

Data Selection Matters: Towards Robust Instruction Tuning of Large Multimodal Models

Xu Yang

Chen Liu*

Ying Wei*

City University of Hong Kong

City University of Hong Kong

Zhejiang University

Outline

Background

Related Work

Motivation

Proposed Methods

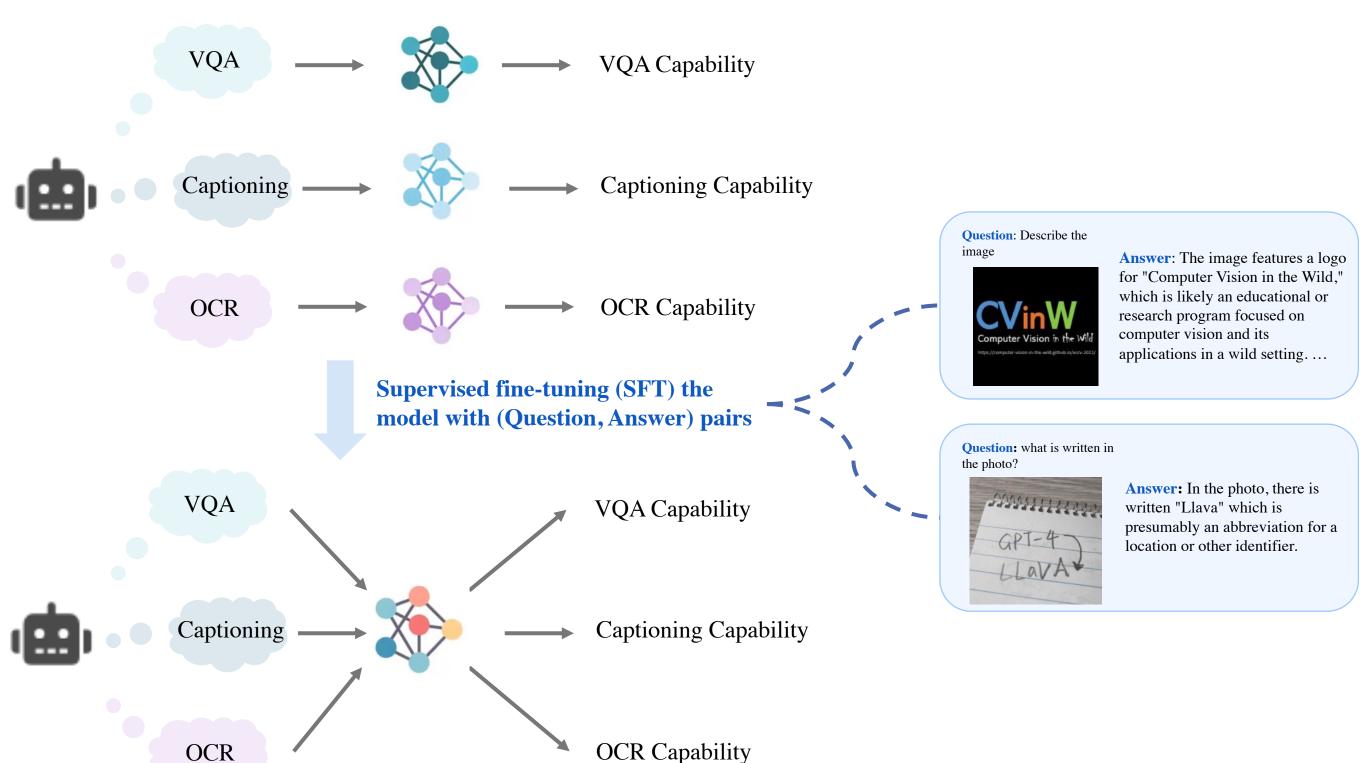
Framework

Experiments

Analysis

Visual Instruction Tuning for Aligning LMMs

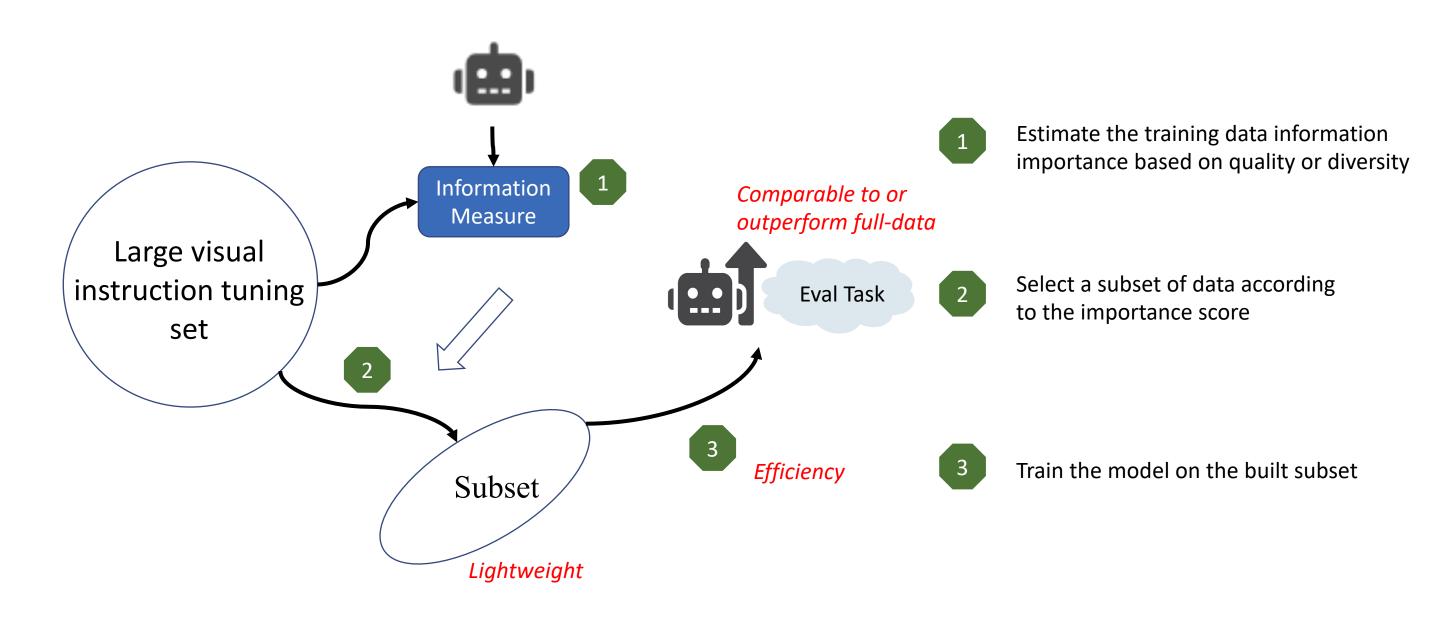
Background


Related Work Motivation

Proposed Methods

Experiments
Analysis

Framework


➤ Visual instruction tuning refers to enable an LMM to *understand and act upon visual instructions*

Background Related Work Motivation Proposed Methods Experiments

Analysis

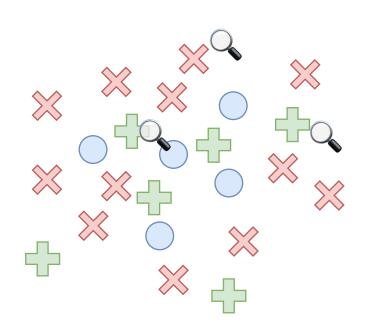
