

DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers

Xuyang Zhong ¹ Haochen Luo ¹ Chen Liu ¹

¹City University of Hong Kong {xuyang.zhong, chester.hc.luo}@my.cityu.edu.hk chen.liu@cityu.edu.hk

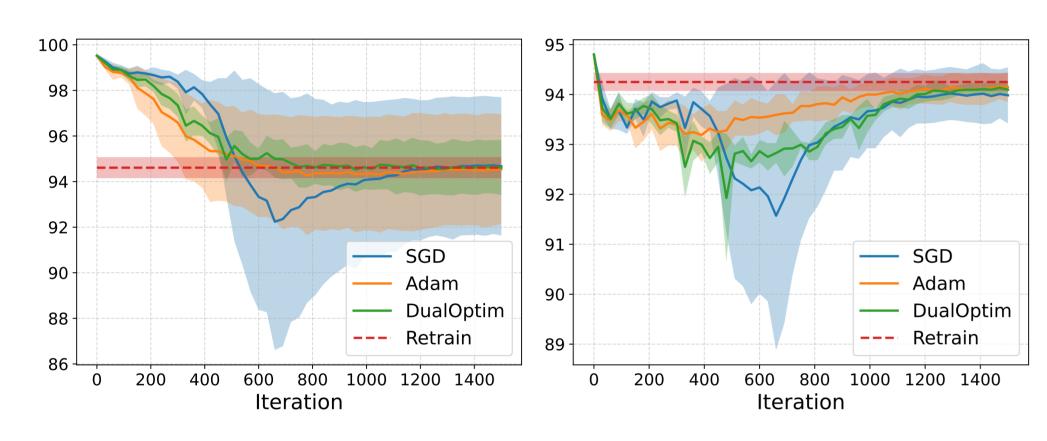
Challenges in Current MU Methods

The optimization problem of MU is defined as:

$$\min_{\theta} \mathcal{L}_f(\theta) + \mathcal{L}_r(\theta),$$
 (1)

where \mathcal{L}_f and \mathcal{L}_r are the loss functions for forget set and retain set, respectively.

Existing methods may (1) jointly minimize \mathcal{L}_f and \mathcal{L}_r ; (2) alternately minimize \mathcal{L}_f and \mathcal{L}_r . However, they suffer from either suboptimal performance or large performance variance.



(a) Forget Accuracy (FA)

Figure 1. The average performance during unlearning process. All results are obtained from unlearning 10% random subset of CIFAR-10 by SFRon on ResNet-18. The shadow indicates the standard deviation across 5 trials with different random forget sets.

Recipe 1: Adaptive Learning Rate

- Observation 1: the gradient magnitudes vary a lot during unlearning.
- Observation 2: there is a big discrepancy between the gradients on \mathcal{L}_f and the ones on \mathcal{L}_r .

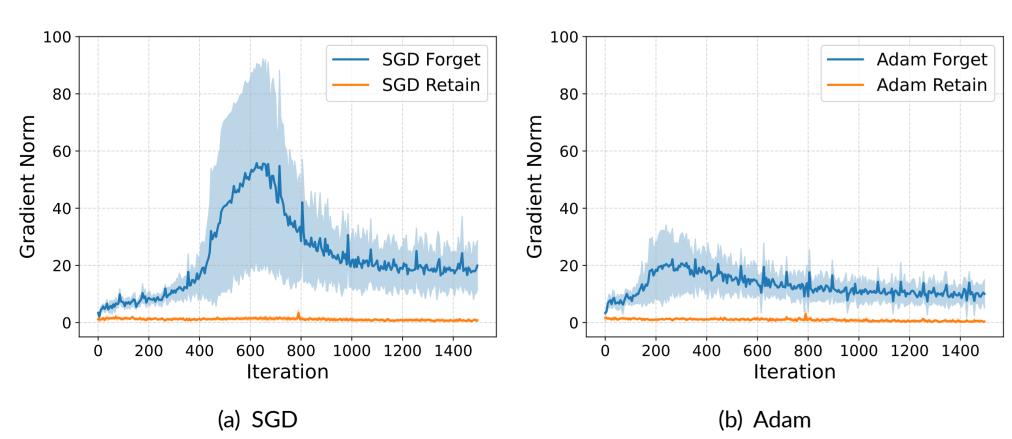


Figure 2. Gradient norms on \mathcal{L}_f and \mathcal{L}_r . Left: SGD; Right: Adam.

