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Abstract—While adversarial training and its variants have
shown to be the most effective algorithms to defend against
adversarial attacks, their extremely slow training process makes
it hard to scale to large datasets like ImageNet. The key idea of
recent works to accelerate adversarial training is to substitute
multi-step attacks (e.g., PGD) with single-step attacks (e.g., FGSM).
However, these single-step methods suffer from catastrophic
overfitting, where the accuracy against PGD attack suddenly
drops to nearly 0% during training, and the network totally loses
its robustness. In this work, we study the phenomenon from the
perspective of training instances. We show that catastrophic
overfitting is instance-dependent, and fitting instances with
larger input gradient norm is more likely to cause catastrophic
overfitting. Based on our findings, we propose a simple but effective
method, Adversarial Training with Adaptive Step size (ATAS).
ATAS learns an instance-wise adaptive step size that is inversely
proportional to its gradient norm. Our theoretical analysis shows
that ATAS converges faster than the commonly adopted non-
adaptive counterparts. Empirically, ATAS consistently mitigates
catastrophic overfitting and achieves higher robust accuracy on
CIFAR10, CIFAR100, and ImageNet when evaluated on various
adversarial budgets.

Index Terms—Adversarial Examples, Fast Adversarial Training

I. INTRODUCTION

ADVERSARIAL examples [1], [2] cause serious safety
concerns in deploying deep learning models. In order to

defend against adversarial attacks, many approaches have been
proposed [3]–[9]. Among them, adversarial training and its
variants [7], [8], [10] have been recognized as the most effective
defense mechanism. Adversarial training (AT) is generally
formulated as a minimax problem

min
θ

max
x∗
i ∈Bp(xi,ε)

1

n

n∑
i=1

ℓ(x∗
i , yi;θ) , (1)

where D = {(xi, yi)}ni=1 is the training set and ℓ(x, y;θ) is the
loss function parametrized by θ. Bp(xi, ε) represents a Lp norm
ball centered at xi with radius ε. AT in Equation (1) boosts
the adversarial robustness by adopting adversarial examples
generated in the inner maximization. Despite the effectiveness
of AT, solving the inner maximization requires multiple steps
of projected gradient descent (PGD) [7], [11]. Therefore, AT
is much slower than vanilla training (e.g., 10 times longer

Zhichao Huang is with the Department of Mathematics, Hong Kong
University of Science of Technology. Yanbo Fan, Yong Zhang, and Jue Wang
are with Tencent AI Lab. Chen Liu is with Department of Computer Science,
City University of Hong Kong. Weizhong Zhang is with School of Data
Science, Fudan University. Mathieu Salzmann and Sabine Süsstrunk are with
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Fig. 1: The left plot shows the robust accuracy of Standard
AT and Fast AT on CIFAR10 w.r.t. the number of training
iterations. The Fast AT suffers from catastrophic overfitting,
where the robust accuracy against PGD suddenly decreases to
nearly 0%. The right plot visualizes the loss landscape when
catastrophic overfitting happens.

training time for AT in [11]), making it challenging to scale
AT to large datasets such as ImageNet.

Currently, the typical solution to accelerate AT is to substitute
multi-step attacks (e.g., PGD) with single-step attacks (e.g.,
FGSM). Several works have been proposed following this
direction, including FGSM-RS [12], ATTA [13], etc. These
methods achieve the best robust accuracy for fast AT. However,
recent works [14], [15] demonstrate that the single-step method
suffers from catastrophic overfitting, where the model’s robust-
ness against PGD attack suddenly drops to nearly 0% while the
robust accuracy against FGSM attack rapidly increases [12], as
shown in Figure 1. This will completely destroy the robustness
of the networks. It is worth noting that catastrophic overfitting
is different from robust overfitting mentioned in [11]. The latter
one refers to the generalization gap between training and test
data while catastrophic overfitting means the overfitting to a
specific type of attack that is irrelevant to the training and
test set. Some works have been proposed to understand and
alleviate the catastrophic overfitting [14], [15]. However, their
solutions significantly increase the training time. For example,
the gradient align regularizer

Eδ∼U([−ε,ε]d) [1− cos (∇xℓ(x, y;θ),∇xℓ(x+ δ, y;θ))]

in [14] requires calculating the second order gradient and it is
still 5 times slower than vanilla training, compared with 2 times
in [12]. In addition, [15] needs to check several points within
the ℓp norm ball, which needs several forward propagations and
is still about 4 times slower than vanilla training. Therefore,
existing methods are still unsatisfactory in terms of both training
efficiency and robust performance.

In this work, we analyze catastrophic overfitting from the
perspective of training instances. By taking the gradient norm
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∥∇xℓ(x, y;θ)∥ as an indicator, we find that different training
instances have different probabilities of causing catastrophic
overfitting. Instances with large gradient norms are more
sensitive to adversarial noise and their loss landscape is less
smooth. Thus, fitting them with FGSM is more likely to distort
the loss landscape, resulting in catastrophic overfitting.

Furthermore, catastrophic overfitting is closely related to
the optimization process of the inner maximization, e.g., the
setting of step size. When catastrophic overfitting does not
occur, the larger step size leads to a stronger attack and thus
strengthens the robustness of the network [12]. On the other
side, a larger step size is more likely to cause catastrophic
overfitting in the training process [12], [14]. Based on these
findings, we propose Adversarial Training with Adaptive Step
size (ATAS), a simple but effective fast AT method that uses
the previous initialization in ATTA [13] and takes the step size
of the inner maximization inversely proportional to the input
gradient norm. Instances with large gradient norms are given a
small step size to prevent catastrophic overfitting. By contrast,
instances with small gradient norms will have large step sizes
to improve the strength of the attack.

We theoretically analyze the convergence of ATAS and
prove that it converges faster than the non-adaptive counterpart,
which is commonly adopted in existing works [13], especially
when the distribution of the input gradient norm is long-tailed.
Empirically, We evaluate ATAS on CIFAR10, CIFAR100 [16],
and ImageNet [17] with different network architectures and
adversarial budgets, showing that ATAS mitigates catastrophic
overfitting and achieves higher robust accuracy under various
attacks including PGD10, PGD50 [7] and AutoAttack [18].

Our contributions are summarized as follows: 1) To the best
of our knowledge, we are the first to analyze catastrophic overfit-
ting from the perspective of training instances, and demonstrate
that instances with large input gradient norms are more likely to
cause catastrophic overfitting. 2) We propose a new algorithm,
ATAS, which takes the step size of the inner maximization to
be inversely proportional to the input gradient norm in order to
prevents catastrophic overfitting and maintain the strength of the
attack. 3) Theoretically, we prove that ATAS converges faster
than its non-adaptive counterpart. 4) Empirically, we conduct
extensive experiments to evaluate ATAS on different datasets,
network architectures, and adversarial budgets, showing that
ATAS consistently improves the robust accuracy and mitigates
catastrophic overfitting.