Definition & Goal of Data Selection

Background

Related Work

Motivation

Proposed Methods


Analysis

Framework

Experiments

Main Categories

	Ir	nformation Prox	ху	Obje	ective
Methods	Score-based	Feature- based	Gradient- based	Quality	Diversity
EL2N (Paul et al., 2021)	✓	-	-	✓	-
Perplexity (Marion et al., 2023)	✓	-	-	✓	-
SemDeDup (Abbas et al., 2023)	-	✓	-	-	✓
COINCIDE (Lee et al., 2024)	-	✓	-	-	✓
LESS (Xia et al., 2024)	-	-	✓	✓	-

Singe Score Metric

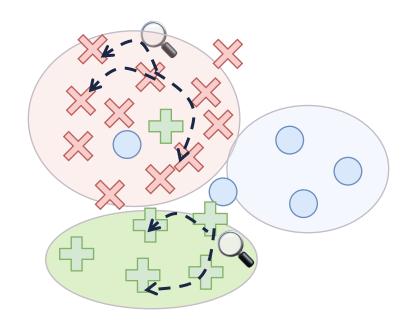
- \blacksquare Error L2-Norm score: $\| p(x) y \|_2$
- Prediction perplexity: $exp(-\mathbb{E}[\log p(x)])$
- $p(\cdot)$: reference model prediction
- y: ground truth

Easy to overlook the diversity of data!