Both observations indicate challenges when using a unified learning rate, which is the case of optimizers like SGD. **We** need to adaptively adjust the learning rate.

Recipe 2: Decoupled Momentum

- **Observation**: the optimization dynamics on minimizing \mathcal{L}_f is different from minimizing \mathcal{L}_r . Mixing the statistics during optimizing on both sides may cause unstable performance.
- Solution: we introduce decoupled momentum states for \mathcal{L}_f and \mathcal{L}_r to further enhance stability.

$$\text{(Shared)} \begin{cases} \boldsymbol{m}_{f,t}^S &= \alpha \boldsymbol{m}_{r,t-1}^S + \widehat{\boldsymbol{g}}_{f,t}^S, & \theta_{f,t}^S = \theta_{r,t-1}^S - \eta \boldsymbol{m}_{f,t}^S \\ \boldsymbol{m}_{r,t}^S &= \alpha \boldsymbol{m}_{f,t}^S + \widehat{\boldsymbol{g}}_{r,t}^S, & \theta_{r,t}^S = \theta_{f,t}^S - \eta \boldsymbol{m}_{r,t}^S \end{cases}$$
 (2) (Decoupled)
$$\begin{cases} \boldsymbol{m}_{f,t}^D &= \alpha \boldsymbol{m}_{f,t-1}^D + \widehat{\boldsymbol{g}}_{f,t}^D, & \theta_{f,t}^D = \theta_{r,t-1}^D - \eta \boldsymbol{m}_{f,t}^D \\ \boldsymbol{m}_{r,t}^D &= \alpha \boldsymbol{m}_{r,t-1}^D + \widehat{\boldsymbol{g}}_{r,t}^D, & \theta_{r,t}^D = \theta_{f,t}^D - \eta \boldsymbol{m}_{r,t}^D \end{cases}$$

Lemma 1 (Variance of Gradients) If the loss function \mathcal{L} is Lipschitz smooth with a constant L, and $Var(\theta) \leq \sigma_{\theta}^2$, then we have $Var(\nabla_{\theta}\mathcal{L}(\theta)) \leq L^2\sigma_{\theta}^2$.

Theorem 2 (Variance Bound Comparison for Decoupled vs. Shared Momentum) For the shared and decoupled schemes using the same hyperparameters (η , α), and we use $\overline{\text{Var}}(\cdot)$ to denote the maximum variance of a variable. Then,

$$\forall t, \overline{\operatorname{Var}}(\theta_{f,t}^D) \le \overline{\operatorname{Var}}(\theta_{f,t}^S), \quad \overline{\operatorname{Var}}(\theta_{r,t}^D) \le \overline{\operatorname{Var}}(\theta_{r,t}^S),$$
 (3)

DualOptim

Based on alternating scheme, we use **two independent op-timizers** to minimize \mathcal{L}_f and \mathcal{L}_r , respectively.

Alg	gorithm 1 Machine Unlearning with Shared Optimizer / Dual Optimizers
1:	Input: Model: f_{θ} ; Forget set: \mathcal{D}_f ; Retain set: \mathcal{D}_r ; Iterations for outer loop: T_o ;
	Iterations for forgetting: T_f ; Iterations for retaining: T_r ; Step sizes: η , η_f , η_r .
2:	Optim is the same optimizer as in pretraining with step size η .
	Optim f is $Adam(\theta, \eta_f)$, Optim is the same as in pretraining with step size η_r .

for $t' = 1, ..., T_f$ do

Fetch mini-batch data from the forget set $B_f \sim \mathcal{D}_f$ Calculate the forget loss \mathcal{L}_f on B_f and get the gradient

7: Use $\underset{\bullet}{\mathsf{Optim}} / \underset{\bullet}{\mathsf{Optim}_f}$ to update $\overset{\circ}{\theta}$ 8: **end for**

9: **for** $t' = 1, ..., T_r$ **do**10: Fetch mini-batch data from the retain set $B_r \sim \mathcal{D}_r$ 11: Calculate the retain loss \mathcal{L}_r on B_r and get the gradient

2: Use $\frac{\text{Optim}}{\text{Optim}_r}$ to update θ 3: **end for**

14: end for

15: Output: Model f_{θ}

3: **for** $t = 1, ..., T_o$ **do**

Experiments

Table 1. Performance of MU methods for image classification. Experiments are conducted on 10% random subset of CIFAR-10 using ResNet-18.