II. BACKGROUND AND RELATED WORK

A. Adversarial Examples.

Adversarial examples are first discussed in [1], where
a small perturbation of the input significantly changes the
prediction. Adversarial examples can be generated using the
gradient of the input x. Fast Gradient Signed Method (FGSM)
[19] approximates the loss function ℓ(x, y;θ) with the first
order Taylor expansion so that adversarial examples can
be generated with one step of projected gradient xFGSM =
x+ ε · sgn(∇xℓ(x, y;θ))) , where sgn is the sign function, ε
is the adversarial budget. Projected Gradient Descent (PGD)
[7] extends FGSM to multiple steps to strengthen the attack.

With a step size α, the adversarial example at the t-th step is
xt+1 = ΠBp(x,ε)[x

t+α ·sgn(∇xtℓ(xt, y;θ))] , where ΠBp(x,ε)

means the projection onto Bp(x, ε). Several stronger attacks
are proposed to reliably evaluate the models’ robustness [18],
[20], [21]. Among them, Autoattack [18] stands out as the
strongest attack.

While many methods [3], [4], [7], [8], [10], [22] have been
proposed to defend adversarial attacks, adversarial training (AT)
and its variants [7], [8], [10], [23], [24] are shown to be the
most effective methods to train a truly robust network. AT can
be formulated as a minimax problem in Equation (1). Finding
solutions for minimax optimization has been a major endeavor
in mathematics and computer science [25], [26]. Theoretically,
the well-known Stochastic Gradient Descent Ascent (SGDA)
finds an ε-approximate stationary point in O(1/ε2) iterations
with averaging for convex-concave games [27]. However, it
is not appropriate to formulate the optimization of AT as
SGDA or SGDmax [28], since AT only updates a part of
the coordinates in x = [x1, x2, · · ·xn] for the maximization.
The inner maximization actually corresponds to the stochastic
block coordinate ascent. Empirically, the neural network is
non-concave with respect to the input, so perfectly solving the
inner maximization is NP-hard [29]. It is usually approximated
by a strong attack like PGD [7], which needs multiple steps
of the calculation the gradients. Therefore, AT is much slower
than vanilla training.

B. Fast Adversarial Training.

There have been a series of work on accelerating AT [12],
[14], [15], [24], [30]–[33]. FreeAT [30] first proposes a fast AT
method by simultaneously optimizing the model’s parameter
and the adversarial perturbations by batch replaying. YOPO
[31] adopts a similar strategy to optimize the adversarial loss
function. Later on, single-step methods are shown to be more
effective than FreeAT and YOPO [12]. FGSM with Random
Start (FGSM-RS) [12] can be used to generate adversarial
perturbations in one step to train a robust network if the
hyperparameters are carefully tuned. ATTA [13] utilizes the
transferability of adversarial examples between epochs, using
adversarial example of the previous epoch as the initialization,
optimizing the model parameters with

xj
i = ΠBp(xi,ε)[x

j−1
i + α · sgn(∇xj−1

i
ℓ(xj−1

i , y;θ))]

θ = θ − η∇θℓ(x
j
i , y;θ)) ,

(2)

where xj
i means the adversarial examples generated for the i-th

instance xi at the j-th epoch. ATTA shows comparable robust
accuracy with FGSM-RS. SLAT [34] perturbs both inputs and
the latents simultaneously with FGSM, ensuring more reliable
performance.

As mentioned above, these single-step methods suffer from
catastrophic overfitting, meaning the robustness against PGD
attack suddenly drops to nearly 0% while the robust accuracy
against FGSM attack rapidly increases. In order to prevent
catastrophic overfitting, FGSM-GA [14] adds a regularizer that
aligns the direction of the input gradient. SSAT [15] studies the
phenomenon from of the perspective of loss landscape, finding
that catastrophic overfitting is a result of highly distorted loss
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surface. It proposes a new algorithm to resolve catastrophic
overfitting by checking the loss value along the direction of
the gradient. However, both algorithms require much more
computation than FGSM-RS [12] and ATTA [13]. Compared
with these works, we study catastrophic overfitting from
the perspective of training instances and show that using
adaptive step sizes in single-step methods prevents catastrophic
overfitting. Our method achieves better performance with
negligible computational overhead.

Appropriate initialization of fast adversarial training (AT) can
effectively mitigate catastrophic overfitting, as demonstrated
in the studies of FGSM-SDI [33] and FGSM-PGI [35]. These
methods complement the adaptive step size studied in our paper
and can be synergistically combined with ATAS to further
enhance the performance of fast AT. In addition, NuAT [36]
adds nuclear norm in the fast AT. SubAT [32] studies the
relationship between parameter gradient norm and catastrophic
overfitting.

Adaptive step sizes have been widely used in training neural
networks such as AdaGrad [37], RMSProp [38] and ADAM
[39]–[41]. However, our motivation is different, and to the best
of our knowledge, we are the first to introduce the adaptive
step size in fast AT.

Several related studies explore adaptive adversarial budget
techniques [23], [42]–[44] aimed at enhancing the robustness
and trade-off capabilities of AT. However, these papers targets
at enhancing the robustness of standard adversarial training
instead of acclerating adversarial training algorithms. Besides,
some of these methods [43] may employ complex algorithms
to determine the adversarial boundary, making it challenging
for them to be efficiently applied in fast AT scenarios.

III. MOTIVATION

Catastrophic overfitting is interpreted as a result of highly
distorted loss landscapes of the input [15]. For example, FGSM-
RS [12] uses large step sizes in the inner maximization to
generate adversarial examples. It may only minimize the
classification loss near the boundary of the adversarial budget,
while the loss inside the adversarial budget may increase,
leading to a highly distorted loss landscape. Figure 1 gives an
illustration.

Recalling that different inputs have different loss landscapes,
they may result in different probabilities of causing catastrophic
overfitting. Instances with large gradient norms are more
sensitive to adversarial noise. Thus, the network may simply
minimize the loss on the FGSM-perturbed examples near the
boundary instead of the whole space within the adversarial
budget. This leads to highly distorted loss landscapes and
catastrophic overfitting. The following experiments verify our
hypothesis of catastrophic overfitting in FGSM-RS and ATTA.
Metrics of Input Gradient Norm. To verify the hypothesis
that instances with large gradient norms cause catastrophic
overfitting, we divide the training instances into different
subsets according to their gradient norms. Following the
grouping method in [45], we also average the gradient norm
across the training process to reduce the variance. Formally
speaking, we perform FGSM-RS and ATTA to train a ResNet-
18 (RN-18) on CIFAR10 for N = 30 epochs with ε =
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Fig. 2: The loss surface of the subsets D1
1 and D10

10 . We average
the loss of the instances from each subset. v1 is the direction
of adversarial noise and v2 is a random direction. Figures from
left to right plot the loss surface as the training step increases
and each column of (a) and (b) corresponds to the same step
of FGSM-RS.