Background

Related Work

Motivation


Proposed Methods

osed Experiments
Analysis

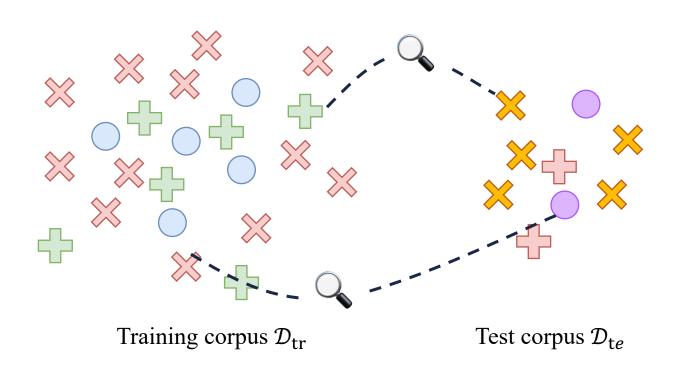
Framework

Main Categories

	Ir	nformation Prox	ху	Obje	ective
Methods	Score-based	Feature- based	Gradient- based	Quality	Diversity
EL2N (Paul et al., 2021)	✓	-	-	✓	-
Perplexity (Marion et al., 2023)	√	-	-	✓	-
SemDeDup (Abbas et al., 2023)	-	✓	-	-	✓
COINCIDE (Lee et al., 2024)	-	✓	-	-	✓
LESS (Xia et al., 2024)	-	-	✓	✓	-

Clustering

- 1. Clustering the feature embedding
- 2. Reduce redundancy
- Remove *semantically duplicated* data
- Prioritize selection from *lower* cluster density


Require a good feature representation space!

Background Related Work Motivation Proposed Methods Experiments

Analysis

Main Categories

	Iı	nformation Prox	ху	Obje	ective
Methods	Score-based	Feature- based	Gradient- based	Quality	Diversity
EL2N (Paul et al., 2021)	✓	-	-	✓	-
Perplexity (Marion et al., 2023)	✓	-	-	✓	-
SemDeDup (Abbas et al., 2023)	-	✓	-	-	✓
COINCIDE (Lee et al., 2024)	-	✓	-	-	✓
LESS (Xia et al., 2024)	-	-	√	√	-

Computationally expensive!
Requirement of Downstream Data!

Influence Function

 $\operatorname{Inf}_{\operatorname{Adam}}(\boldsymbol{z}, \boldsymbol{z}') \triangleq \sum_{i=1}^{N} \bar{\eta}_{i} \operatorname{cosine}(\nabla \ell(\boldsymbol{z}'; \boldsymbol{\theta}_{i}), \Gamma(\boldsymbol{z}, \boldsymbol{\theta}_{i}))$

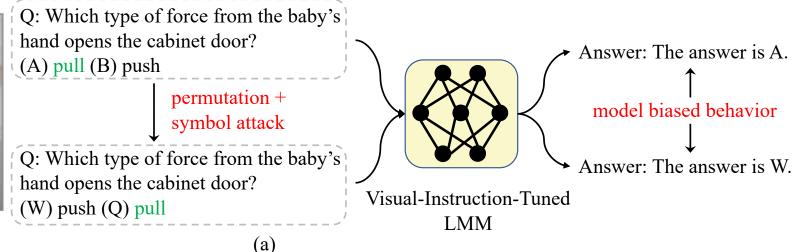
- z: training sample from \mathcal{D}_{tr}
- z': sample from target task from \mathcal{D}_{te}
- $\bar{\eta}_i$: learning rate at the i-th epoch
- N: number of epoch
- $\tilde{\Gamma}$: gradient calculated by Adam

Dataset Biases

Background

Related Work

Motivation


Proposed Methods

Experiments

Analysis

Framework

(a) Model biased behaviors **Visual Instruction Tuning Performance on ScienceQA Visual Instruction Tuning Performance on BoolQ** original training mixture original training mixture 69.76 80 80 65.7 R 68.51 robust training mixture robust training mixture Accuracy (%) Accuracy (%)
09
09 20 00, permutation symbol+permutation clean clean symbol symbol permutation symbol+permutation attack attack attack attack attack attack

This motivates us to explore alternative data selection objectives, aiming to design carefully curated training mixtures that go beyond efficiency, quality, and diversity.

