0 bounded perturba-
tions, where the sparsity level ϵ = 10. The models are PreAct ResNet-18 trained on CIFAR-100 [25] with
ϵ = 60. Note that the results of vanilla sAT and sTRADES are obtained from [23], CornerSearch (CS) is
evaluated on 1000 samples due to its high computational complexity.

Model
Time
Cost

Clean
Black-Box White-Box

sAA
CS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 4h 27m 67.0 44.3 41.6 60.9 56.8 58.0 41.6
+S&N 4h 58m 64.3 53.0 52.9 61.2 59.2 59.6 52.8

sTRADES 5h 10m 70.9 52.8 50.3 65.2 64.0 63.7 50.2
+S&N 5h 40m 63.8 56.5 55.6 61.2 60.5 59.0 55.3

One-step

Fast-LS-l0 (T) 1h 05m 65.3 54.5 54.3 60.4 55.6 54.4 52.2
Fast-LS-l0 (F) 1h 26m 65.0 56.2 54.6 60.8 54.9 54.9 52.3

Table 8: Robust accuracy (%) of various models on different attacks that generate l0 bounded perturba-
tions, where the sparsity level ϵ = 12. The models are PreAct ResNet-18 trained on GTSRB [49] with
ϵ = 72. All methods are evaluated on 500 samples, and CornerSearch (CS) is not evaluated here due to
its high computational complexity.

Model
Time
Cost

Clean
Black-Box White-Box

sAA
CS RS SAIF sPGDproj sPGDunproj

Multi-step

sAT 1h 3m 98.4 - 43.2 92.4 96.0 96.2 43.2
+S&N 1h 2m 98.4 - 77.8 97.4 96.8 95.4 77.6

sTRADES 1h 6m 97.8 - 67.6 94.0 95.6 95.0 67.4
+S&N 1h 7m 95.6 - 75.4 93.6 92.6 91.2 75.2

One-step

Fast-LS-l0 (T) 7m 97.8 - 75.2 89.2 74.4 74.4 63.2
Fast-LS-l0 (F) 9m 98.6 - 80.4 94.2 75.0 79.8 67.8

22

The results on CIFAR-100 and GTSRB datasets are presented in Table 7 and 8, respectively.
The findings are consistent with those observed in Table 4(a), further validating the effectiveness
of the proposed methods across different datasets. In contrast to the settings in [23], we resize the
images in GTSRB to 32× 32 instead of 224× 224 and retrain the models from scratch. The model
are trained with ϵ = 72 and evaluated for robustness with ϵ = 12. It is important to note that
due to the smaller search space resulting from low-resolution images, the attack success rate of the
black-box Sparse-RS (RS) under this setting is significantly higher than that reported in [23].

E.6 Standard Deviation of Robust Accuracy against Sparse-AutoAttack
of Table 4(a)

Table 9: Average robust accuracy against sAA [23] obtained from three runs, where the sparsity level
ϵ = 20. The variances are shown in brackets. The configurations are the same as in Table 4(a). Note that
we do not include the results of vanilla sAT and sTRADES since their results are obtained from [23].

Model sAT + S&N sTRADES + S&N Fast-LS-l0 (T) Fast-LS-l0 (F)

Acc. 61.2 (± 0.2) 65.5 (± 0.7) 63.0 (± 0.7) 62.1 (± 0.6)

To better validate the effectiveness of our method, we report the standard deviations of robust
accuracy against sAA in Table 9. We calculate these standard deviations by running the experi-
ments three times with different random seeds. The configurations are the same as in Table 4(a).
It can be observed that the fluctuation introduced by different random seeds does not outweigh
the performance gain from the evaluated approaches.

E.7 Evaluation on Different Networks

Table 10: Robust accuracy (%) of various networks against sAA on CIFASR-10, where the sparsity level
ϵ = 20. The networks are adversarially trained with different methods, including 1-step sAT, 1-step
sTRADES and the proposed Fast-LS-l0.