8/255 and step size α = 10/255. Catastrophic overfitting
does not happen in this case. The average gradient norm
GN(xi) = 1

N

∑N
j=1 ∥∇x̃j

i
ℓ(x̃j

i , yi;θ)∥2 , where x̃j
i is the

initialization of xi at the j-th epoch. For FGSM-RS, x̃j
i adds

random perturbation to xi. And for ATTA, x̃j
i is the adversarial

perturbation of xi at the (j−1)-th epoch. We sort xi according
to GN(xi) and define rank(xi) = 1

n

∑n
j=1 1(GN(xj) <

GN(xi)) as the fraction of instances with smaller average
gradient norm than xi. We divide the subsets according to
rank(xk): Dj

i = {xk| 10(i−1)
n ≤ rank(xk) < 10j

n }. The
classes of each subset are balanced. The maximum and
minimum proportion of one class in all subsets is 10.86%
and 8.98% in CIFAR10. In the supplementary materials, we
present a comprehensive characterization of the subset splits,
demonstrating their consistency across various seeds and step
sizes.
Loss Landscape. We train a new RN-18 using FGSM-RS
and enlarge the step size to α = 14/255 to cause catastrophic
overfitting. Figure 2 shows the loss surface of the subsets
with the smallest (D1

1) and the largest gradient norm (D10
10)

when the catastrophic overfitting happens. D10
10 first exhibits

the catastrophic overfitting, where the loss surface of the input
gets highly distorted and the loss function reaches its highest
value in the middle of the adversarial budget. By contrast, the
loss surface of D1

1 is much less distorted. Figure 2 infers that
the subsets with large gradient norm are more likely to suffer
from catastrophic overfitting.
Training with Different Subsets. We perform FGSM-RS
and ATTA on different subsets of CIFAR10 with different
adversarial budgets ε and step size α to show that fitting
examples with larger gradient norms is more likely to cause
catastrophic overfitting. We train the RN-18 on instances with
small gradient norm D2

1 , D3
1 , D4

1 and instances with large
gradient norm D10

7 , D10
8 , D10

9 . While different subsets contain
different numbers of instances, we keep the number of training
iterations the same for a fair comparison. In Figure 3, we show
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Fig. 3: The robust training accuracy curve of FGSM-RS (top) and ATTA (bottom) trained on different subsets of CIFAR10. The
adversarial budgets and the step sizes are shown on top of each figure. The sudden decrease in accuracy indicates catastrophic
overfitting. The shadow represents the standard deviation of accuracy calculated across five experimental runs. The plots with
more different values of adversarial budgets and step sizes are provided in the supplementary materials.

the robust accuracy of the whole training set under PGD-10.
For ε = 8/255 with α = 10/255, the models trained with
all subsets do not exhibit catastrophic overfitting. However,
as the step size α increases, subsets with large norms first
exhibit catastrophic overfitting, while catastrophic overfitting
is less likely to occur in the model trained with the subsets
of small gradient norm. Figure 3 indicates 1) for each subset,
catastrophic overfitting is more likely to occur when increasing
the step size; 2) for a fixed step size, catastrophic overfitting
is less likely to happen for subsets with small gradient norms.

IV. PROPOSED METHOD

From our analysis in Section III, the step size of the inner
maximization plays an important role in the performance of the
single step methods. Overly large step size draws all perturbed
noise near the boundary, causing catastrophic overfitting and
thus the robust accuracy under PGD decreases to zero. However,
we cannot simply reduce the step size. As shown in Figure 4,
increasing step size can strengthen the adversarial attack and
improves the robust accuracy. To strengthen the attack as much
as possible as well as avoid catastrophic overfitting, we advocate
utilizing the instance-wise step-size. The analysis in Section III
reveals that we should use small step sizes for instances with
large gradient norms to prevent catastrophic overfitting, and
large step sizes for instances with small gradient norms to
strengthen the attack. Thus, we propose to use the moving
average of the gradient norm

vji = βvj−1
i + (1− β)∥∇x̃i

ℓ(x̃i, yi;θ)∥22 , (3)

to adjust the step size αj
i for the xi at the j-th epoch. Here, x̃i is

the initialization of xi and β is the momentum factor stabilizing
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Fig. 4: (a) The loss gap of training instances between PGD10
and FGSM-RS ℓ(xPGD, y)− ℓ(xFGSM-RS, y) with different step
sizes for a FGSM-RS trained robust model; (b) The test robust
accuracy of the models trained by FGSM-RS with different step
sizes. (c) Similar results to (a) and (b) with training methods
replaced by ATTA.

the step size. The step size αj
i is inversely proportional to vji :

αj
i = γ/(c+

√
vji ) , (4)
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Fig. 5: (a) The robust accuracy against PGD10 attack of
WideResNet-28-10 trained with FGSM-RS and FGSM-RS
with adaptive step size, respectively. The average step size
for the adaptive step size methods is 10.8/255. (b) The robust
accuracy against PGD10 attack of WideResNet-28-10 trained
with ATTA and ATAS, respectively. The average step size for
ATAS is 9.3/255. Even if the average step sizes of adaptive
methods are larger than FGSM-RS and ATTA (α = 8/255),
catastrophic overfitting does not occur in ATAS.

where γ is a pre-defined learning rate and c is a constant
preventing αj

i from being too large.
We conduct preliminary experiments to incorporate the adap-

tive step size αj
i with FGSM-RS, which randomly initializes the

perturbation at each inner maximization step. The comparison
of FGSM-RS and FGSM-RS with adaptive step size is shown
in Figure 5a. It can be observed that the catastrophic overfitting
does not occur with adaptive step size. In addition, the average
step size of the adaptive step size method is 10.8/255 for
FGSM-RS, which is even larger than the fixed step size of
8/255, leading to a stronger attack and better adversarial
robustness.