- (b) Robustness on a multimodal task (left) and on a pure-text task (right) under symbol and permutation attacks
 - The results highlight a *significant decline in accuracy* under simple input perturbations, and *text-only catastrophic forgetting* further amplifies the vulnerability.
 - ➤ We hypothesis such vulnerabilities are often attributed to *dataset biases* that inadvertently encourage shortcut learning or spurious correlations.

Background

Related Work

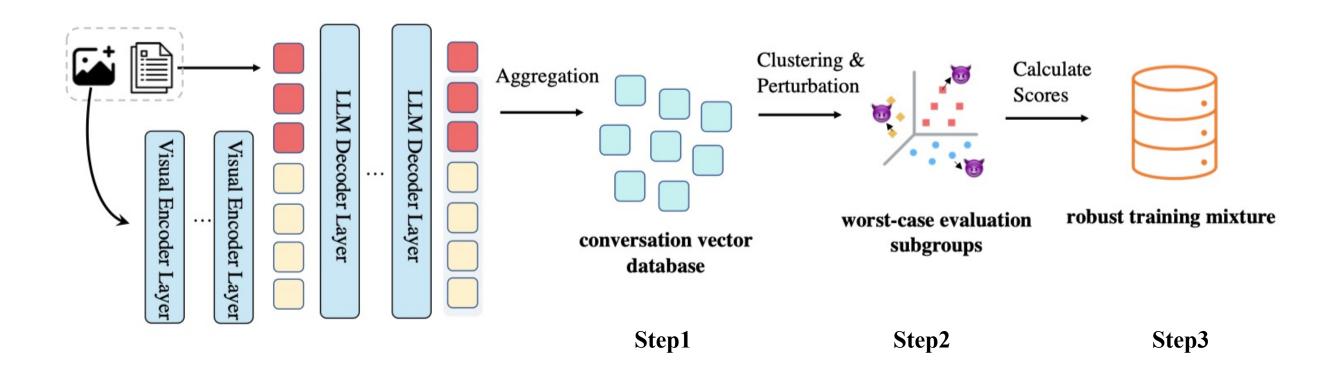
Motivation

Proposed Methods

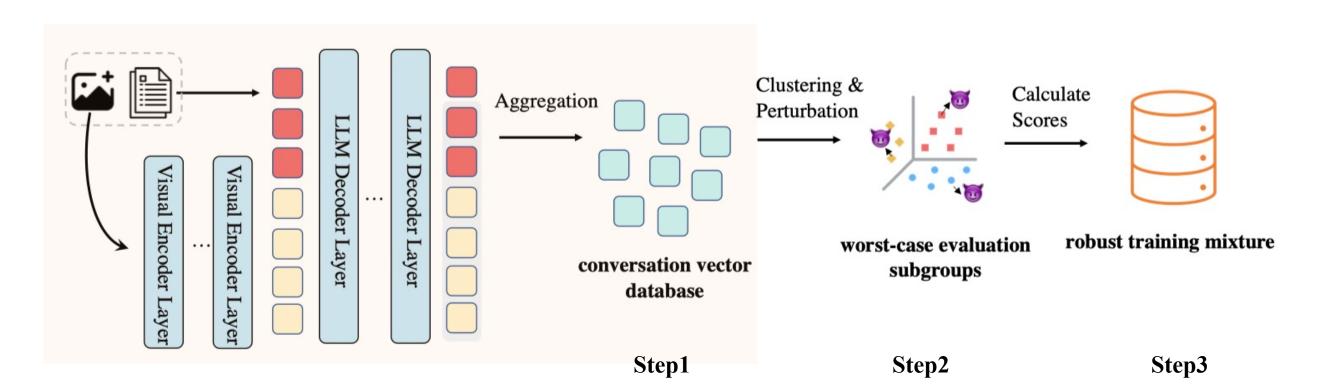
Experiments
Analysis

Framework

Table 1: Comparisons of existing visual instruction-following data selection methods with large multimodal models. *Information Proxy* indicates the representation used to compute the information measure. *Objective* means the selection goal emphasized when ranking samples. *Task-Aware Selection* denotes methods explicitly target a specific task. *Downstream-Data-free* marks no downstream-task samples are required during selection.