PRN-18 ConvNeXt-T Swin-T

1-step sAT 0.0 0.8 0.1
1-step sTRADES 31.0 71.0 43.2

Fast-LS-l0 63.0 78.6 58.9

Despite the effectiveness of our method on PreActResNet-18 (PRN-18) and ResNet-34, the
performance of our Fast-LS-l0 and its ablations on different networks remains unexplored. In
this regard, we further evaluate our method on two popular architectures, i.e., ConvNeXt [55]
and Swin Transformer [56]. Note that we adopt their tiny versions for CIFAR-10, which have a
similar number of parameters as ResNet-18, and we follow the training settings of their CIFAR-10
implementations. The other experimental settings are the same as those described in Section 5.1.
As shown in Table 10, vanilla adversarial training results in CO on all networks, and our method
produces the best robust accuracy against sAA, demonstrating the effectiveness of our method
on different networks. Notably, ConvNeXt shows surprisingly strong robustness against sAA,
suggesting that advanced architecture design and dedicated hyperparameter tuning can provide
additional performance gains. However, as Transformers has struggled to perform well on small
datasets without pretraining [57], Swin Transformer also underperforms CNN-based networks in
this scenario.

E.8 Loss Landscape of one-step sAT with Different ϵ

As supplementary of Figure 2, we visualize the loss landscapes of 1-step sAT [23] with different ϵ,
including 20, 40 and 120, in Figure 5. It can be observed that the l0 adversarial loss exhibits a
drastic increase in response to relatively minor alterations in the θ-space. Moreover, the degree of
non-smoothness increases in proportion to ϵ, which is consistent with the observation in Figure 2
(a).

23

1

0.04
0.02

0.00
0.02

0.04
2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

50

(a) L(0)
ϵ , ϵ = 20

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

80

(b) L(0)
ϵ , ϵ = 40

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(c) L(0)
ϵ , ϵ = 120

Figure 5: Loss landscape of 1-step sAT [23] with different ϵ values on the training set of CIFAR-10 [25].

The architecture of the model is PreactResNet-18. (a) Landscape of L(0)
ϵ (x,θ+α1v1+α2v2) with ϵ = 20,

where v1 and v2 are the eigenvectors corresponding to the top 2 eigenvalues of the Hessian matrices,
respectively. (b) Landscape of L(0)

ϵ with ϵ = 40. (c) Landscape of L(0)
ϵ with ϵ = 120.

E.9 Smoother Loss Landscape Induced by Soft Label and Trade-off Loss
Function

0 2 4 6 8
Index

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

1e5

A
T(T)
T(F)

T(T)+S
T(F)+S

(a) Eigenvalues of ∇2
θL

(0)
ϵ

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

20

40

60

(b) 1-step sAT

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

(c) 1-step sTRADES (T)

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

10

20

30

40

50

(d) 1-step sTRADES (F)

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

5

10

15

(e) 1-step sTRADES (T) + SAT

1

0.04
0.02

0.00
0.02

0.04

2

0.04
0.02

0.00
0.02

0.04

 lo
ss

0

20

40

60

5

10

15

(f) 1-step sTRADES (F) + SAT

Figure 6: Smoothness visualization of different methods with ϵ = 120 on the training set of CIFAR-10

[25]. The architecture of the model is PreactResNet-18. (a) Top-10 eigenvalues of ∇2
θL

(0)
ϵ (x,θ) of different

methods. A and T denote 1-step sAT and 1-step sTRADES, respectively. T and F in the brackets are
two respective versions of sTRADES indicated in Sec. 5.1. (b) Loss landscape of 1-step sAT. (c) Loss
landscape of 1-step sTRADES (T). (d) Loss landscape of 1-step sTRADES (F). (e) Loss landscape of
1-step sTRADES (T) + SAT. (f) Loss landscape of 1-step sTRADES (F) + SAT.

The effectiveness of soft label and trade-off loss function in improving the performance of l0
adversarial training is demonstrated in Section 5.1 and 5.2. Additionally, we visualize the curves
of top-10 eigenvalues of Hessian matrices of the different methods discussed in Section 5.1 and
their respective loss landscapes in Figure 6. Note that since N-FGSM results in a larger upper
bound of ∥δ1 − δ2∥, it is not considered here to make a fair comparison. Figure 6 (a) shows
that sTRADES induces considerably smaller eigenvalues of Hessian matrices compared to sAT,
while the difference between sTRADES (T) and sTRADES (F) is negligible. SAT, on the other
hand, has only a marginal effect on the eigenvalues. However, as illustrated in Figure 6 (b)-(f),
SAT plays a crucial role in smoothing the loss landscape, which relates to the change rate of loss,

24

i.e., the first-order smoothness. These observations align with the theoretical derivation presented
in Section 4, indicating that soft label improves the first-order smoothness, while trade-off loss
function contributes to the second-order smoothness.