In addition, for the inner maximization, the random initializa-
tion in FGSM-RS may limit the magnitude of perturbations for
instances with small step sizes, weakening the attack strength.
In order to make the whole space within the adversarial budget
reachable, we further consider the previous initialization [13],
which utilizes the transferability of adversarial examples and
uses the adversarial perturbation obtained in the previous epoch
as the initialization for the current iteration. Combined with the
previous initialization, ATAS does not need large αj

i to reach
the whole ℓp norm ball. For each instance, we use adaptive

Algorithm 1 ATAS

Input: Training set D, The model fθ with loss function ℓ,
Adversarial budget ε

Output: Optimized model fθ∗

1: v0i = 0 for i = 1, · · · , n
2: x0

i = xi + Uniform(−ε, ε) for i = 1, · · · , n
3: for j = 1 to N do
4: for xi, yi ∈ D do
5: vji = βvj−1

i + (1− β)∥∇xj−1
i

ℓ(xj−1
i , yi;θ)∥22

6: αj
i = γ/(c+

√
vji )

7: xj
i = ΠBp(xi,ε)[x

j−1
i +αj

i · sgn(∇xj−1
i

ℓ(xj−1
i , y;θ))]

8: θ = θ − η∇θℓ(x
j
i , y;θ))

9: end for
10: end for

step size αj
i and perform the following inner maximization to

obtain the adversarial examples:

xj
i = ΠBp(xi,ε)[x

j−1
i + αj

i · sgn(∇xj−1
i

ℓ(xj−1
i , yi;θ))], (5)

where xj
i is the adversarial example at the j-th epoch. Then

the parameter θ is updated with xj
i

θ = θ − η∇θℓ(x
j
i , yi;θ) . (6)

The detailed algorithm of ATAS is shown in Algorithm 1.
Figure 5b shows the comparisons of ATTA [13] and ATAS,
where ATAS does not suffer from catastrophic overfitting.
In contrast to previous methods [14], [15] that needs large
computational overhead to resolve the problem of catastrophic
overfitting, the overhead of ATAS is negligible, since the input
gradient ∇xj−1

i
ℓ(xj−1

i , yi;θ) is already calculated in the attack
step in Equation (5). Thus, calculating the pre-conditioner vji
and the step size αj

i does not need additional forward-backward
passes of the network. The training time of ATAS is almost
the same as ATTA [13] and FGSM-RS [12].

A. Theoretical Analysis of ATAS.

We analyze the convergence of ATAS with L∞ adversarial
budget. The proof is deferred to the supplementary material.
Given the objective function

ϕ(θ,x) =
1

n

n∑
i=1

ℓ(xi, yi;θ) , (7)

the minimax problem can be formulated as follows:

min
θ

max
x∗=[x∗

1 ,x
∗
2 ,··· ,x∗

n]∈B∞(x,ε)
ϕ(θ,x∗) , (8)

where x∗ is the optimal adversarial example depending on θ.
We consider the minimax optimization in convex-concave and
smooth settings. And the loss function ℓ satisfies the following
assumptions.
Assumption IV.1. The training loss function ℓ satisfies the
following constraints:
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1. ℓ in convex and Lθ-smooth in θ; θ and the gradient of θ
are bounded in the L2 norm balls

∥θ − θ∗∥2 ≤ Dθ,2,
1

n

n∑
i=1

∥∇θℓ(x
′
i, yi;θ)∥22,≤ G2

θ,2 ,

where θ∗ = argminθ maxx∗∈B∞(x,ε) ϕ(θ,x
∗).

2. ℓ in concave and Lx-smooth in each xi. xi ∈ Rd is bounded
in an L∞ norm ball with Dx,∞ = 2ε. For any x and x′,
∥x − x′∥∞ ≤ Dx,∞, and the gradients of the inputs also
satisfy

∥∇x′
i
ℓ(x′

i, yi;θ)∥22 ≤ G2
xi,2,

n∑
i=1

∥∇x′
i
ℓ(x′

i, yi;θ)∥22 ≤ G2
x,2

We average the trajectory of T -steps θ̄T =
∑T

t=1 θt

T and

x̄T =
∑T

t=1 xt+1

T to get the near-optimal points. It is a
standard technique for analyzing stochastic gradient meth-
ods [37]. The convergence gap maxx∗∈B∞(x,ε) ϕ(θ̄

T ,x∗) −
maxx∗∈B∞(x,ε) ϕ(θ

∗,x∗) is upper bounded by the regret R(T )

R(T ) =

T∑
t=1

[ max
x∗∈B∞(x,ε)

ϕ(θt,x∗)−min
θ∗

ϕ(θ∗,xt)] . (9)

Lemma IV.1. For ℓ satisfying assumption IV.1, the objective
function ϕ defined in Equation (7)

max
x∗∈B∞(x,ε)

ϕ(θ̄T ,x∗)−min
θ∗

max
x∗∈B∞(x,ε)

ϕ(θ∗,x∗) ≤ R(T )

T

Adaptive Stochastic Gradient Descent Block Coordinate
Ascent (A-SGDBCA). ATAS can be formulated as A-SGDBCA,
which randomly picks an instance xk at the step t, applying
stochastic gradient descent to the parameter θ and adaptive
block coordinate ascent to the input x. Unlike SGDA [28],
where all dimensions of x get updated in each iteration,
A-SGDBCA only updates some dimensions of x. A-SGDBCA
first calculates the pre-conditioner vti as

vt+1
k =

{
βvti + (1− β)∥∇xt

i
ℓ(xt

i, yk;θ
t)∥22 i = k

vti i ̸= k

v̂t+1
i = max(v̂ti , v

t+1
i ) .

Then x, θ are optimized with

xt+1
i =

{
ΠB∞(xi,ε)[x

t
i +

ηx√
v̂t+1
i

∇xt
i
ℓ(xt

i, yi;θ
t)] i = k

xt
i i ̸= k

θt+1 = θt − ηθ∇θℓ(x
t+1
k , yk;θ

t) .

The difference between A-SGDBCA and ATAS is v̂tk. To prove
the convergence of A-SGDBCA, the pre-conditioner needs to
be non-decreasing. Otherwise, ATAS may not converge like
ADAM [41]. However, the non-convergent version of ADAM
actually works better for neural networks in practice [40].
Therefore, ATAS still uses vtk as the pre-conditioner.
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Fig. 6: (a) Histogram of Gxi,2 of a ResNet-18 trained CIFAR10

with ε = 8/255. (b) Ratio
∑n

i=1 G2
xi,2

n

/
(
∑n

i=1 Gxi,2

n )2 for
different datasets and network architectures with different ε.

Theorem IV.1 (Regret Bound for A-SGDBCA). Under Assump-
tion IV.1, with ηθ =

Dθ,2

Gθ,2

√
T

and ηx =
√
dDx,∞√

T (1−β)−1/4
, the regret

of A-SGDBCA is bounded by:

RA-SGDBCA(T ) ≤Gθ,2Dθ,2

√
T +

Dx,∞
∑n

i=1 Gxi,2

√
dT

n(1− β)1/4
+

dLxD
2
x,∞

2n2
√
1− β

Comparison with the Non-adaptive Version (SGDBCA). The
non-adaptive version of ATAS reduces to ATTA [13], which
can be formulated as the Stochastic Gradient Descent Block
Coordinate Ascent (SGDBCA):

xt+1
i =

{
ΠB∞(xi,ε)[x

t
i + ηx∇xt

i
ℓ(xt

i, yi;θ
t)] i = k

xt
i i ̸= k

θt+1 = θt − ηθ∇θℓ(x
t+1
k , yk;θ

t) ,

Theorem IV.2 (Regret Bound for SGDBCA). Under assumption
IV.1, with constant learning ηθ =