Method	Information Proxy	Objective @	Task-Aware Selection	Downstream-Data-free
LESS [107]	Gradient	Quality	✓	Х
ICONS [106]	Gradient	Quality	\checkmark	×
TIVE [68]	Gradient	Diversity	\checkmark	\checkmark
COINCIDE [51]	Feature	Diversity	×	\checkmark
ARDS (Ours)	Feature	Robustness	\checkmark	\checkmark

We want to propose a data selection method to:


- ✓ Curate a robust training mixture
- **✓** Gradient-free
- ✓ Do not require a well-trained reference model
- **✓** Do not require few-shot examples in downstream tasks

Background Related Work Motivation Proposed Methods Experiments

Analysis

Background
Related Work
Motivation
Proposed Methods
Experiments
Analysis

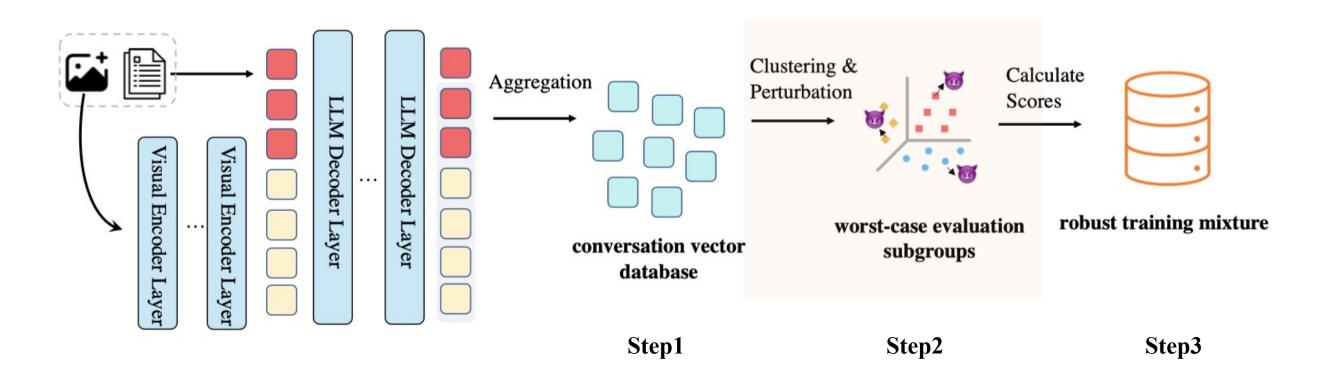
Conversation Vector Database

$$\widehat{\mathbf{H}} = \sum_{t=1}^{L-1} \mathbf{A}_{L,t} \cdot \mathbf{H}_{t}$$
$$r_{i} = \left[\mathbf{H}_{L}; \widehat{\mathbf{H}} \right]$$

- for an input with *L* tokens
- \mathbf{H}_t : token embeddings
- **A:** attention-score matrix

Introduce the *attention-score weighted mechanism* to aggregate the conversation vector from the token-level embeddings based on their relevance