Method FA		RA	TA	MIA	Gap↓	Std↓
RT	94.61 _{±0.46} (0.00)	100.00 _{±0.00} (0.00)	94.25 _{±0.18} (0.00)	76.26 _{±0.54} (0.00)	0.00	0.30
SCRUB	92.88 $_{\pm0.25}$ (1.73)	99.62 $_{\pm0.10}$ (0.38)	$93.54_{\pm0.22}$ (0.71)	$82.78_{\pm0.86}$ (6.52)	2.33	0.36
+DualOptim	$94.90_{\pm0.42}$ (0.29)	$99.52_{\pm0.09}$ (0.48)	$93.50_{\pm0.20}$ (0.75)	$78.26_{\pm0.79}$ (2.00)	0.88	0.38
SalUn	$96.99_{\pm0.31}$ (2.38)	99.40 $_{\pm0.28}$ (0.60)	$93.84_{\pm0.36}$ (0.41)	$65.76_{\pm 1.05}$ (10.50)	3.47	0.50
+DualOptim	$95.47_{\pm0.22}$ (0.86)	99.06 $_{\pm 0.94}$ (0.60)	92.47 $_{\pm0.29}$ (1.78)	$76.14_{\pm0.70}$ (0.12)	0.93	0.35
SFRon	$94.67_{\pm 3.03}$ (0.06)	99.83 $_{\pm0.13}$ (0.17)	$93.98_{\pm0.56}$ (0.27)	$77.80_{\pm 5.61}$ (1.54)	0.51	2.33
+DualOptim	$94.69_{\pm 1.13}$ (0.08)	$99.92_{\pm 0.01}$ (0.08)	$94.11_{\pm0.11}$ (0.14)	$77.77_{\pm 1.39}$ (1.51)	0.44	0.66

Table 2. Class-wise unlearning performance on ImageNet with DiT.

	ImageNet Class-wise Unlearning									
Method	Cockatoo		Golden Retriever		White Wolf		Arctic Fox		Otter	
	FA↓	FID↓	FA↓	FID↓	FA↓	FID↓	FA↓	FID↓	FA↓	FID↓
SA SalUn	0.00 91.21	348.75 18.47	0.00 46.09	298.97 25.28	0.00	45.89 15.16	0.00 45.90	393.91 408.07	29.8 87.5	321.21 19.69
SFRon + DO	0.00	13.59 17.46	0.00	17.76 14.63	0.00	23.28 14.72	0.00	16.12 14.91	0.00	16.43 14.55

Table 3. Performance comparison of different MU methods on TOFU-finetuned Phi-1.5.

	Phi-1.5									
Method	forget 1% data			fo	rget 5% da	ıta	forget 10% data			
	MC ↑	FE ↑	Avg. ↑	MC ↑	FE ↑	Avg. ↑	MC↑	FE ↑	Avg. ↑	
GA+GD	0.4934	0.4493	0.4714	0.4360	0.5084	0.4722	0.4471	0.5246	0.4859	
NPO+GD	0.2569	0.5682	0.4125	0.4940	0.4469	0.4705	0.4808	0.4382	0.4595	
ME+GD	0.4944	0.3938	0.4441	0.4559	0.4480	0.4520	0.4594	0.4564	0.4579	
+DO	0.4866	0.6913	0.5889	0.4676	0.8200	0.6438	0.5009	0.7732	0.6370	
DPO+GD	0.2410	0.6831	0.4621	0.4105	0.6334	0.5219	0.3517	0.6302	0.4910	
IDK+AP	0.4403	0.5723	0.5063	0.4800	0.5112	0.4956	0.4614	0.6003	0.5308	
+DO	0.4221	0.7037	0.5629	0.4633	0.6974	0.5804	0.4422	0.7193	0.5807	

Takeaway Messages

- 1. We introduce **DualOptim**, featuring an adaptive learning rate and decoupled momentum, to empower MU methods.
- 2. **Empirical and theoretical analyses** demonstrates DualOptim's contribution to improving unlearning performance and stability.
- 3. Comprehensive experiments are conducted across diverse scenarios, e.g., image classification, image generation, and LLMs.