Dθ,2

Gθ,2

√
T

and ηx =
√
ndDx,∞

Gx,2

√
T

,

the regret RSGDBCA(T ) of SGDBCA is bounded by:

RSGDBCA(T ) ≤ Gθ,2Dθ,2

√
T +Gx,2Dx,∞

√
dT

n
+

dLxD
2
x,∞

2n

Theorem IV.1 and IV.2 shows that A-SGDBCA converges
faster than SGDBCA. When T is large, the third term of the
regret in both SGDBCA and A-SGDBCA is negligible. Consider
their first terms are the same, the main difference is the
regret bound about x in the second term: Gx,2Dx,∞

√
dT
n

and Dx,∞
∑n

i=1 Gxi,2

√
dT

n(1−β)1/4
. The ratio between them is

Ratio =
1

(1− β)
1
4

√∑n
i=1 G

2
xi,2

n

/
(

∑n
i=1 Gxi,2

n
)2 (10)

The Cauchy-Schwarz inequality indicates the ratio is always
larger than 1 for β = 0. The gap between A-SGDBCA and
SGDBCA gets larger when Gxi,2 has long-tailed distribution,
which demonstrates the relatively faster convergence of ATAS
than the non-adaptive counterparts. We show the empirical
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TABLE I: Accuracy and training time of different methods on CIFAR10, CIFAR100 and ImageNet. ATAS improves the robust
accuracy under various attacks including PGD10, PGD50 and AutoAttack (AA). The method “PGD10” refers to the standard
AT using PGD10 for the inner maximization. Note that, we do not have enough computational resources to perform standard
AT and SSAT on ImageNet because of computational complexity. Besides, we are unable to train the ResNet-50 on ImageNet
with FGSM-GA as its memory requirement exceeds the maximum GPU memory of our devices (i.e. NVIDIA Tesla V100).
For CIFAR10 and CIFAR100, the training time is evaluated on a single GPU. And we use two GPUs to train the models for
ImageNet. We use default step size from the original papers for the baselines so that catastrophic overfitting seldom happens in
these methods.

(a) CIFAR10 with ε = 8/255. The accuracy with ε = 12/255 and 16/255 is in the supplementary material.

Methods ResNet-18 WideResNet-28-10

Clean PGD10 PGD50 AA Time(h) Clean PGD10 PGD50 AA Time(h)
PGD10 80.13 50.59 48.94 45.97 1.23 85.00 55.51 53.53 51.27 8.49
FreeAT 78.37 40.90 39.02 36.00 0.33 84.54 46.09 43.80 41.19 2.31
YOPO 74.72 37.51 35.79 33.21 0.28 82.92 44.62 42.14 40.23 1.90
FGSM-RS 83.99 48.99 46.36 42.95 0.22 80.21 0.01 0.00 0.00 1.67
FGSM-GA 80.10 49.14 47.21 43.44 0.57 75.84 45.57 43.28 39.44 3.82
SSAT 88.83 42.31 38.99 37.06 0.61 90.40 44.04 40.40 38.82 3.53
ATTA 82.16 47.47 45.32 42.51 0.30 85.90 51.52 48.94 46.84 1.70
NuAT 76.68 49.36 48.13 45.96 0.35 79.60 52.59 51.45 47.86 1.86
SubAT 77.43 46.29 45.03 41.49 0.41 80.44 49.33 48.25 44.65 2.13
FGSM-SDI 78.15 48.79 47.52 42.04 0.48 73.58 44.84 43.79 39.40 2.51
FGSM-PGI 67.27 46.47 45.98 39.22 0.38 71.02 49.03 48.63 43.27 1.89
ATAS 81.22 50.03 48.18 45.38 0.30 85.96 53.43 51.03 48.72 1.63

(b) CIFAR100 with ε = 8/255. The accuracy with ε = 4/255 and 12/255 is in the supplementary material.

Methods ResNet-18 WideResNet-28-10

Clean PGD10 PGD50 AA Time(h) Clean PGD10 PGD50 AA Time(h)
PGD10 54.08 28.03 27.23 23.04 1.32 60.04 31.70 30.67 27.11 8.53
FreeAT 50.56 19.57 18.58 15.09 0.33 59.38 24.41 23.00 19.60 2.30
YOPO 51.55 20.65 19.17 16.05 0.29 50.35 19.44 18.36 15.43 1.92
FGSM-RS 59.35 26.40 24.29 19.73 0.21 51.83 0.00 0.00 0.00 1.60
FGSM-GA 50.61 24.48 24.07 19.42 0.57 54.29 25.86 24.56 20.74 3.80
SSAT 71.03 9.79 4.80 1.09 0.62 75.01 0.21 0.01 0.00 3.50
ATTA 57.21 25.76 24.90 21.03 0.28 63.04 28.93 27.18 24.42 1.63
NuAT 24.96 17.10 16.93 13.31 0.32 22.58 18.73 18.55 14.82 1.76
SubAT 44.16 21.81 21.37 16.95 0.45 50.11 12.67 11.19 7.08 2.18
FGSM-SDI 53.03 25.42 24.79 20.33 0.50 60.66 29.28 28.39 24.11 2.56
FGSM-PGI 40.07 21.14 20.81 16.51 0.40 49.09 7.22 3.62 0.47 1.96
ATAS 55.49 27.68 26.60 22.62 0.31 62.34 29.89 28.35 25.03 1.61

(c) ImageNet with ε = 2/255. The accuracy with ε = 4/255 is available in the supplementary material.

Methods ResNet-18 ResNet-50

Clean PGD10 PGD50 AA Time(h) Clean PGD10 PGD50 AA Time(h)
FreeAT 58.80 35.56 34.78 31.77 40.01 65.81 44.12 43.34 40.80 108.3
YOPO 47.69 28.50 28.10 25.22 48.22 55.68 33.46 32.19 29.56 111.8
FGSM-RS 55.26 37.33 36.98 33.28 43.46 67.83 46.12 45.56 43.58 115.0
FGSM-GA 37.01 24.15 24.05 19.98 182.7 / / / / /
ATTA 58.32 39.62 38.32 36.08 45.83 66.62 48.27 47.65 45.00 111.7
NuAT 51.98 21.52 19.35 16.08 46.53 55.73 24.17 21.86 19.53 114.7
SubAT 31.38 20.95 20.90 18.27 64.18 36.78 25.09 23.19 21.13 180.8
FGSM-SDI 60.07 40.23 40.13 37.16 63.21 65.21 48.14 48.04 44.42 132.6
FGSM-PGI 50.83 37.28 37.26 31.31 44.82 68.42 49.00 48.87 44.90 114.2
ATAS 61.20 40.84 39.86 37.25 45.70 69.10 49.05 48.05 46.01 120.4

histogram of Gxi,2 of a RN-18 and the ratio in Figure 6,
which demonstrates the long-tailed distribution for common
datasets.