Background


Related Work

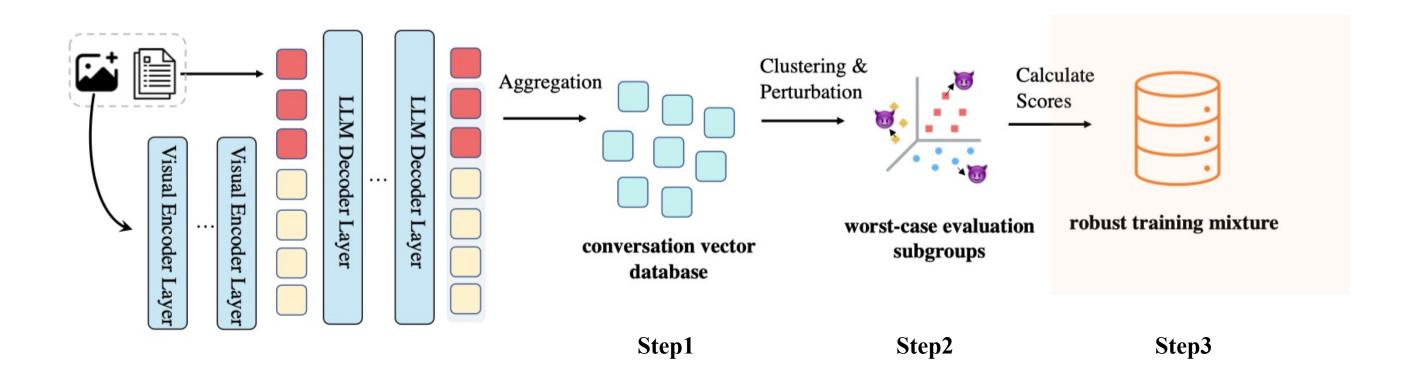
Motivation

Proposed Methods

Experiments

Analysis

Worst-case Evaluation Subgroups


$$S_m = \text{top}_B\{\mathbf{x} \in C_m : |\ell(\mathbf{x}) - \ell(\mathbf{x}')|\}$$

- C_m : m-th subgroup
- \(\ell\): cross-entropy loss
- **x**': corrupted conversation

- > Cluster M subgroups over the built conversation vector database
- ➤ Inject *task-aware perturbations* designed to improve robustness against specific attacks (i.e., symbol attack, permutation attack)
- \triangleright Retrieve top_B conversations with the *largest loss difference*

Background Related Work Motivation Proposed Methods Experiments

Analysis

Robust Training Mixture

$$d_{iS_m} = \frac{1}{B} \sum_{j \in S_m} \cos\left(r_{\text{tr}}^i; r_{S_m}^j\right)$$

$$\mathcal{I}(x_i) = \frac{\sum_{m=1}^{M} \exp(\ell_{S_m}) \cdot d_{iS_m}}{\sum_{m'=1}^{M} \exp(\ell_{S_{m'}})}$$

- cos: cosine similarity
- $\ell_{\mathcal{S}_m}$: average loss
- 1: information score

- Quantify the importance of each training sample
- Weight each similarity by the *subgroup's difficulty* using a SoftMax normalization
- > Select training conversations with the highest scores to build the final *robust training mixture*

Experiment Results

Background

Related Work

Motivation

Proposed Methods

Experiments

Analysis

Zero-shot robust accuracies of LLaVA-1.5-7B against SA: symbol attacks; PA: permutation attacks

Selection	Data			Science(QA			S	EED-Bei	nch			M	MBench	-EN			M	MBench	-CN	
Method	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
Full	100%	69.76	54.34	65.74	37.63	56.87	59.65	41.92	54.83	22.40	44.69	74.84	61.15	69.39	41.09	61.62	69.95	52.34	65.33	34.90	55.63
Random	30%	69.76	52.60	59.44	23.75	51.39	56.84	35.74	46.58	12.73	37.97	74.20	57.75	65.49	31.83	57.32	69.76	49.50	63.78	34.33	54.34
LESS-SciQA 107	30%	68.42	55.63	64.70	34.95	55.93	55.82	36.30	52.32	18.19	40.66	72.14	57.89	67.54	34.51	58.02	67.38	48.49	62.05	30.68	52.15
RHO-LOSS 76	30%	64.01	36.89	59.44	21.42	45.44	53.97	25.07	48.36	11.26	34.67	70.82	49.90	66.94	32.83	55.12	68.05	43.68	65.03	31.90	52.16
COINCIDE 511	30%	67.72	52.21	61.08	28.06	52.27	57.49	36.02	48.93	15.88	39.58	73.78	58.65	68.10	37.65	59.54	69.48	49.64	64.84	35.97	54.98
ARDS (ours)	30%	69.26	59.40	68.57	47.60	61.21	58.11	40.73	56.83	31.52	46.80	74.43	61.03	72.37	$\underline{53.22}$	65.26	70.48	53.73	68.98	46.02	<u>59.80</u>
Selection	Data			A-OKV	DA		1		MMMU	Ţ				ARC-e					BoolQ		
Method	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
Full	100%	80.52	72.31	78.34	55.02	71.54	35.06	10.15	33.65	4.84	20.92	36.76	11.11	25.25	0.83	18.48	37.77	23.64	4.53	0.09	16.50
Random	30%	78.25	66.29	70.13	35.72	62.59	34.00	9.21	35.77	5.43	21.10	38.95	12.38	33.99	1.36	21.67	55.93	29.79	37.22	3.39	31.58
LESS-SciQA 107	30%	78.60	66.72	74.41	45.94	66.42	37.43	11.81	33.53	4.49	21.82	37.86	13.57	35.18	3.03	22.41	57.58	40.86	39.36	3.27	35.27
RHO-LOSS 76	30%	76.86	55.02	71.00	37.64	60.13	34.00	5.31	32.23	3.19	18.68	38.21	5.49	34.39	1.27	19.84	43.79	8.41	37.80	0.61	22.65
COINCIDE 511	30%	77.55	65.59	72.66	44.10	64.97	37.90	9.80	33.29	3.54	21.13	38.25	11.86	36.06	2.64	22.20	55.14	29.20	41.01	5.20	32.63
ARDS (ours)	30%	78.34	71.09	77.64	64.72	72.95	37.54	12.75	34.24	6.97	22.88	39.92	16.95	37.15	8.26	25.57	58.62	46.45	46.85	17.25	42.29