E.10 Ablation Studies

In this section, we conduct more ablation studies on the results in Section 5.1. Specifically, we
focus on the best configuration in Table 3: Fast-LS-l0 (T) (i.e., 1-step sTRADES (T) + SAT &
N-FGSM). Unless specified, we adopt the same training settings as in Table 3.

Table 11 presents a performance comparison of the model when SAT is enable in different
training phases. We can see that the performance achieves the best when enabling SAT at the
50-th epoch. This observation demonstrates that the best performance in 1-step sTRADES is
achieved when SAT is enabled at the intermediate epoch where the learning rate is relatively low.

In Table 12, we compare the performance when using different labels, either the hard label
from ground truth or the soft label by SAT, to generate adversarial perturbations for training.
The results indicate that using soft labels to generate adversarial perturbations results in slightly
better performance compared to using hard ones.

In Table 13, we compare the performance when using different momentum factor in SAT. We
can see that the default setting in [38], i.e., 0.9, provides the best performance.

In Table 14, we compare the performance when using different balance factor β in TRADES.
It can be observed that β = 3 and 6 induce similar results, indicating the default setting in [34],
i.e., 6, is the optimal.

Table 11: Ablation study on the epoch of en-
abling SAT. The evaluated attack is sAA, where
the sparsity level ϵ = 20.

SAT epoch 30 50 70

Robust Accuracy 60.2 63.0 62.8

Table 12: Ablation study on the labels used to gen-
erate adversarial samples. The evaluated attack is
sAA, where the sparsity level ϵ = 20.

Label Hard Soft

Robust Accuracy 62.6 63.0

Table 13: Ablation study on the momentum factor
of SAT. The evaluated attack is sAA, where the
sparsity level ϵ = 20.

SAT momentum 0.5 0.7 0.9

Robust Accuracy 55.4 60.4 63.0

Table 14: Ablation study on the balance factor β
in TRADES loss function. The evaluated attack is
sAA, where the sparsity level ϵ = 20.

TRADES β 1 3 6

Robust Accuracy 58.7 63.0 63.0

F Implementation Details

Generally, the epoch of enabling SAT is 1/2 of the total epochs. For N-FGSM, the random noise for
augmentation is the random sparse perturbation with sparsity level ranging from 0 to 2ϵ, where
ϵ is the sparsity level of adversarial perturbations. The interpolation factor α in trade-off loss
function is set to 0.75. The balance factor β in TRADES loss function is set to 6. The optimizer
is SGD with a momentum factor of 0.9 and a weight decay factor of 5 × 10−4. The learning rate
is initialized to 0.05 and is divided by a factor of 10 at the 1/4 and 3/4 of the total epochs. The
specific settings for different datasets are listed as follows:

• CIFAR-10, CIFAR-100 [25] and GTSRB [49]: The adopted network is PreAct ResNet-18
[58] with softplus activation [59]. The training batch size is 128. We train the model for 100
epochs.

• ImageNet-100 [48]: The adopted network is ResNet-34 [24]. The training batch size is 48.
We train the model for 50 epochs.

Unless specified, the hyperparameters of attacks and other configurations are the same as in
[23].

25

	Introduction
	Related Works
	Challenges in Fast l0 Adversarial Training
	Catastrophic Overfitting in Fast l0 Adversarial Training
	Theoretical Analyses on the Smoothness of Adversarial Loss Functions
	Numerical Analyzes on the Smoothness of Adversarial Loss Functions

	Soft Label and Trade-off Loss Smooth Adversarial Loss
	Experiments
	Approaches to Improving 1-Step l0 Adversarial Training
	Comparison with Multi-Step Adversarial Training

	Conclusion
	Future Work
	Algorithm Details
	Proofs
	Proof of Lemma 3.2
	Proof of Lemma 3.4
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Theoretical Analysis of ReLU Networks
	Discussion of the Upper Bound of ||delta1-delta2||
	More Experimental Details
	Location Difference between Adversarial Examples Generated by 1-step sPGD and sAA
	Multi- Strategy Mitigating Sub-optimality of Perturbation Locations
	Distances between Gradients Induced by 1-step and Multi-step Attacks
	Comparison with Other Baselines
	More Results of Section 5.2
	Standard Deviation of Robust Accuracy against Sparse-AutoAttack of Table 4(a)
	Evaluation on Different Networks
	Loss Landscape of one-step sAT with Different epsilon
	Smoother Loss Landscape Induced by Soft Label and Trade-off Loss Function
	Ablation Studies

	Implementation Details