V. EXPERIMENTS

Baselines. We compare ATAS with the SOTA fast AT algo-
rithms including FreeAT [30], YOPO [31], FGSM-RS [12],
FGSM-GA [14], SSAT [15], NuAT [24], SubAT [32], FGSM-
SDI [33], FGSM-PGI [35] and ATTA [13]. We also compare
ATAS with standard AT whose inner maximization is solved
by PGD10, providing a reference for the ideal performance.

Attack Methods. We consider three attacks: PGD10, PGD50
[7] and AutoAttack (AA) [18]. Square Attack, a black-box
attack, is included in AutoAttack to eliminate the effect of
gradient masking.

Experimental Settings. ATAS uses the techniques proposed
in ATTA [13]: the adversarial perturbations are transformed
according to the data augmentation and get reset every several
epochs. The previous initialization is stored in the GPU memory
and thus brings negligible storing latency to ATAS. We consider
adversarial attacks with the ℓ∞-norm budget. We evaluate
fast AT algorithms on CIFAR10 and CIFAR100 [16] with

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2023.3326398

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on November 05,2023 at 05:45:52 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON IMAGE PROCESSING 8

0 5000 10000
Iterations

1.75

2.50

Lo
ss

 U
nd

er
 P

GD
10

RN-18 = 8/255

0 5000 10000
Iterations

1.5

2.5

3.5

RN-18 = 12/255

0 5000 10000
Iterations

3.0

4.5
RN-18 = 16/255

0 5000 10000
Iterations

1.75

3.00
WRN-28-10 = 8/255

0 5000 10000
Iterations

2.25

3.50

WRN-28-10 = 12/255

0 5000 10000
Iterations

1.5

3.0

4.5
WRN-28-10 = 16/255

FreeAT
YOPO
FGSM-RS
FGSM-GA
ATTA
ATAS

Fig. 7: Robust training cross-entropy loss under PGD10 of CIFAR10 with different network architectures and adversarial
budgets. The curve is smoothed to clearly show the convergence.

WideResNet-28-10 (WRN-28-10) [46] and ResNet-18 (RN-18),
and on ImageNet [17] with ResNet-18 (RN-18) and ResNet-
50 (RN-50). In this study, we have adhered to the default
splits for all the datasets employed. Specifically, for CIFAR10
and CIFAR100, our training set consists of 50,000 images,
while 10,000 images are reserved for evaluation purposes. As
for ImageNet, we utilized an extensive collection of 1,281,167
training instances spanning across 1000 distinct classes, and our
testing was conducted on the 50,000 images from the validation
set. While early stopping is widely used in the standard AT
[11], the computational overhead to perform PGD attack on a
separate validation set is large. Besides, considering the small
budget of training time in fast AT, even if early stopping is
applied to terminate the training before catastrophic overfitting
occurs, the training is far from convergence, resulting in poor
performance [14]. Therefore, we follow the previous works
[12]–[14] and do not use early stopping. We set β = 0.5
and γ/c = 16/255, which is close to the adversarial budget.
And we set c = 0.01 for CIFAR10 and CIFAR100 and c =
0.1 for ImageNet. More detailed experiment settings are in
the Appendix, and additional experiments are deferred to the
supplementary materials.

A. Convergence.

Figure 7 shows the curve of the training loss
maxx∗=[x∗

1 ,··· ,x∗
n]∈B∞(x,ε) ϕ(θ,x

∗) on CIFAR10 with
different network architectures and different adversarial
budgets, where x∗ is approximated by PGD10 and the
objective function ϕ is approximated by mini-batches of
training instances at each step. ATAS achieves smaller robust
training loss at the end of training, demonstrating the faster
convergence of ATAS than ATTA and other baselines.

In Table III, we show the relationship between the Ratio
in Equation (10) and the convergence gap ℓATTA − ℓATAS and
convergence ratio ℓATTA/ℓATAS in the last epoch of training.
Here, ℓ is the loss of each method. The ratio is obtained from
Figure 6b for CIFAR10 with ResNet-18. It shows that larger
Ratio (more long-tailed distribution) leads to larger convergence
gap between ATTA and ATAS.

B. Robust Accuracy

We provide our main results in Table I, showing the robust
accuracy of CIFAR10, CIFAR100 and ImageNet, respectively.
Table II shows the robust accuracy under AutoAttack for
different adversarial budgets.

CIFAR10 and CIFAR100. As shown in Table Ia, The robust
accuracy of FreeAT and YOPO is much lower than the
other methods. While FGSM-RS maintains non-trivial robust
accuracy when using RN-18, it suffers from catastrophic
overfitting when using large networks such as WRN-28-10.
The regularizer in FGSM-GA prevents catastrophic overfitting.
However, it may over-regularize the network so that the clean
accuracy and the robust accuracy decrease on WRN-28-10. In
addition, the regularizer also brings computational overhead:
FGSM-GA needs nearly double the training time compared
with other methods. ATAS achieves the best robust accuracy
among all fast AT algorithms while keeping the training time
nearly the same. Furthermore, for small networks like RN-
18, the performance of ATAS is on par with standard AT
(PGD10) but needs only one-fifth of the training time. Despite
incurring a lower computational overhead compared to FGSM-
SDI, ATAS demonstrates superior robust accuracy in 13 out
of the 16 experiments as shown in Table II. Notably, ATAS
exhibits superior robustness in the case of large networks
such as WideResNet, which achieve higher robust accuracy
than smaller networks. Table Ib shows the robust accuracy
on CIFAR100 and ATAS also outperforms other algorithms.
Catastrophic overfitting also happens in SSAT even if the losses
of inner points are checked.
ImageNet. ATTA and ATAS need to memorize the adversarial
noise for the whole training set. Since frequently loading and
storing from the disks significantly lowers the training speed,
all perturbations should be stored in the memory. Thus, we
utilize the local property of the adversarial examples [47] and
only store the interpolated perturbation in the memory. We
resize the perturbations from 224× 224 to 32× 32 for storage
and up-sample it back when used as the initialization for the
next epoch. The detailed algorithm is available in the Appendix.
Table Ic shows the robust accuracy on ImageNet on ε = 2/255.
Although both FGSM-SDI and FGSM-PGI achieve higher
robust accuracy for PGD50, it is important to note that ATAS
demonstrates higher robust accuracy when subjected to the
strongest AutoAttack. As the robustness should calculated based
on the worst-case accuracy, this result showcases the superior
true robustness of ATAS compared to all the baseline methods.
FGSM-GA needs the calculate the second-order gradient of
the parameters, which needs a huge amount of GPU memory.
Thus, we could not train a big network such as ResNet-50 on
ImageNet.
Robust accuracy at different adversarial budgets. Table II
shows the robust accuracy of fast AT algorithms under
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TABLE II: Robust Accuracy under AutoAttack in CIFAR10, CIFAR100 and ImageNet.

(a) Robust Accuracy under AutoAttack for small models.