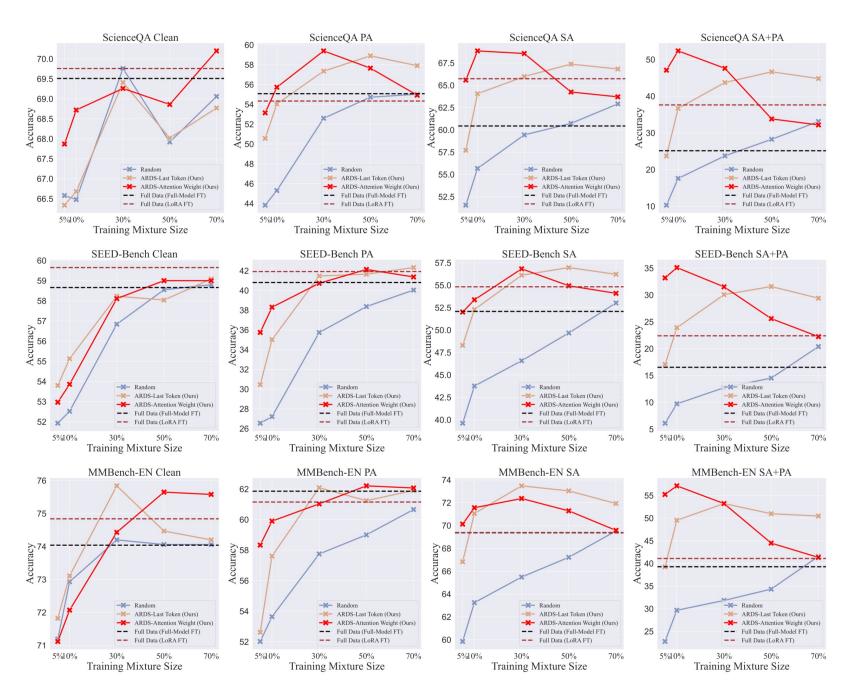
➤ With only 30% of the original data, our method ARDS consistently holds the advantage to boost robustness comparing with baseline methods

Cross-Architecture-Scale Transferability

Proxy	Target Selec	tion Data	1		ScienceQ)A			S	EED-Be	nch			М	MBench	-EN			M	MBench-	-CN	
Model	Model Met	nod Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
-	LLaVA-1.5 (13B) Fu	100%	71.05	57.21	64.20	37.58	57.51	61.12	43.85	56.19	23.08	46.06	76.02	64.06	71.73	47.79	64.90	72.88	57.36	68.68	37.77	59.17
- LLaVA-1.5 (7B)	LLaVA-1.5 (13B) Rand LLaVA-1.5 (13B) ARDS		70.25 72.58	54.69 60.19	63.76 66.14	31.33 41.99	55.01 $\underline{60.22}$	$ 59.08 \\ 59.94 $	$\frac{39.06}{43.98}$	$\frac{52.09}{57.58}$	16.17 30.76	$\frac{41.60}{48.07}$			69.74 72.95	39.50 52.60	61.22 66.55		$\frac{53.98}{56.18}$	$\frac{65.28}{67.45}$	31.74 40.06	$ 55.81 \\ 58.80 $
Proxy Model	Target Select Model Met		Clean	PA	A-OKVÇ SA	QA SA + PA	Avg.	Clean	PA	MMMU SA	SA + PA	Avg.	Clean	PA	ARC-e	SA + PA	Avg.	Clean	PA	BoolQ SA	SA + PA	Avg.
		od Percentage	Clean 82.36			The second of th		Clean 38.25	PA 14.29		50	Avg. 23.61		PA 0.53			Avg. 8.39	Clean	PA 2.94			Avg. 5.68