Methods CIFAR10 ResNet18 CIFAR100 ResNet18 ImageNet ResNet18

ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 2/255 ε = 4/255
PGD10 45.97 32.99 23.34 37.75 23.04 15.41 / /
FreeAT 36.00 19.95 10.04 28.26 15.09 8.33 31.77 15.90
YOPO 33.21 17.16 8.66 31.45 16.05 7.41 25.22 10.30
FGSM-RS 42.95 0.00 0.00 36.35 19.73 0.00 33.28 21.11
FGSM-GA 43.44 28.57 18.92 32.03 19.42 12.14 19.98 10.94
SSAT 37.06 0.03 0.00 29.81 1.09 0.09 / /
ATTA 42.51 27.85 17.02 36.03 21.03 12.97 36.08 22.47
NuAT 45.96 22.45 0.08 33.60 13.31 6.41 16.08 8.26
Sub-AT 41.49 26.01 14.48 31.85 16.95 12.43 18.27 10.76
FGSM-SDI 42.04 30.74 20.27 37.29 20.33 14.73 37.16 23.85
FGSM-PGI 39.22 25.80 16.01 29.04 16.51 10.85 31.31 19.65
ATAS 45.38 30.56 21.09 37.30 22.62 14.41 37.25 24.13

(b) Robust Accuracy under AutoAttack for large models.

Methods CIFAR10 WideResNet-28-10 CIFAR100 WideResNet-28-10 ImageNet ResNet50

ε = 8/255 ε = 12/255 ε = 16/255 ε = 4/255 ε = 8/255 ε = 12/255 ε = 2/255 ε = 4/255
PGD10 51.27 36.95 27.24 43.30 27.11 18.13 / /
FreeAT 41.19 18.98 12.53 35.52 19.60 10.64 40.80 22.40
YOPO 40.23 25.42 11.00 35.39 15.43 9.68 29.56 11.83
FGSM-RS 0.00 0.00 0.00 39.64 0.00 0.00 43.58 0.00
FGSM-GA 39.44 29.01 11.44 41.03 20.74 14.77 / /
SSAT 38.82 0.00 0.00 33.34 0.00 0.00 / /
ATTA 46.84 29.85 19.11 40.99 24.42 15.24 45.00 29.46
NuAT 47.86 0.16 0.02 37.53 14.82 5.17 19.53 9.41
Sub-AT 44.65 28.05 15.68 35.85 7.08 12.58 21.13 11.98
FGSM-SDI 39.40 30.30 20.98 41.80 24.11 15.65 44.42 30.04
FGSM-PGI 43.27 29.40 17.76 0.15 0.47 10.95 44.90 28.51
ATAS 48.72 33.58 22.58 41.32 25.03 16.27 46.01 30.07

TABLE III: Convergence gap and the ratio on CIFAR10 with
ResNet-18.

Ratio 1.4 (ε=8/255) 1.5 (ε=12/255) 1.6 (ε=16/255)
ℓATTA − ℓATAS 0.05 0.10 0.12
ℓATTA/ℓATAS 1.03 1.11 1.13

TABLE IV: Ablation study of hyperparameters γ (left) and c
(right) on CIFAR10 and RN-18 under AA.

γ/0.01 ∗ 255 12 14 16 18 20
ε = 8/255 45.20 45.21 45.38 45.50 45.60
ε = 12/255 30.84 31.06 30.56 31.21 31.04
ε = 16/255 21.38 21.23 21.09 21.13 20.94

c 0.005 0.007 0.01 0.02 0.04
ε = 8/255 45.01 45.28 45.38 45.52 45.48
ε = 12/255 30.08 30.80 30.56 30.69 30.52
ε = 16/255 20.36 20.84 21.09 21.07 20.48

AutoAttack on different datasets, network architectures and
adversarial budgets. The robust accuracy decreases when
enlarging the adversarial budget, but ATAS always outperforms
all the baselines for different adversarial budgets, datasets and
network architectures. This demonstrates that the improvement
of ATAS is consistent.
Repeated Training of ATAS Figure 8 shows the five times
repeat of ATAS and FGSM-RS [12]. All five experiments show
that catastrophic overfitting occurs in FGSM-RS with WRN-
28-10 while ATAS is a stable method that does not suffer from
catastrophic overfitting.
Ablation Study. Table IV provides the ablation study on
hyperparameters, showing that ATAS is not sensitive to them.

Besides, as the only difference between ATAS and ATTA is
the step size, the superior performance of ATAS over ATTA
forms an ablation study to demonstrate the effectiveness of the
adaptive step size.

C. Understanding of ATAS

Landscape of ATAS. Figure 9 shows the loss landscapes of 3
random instances after training of ATAS. ATAS does not have
distorted loss landscapes, which means it does not suffer from
catastrophic overfitting.
Steps size and Gradient Norm Figure 10 plots the changes of
gradient norm and step size for ATAS after 5 epochs. We divide
CIFAR10 into 10 subsets according to their gradient norm
and plot the gradient norm and step size for D1

1 , D5
5 and D10

10 ,
which has the smallest, medium and largest input gradient norm
among 10 subsets. The figure shows that the input gradient
norm and step size is relatively stable for each subset along
the training process. It shows that the input gradient norm is
more like a property of training instances themselves, which is
consistent with our motivation. It is worth noting that the sudden
changes in gradient norm are the result of the initialization
reset used in ATTA.
Diversity of Adversarial Noises Figure 11 shows the level of
adversarial noise stored in ATAS in the last epoch. As there
exist some pixels that reach the ℓ∞ boundary for each instance,
the ℓ∞ norms of nearly all instances’ perturbations are 8/255.
However, the ℓ2 norm, which can measure whether all pixels
reach the ℓ∞ boundary, is diverse for different instances. It
shows that ATAS lowers the adversarial at different regions
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Fig. 8: Five times repeated training accuracy under PGD10
on CIFAR10 with WideResNet-28-10 and ε = 8/255 and
ε = 16/255.

Fig. 9: Loss landscape of ATAS on CIFAR10 with ResNet-18
and ε = 8/255 for 3 random instances.

within the adversarial budget instead of only forcing robustness
near the boundary.
Supplementary materials include 1) the proof of Lemma IV.1,
Theorem IV.1, and Theorem IV.2; 2) additional experimental
results including the robust accuracy under more evaluated
adversarial budgets on CIFAR10, CIFAR100, and ImageNet,
the convergence curve of ImageNet, and catastrophic overfitting
in FGSM-RS with more evaluated step sizes.

VI. CONCLUSION

In this paper, we investigate catastrophic overfitting from the
perspective of training instances and show that instances with
large gradient norms are more likely to cause catastrophic over-
fitting in the single-step fast AT methods. This finding motivates
the adaptive training method, ATAS, which applies the adaptive
step size of inner maximization inversely proportional to the
input gradient norm. We theoretically analyze the convergence
of ATAS, showing that our method converges faster than the
non-adaptive counterpart especially when the distribution of
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Fig. 10: The input gradient norm and step size for CIFAR10
with ε = 8/255 after 5 epochs on WideResNet-28-10.

Fig. 11: The histogram of the norms of the adversarial noise
for CIFAR10 with ε = 8/255 in the last epoch of ATAS.

input gradient norm is long-tailed. Extensive experiments on
CIFAR10, CIFAR100, and ImageNet with different network
architectures and adversarial budgets show that ATAS mitigates
catastrophic overfitting and achieves higher robust accuracy
under various strong attacks.

APPENDIX A
ALGORITHMS FOR ATAS IN IMAGENET

In the experiments of ATTA and ATAS, we utilize the
local property of the adversarial examples [47], [48] and
only store the interpolated perturbation in the memory. We
resize the perturbations from 224× 224 to 32× 32 for storage
in the memory and up-sample it back when using it as the
initialization for the next epoch. The detailed algorithm is
shown in Algorithm 2.

APPENDIX B
DETAILS FOR THE EXPERIMENTS

As we focus on fast AT, we reduce the training epochs like
[12], [14]. For single-step methods FGSM-RS, FGSM-GA,
ATTA and ATAS, the training lasts for 30 epochs on CIFAR10
and CIFAR100, and 90 epochs on ImageNet. For FreeAT and
YOPO, we keep the number of the forward-backward passes
the same as the single-step methods so that the total training
time of these methods will be similar. We use two kinds of
learning rate scheduler: piece-wise decay used in [13] and
cyclic learning rate used in [12], and choose the best scheduler
for each method.
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Algorithm 2 ATAS for ImageNet

Input: Training set D, The model fθ with loss function ℓ,
Adversarial budget ε, Hyperparameters γ, η, c,N

Output: Optimized model fθ∗

1: v0i = 0 for i = 1, · · · , n
2: δ0i = Uniform(−ε, ε) for i = 1, · · · , n
3: Resize δ0i to 32× 32 for i = 1, · · · , n and store them.
4: for j = 1 to N do
5: for xi, yi ∈ D do
6: Resize δj−1

i to 224× 224
7: xj−1

i = xi + δj−1
i

8: vji = βvj−1
i + (1− β)∥∇xj−1

i
ℓ(xj−1

i , yi;θ)∥22
9: αj

i = γ/(c+
√

vji )

10: xj
i = ΠBp(xi,ε)[x

j−1
i + αj

i · sgn(∇xj−1
i

ℓ(xj
i , y;θ))]

11: θ = θ − η∇θℓ(x
j
i , y;θ))

12: δji = xj
i − xi

13: Resize δji to 32× 32 and store it.
14: end for
15: end for

FreeAT. We use the default hyperparameters from [30] except
training epochs to make fair comparison between different
methods. We select the best number of batch replaying from
[30]. For CIFAR10 and CIFAR100, we use Free-8 in their
paper (Free-m means the number of batch replaying is m) and
train the network for 10 epochs. For ImageNet, we use Free-4
and train the network for 45 epochs.
YOPO. We use YOPO-5-3 in [31] as it achieves the best
performance. The training lasts for 12 epochs for CIFAR10
and CIFAR100. For ImageNet, the training lasts for 36 epochs
to make the training time similar to other methods. Other
hyperparameters are the same as the original paper [31].
FGSM-RS. We directly download the code from the official
repository1. The training lasts for 30 epochs for CIFAR10
and CIFAR100, and 90 epochs for ImageNet. Following the
hyperparameters in the paper, the step size α = 1.25ε. Other
hyperparameters are the same as their paper.
FGSM-GA. We directly download the code from the official
repository2. The training lasts for 30 epochs for CIFAR10
and CIFAR100, and 90 epochs for ImageNet. Other hyper-
parameters are the same. For the experiments not involved
in their paper, we keep them same as the experiments of
CIFAR10 except for the hyperparameter λ balancing the
gradient align regularizer, which also varies for different
datasets and adversarial budgets in their code. λ for CIFAR10
is provided in their code. For CIFAR100 and ImageNet, we
run several experiments and provide the result with best λ.
These λ are provided in Table V.
SSAT. We directly download the code from the official
repository3. The training lasts for 30 epochs for CIFAR10
and CIFAR100. And we use the check points c = 3, which
achieves the best performance in their paper.

1https://github.com/locuslab/fast adversarial
2https://github.com/tml-epfl/understanding-fast-adv-training
3https://github.com/Harry24k/catastrophic-overfitting

TABLE V: Hyperparameter λ for FGSM-GA

(a) CIFAR100

ε 4/255 8/255 12/255
λ 0.2 0.5 1.0

(b) ImageNet

ε 2/255 4/255
λ 0.005 0.01

ATTA. We follow the hyperparameters setting for ATTA-1 in
[13] and set the step size α = 4/255. We reduce the number
of training epochs to 30 for CIFAR10 and CIFAR100. And the
epochs of piece-wise learning rate are rescheduled accordingly.
The learning rate η starts at 0.1 and decays to 0.01 and 0.001
at the 24th and 28th epochs. The training of ImageNet lasts for
90 epochs and the learning rate also starts at 0.1 and decays to
0.01 and 0.001 at the 50th and 75th epochs. The weight decay
is 5× 10−4 for CIFAR10 and CIFAR100. For ImageNet, it is
1× 10−4. The batch size is 128 for all the experiments. Other
hyperparameters are the same as their paper.
NuAT and SubAT. We download the directly download the
code from the official repository. We only alter the the epochs
of training and fix other hyperparameters as the same.
FGSM-SDI and FGSM-PGI. To ensure a fair comparison
among various methods, we standardized the number of epochs
to 30 for both CIFAR10 and CIFAR100 datasets. Additionally,
for the ImageNet dataset, we set the batch size to 128, aligning
it with the same number of steps used in prior experiments.
All remaining hyperparameters were kept consistent with those
outlined in the provided code.
ATAS. The hyperparameters γ and c are used to control the
minimum and maximum step size for the training instances.
When the moving average of gradient norm vji → 0, the step
size αj

i = γ/c. We choose γ/c = 16/255, which is close to
the adversarial budget. And c should be close to the magnitude
of vji . As the gradient norm increases with the dimension of
the inputs, c should be larger for ImageNet. Therefore, we set
c = 0.01 and for CIFAR10 and CIFAR100 and we let c = 0.1
for ImageNet. Momentum of gradient norm β is set to 0.5
for all the experiments. ATAS is not sensitive to the choice
of hyperparameters. Other hyperparameters are the same as
ATTA.
Environments of the Experiments All the training time is
evaluated on a machine with Intel Xeon 8255C and NVIDIA
Tesla V100. For CIFAR10 and CIFAR100, we use a single GPU.
For ImageNet, we use two GPUs. We run all the experiments
with Pytorch 1.4.
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