The robust training mixture created with a smaller model (LLaVA-1.5-7B) can be **transferred effectively** to a larger model (LLaVA-1.5-13B)

Zero-shot robust accuracies of LLaVA-1.5-7B


Selection Method	Data Percentage	Original	OOD-All	GQA OOD-Head	OOD-Tail	Avg.
Full	100%	61.94	57.51	61.17	51.55	58.04
Random COINCIDE ARDS (ours)	50% 50% 50%	60.69 61.88 62.43	55.97 56.58 58.44	60.30 60.30 62.26	48.92 50.52 52.21	56.47 57.32 58.84

➤ ARDS improves robustness against visual spurious correlation

Experiment Results

Background Related Work Motivation Proposed Methods Experiments

Analysis

- Randomly removing training samples does not necessarily improve robustness
- Our method outperform baselines across data scales
- ➤ Why 30%? **best trade-off** between data efficiency and both clean and robust performance.

Robust Accuracies (†) across different sizes of training data

Background Related Work Motivation Proposed Methods Experiments

Analysis

Conversation Vector Variants

Conversation	Data			Science	·QA			SI	EED-B	ench			M	MBenc	h-EN			A	-OKV	'QA	
Vector	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
Last Token Attention Weight		66.68 69.66					55.13 53.86					$ \begin{array}{c} 73.11 \\ 72.07 \end{array} $					76.33 77.90				67.42 $ 72.90 $
Last Token Attention Weight	$\frac{30\%}{30\%}$	69.41 69.26					58.23 58.11					75.84 74.43					$78.95 \\ 78.34$				72.88 72.95

Different Components for Worst-case Evaluation Subgroups

Worst-case Eval	uation Subgroup	Data		:	Science	QA			S	EED-B	ench			M	MBenc	h-EN		1	I	A-OKV	QA	
Perturbation	Clustering	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
X	Х																60.53	77.12	65.33	74.06	47.60	66.03
✓	×	30%	67.43	54.34	64.35	36.49	55.65	58.38	40.42	56.24	26.57	45.40	74.15	60.89	71.96	49.36	64.09	79.04	70.92	76.77	59.56	71.57
✓	/	30%	69.26	59.40	68.57	47.60	61.21	58.11	40.73	56.83	31.52	46.80	74.43	61.03	72.37	53.22	65.26	78.34	71.09	77.64	64.72	72.95

- First row: randomly sample the same number of samples
- Second row: retrieve top-MB samples from the training dataset with the largest loss difference

Different Score Aggregation Strategies

Score Aggregation	Data			Science	QA			S	EED-B	ench	
Strategy	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
Subgroup Maximum Subgroup Weighted Sum	$\frac{30\%}{30\%}$	70.05 69.26					1				$ \begin{array}{c} 46.25 \\ 46.80 \end{array} $

Transferability across large multimodal architectures

Proxy	Target	Selection	Data			Science	QA			5	SEED-B	ench			M	IMBenc	h-EN	
Model	Model	Method	Percentage	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.	Clean	PA	SA	SA + PA	Avg.
-	LLaVA-Mistral (7B)	Full	100%	73.03	60.78	68.32	42.79	61.23	59.22	39.65	56.62	28.98	46.11	77.04	62.05	73.30	47.05	64.86
-	LLaVA-Mistral (7B)	Random	30%	73.08	56.22	58.70	21.17	52.29	56.84	34.85	50.47	14.05	39.05	75.31	58.51	67.48	32.87	58.54
LLaVA-1.5 (7B)	LLaVA-Mistral (7B)	ARDS	30%	72.04	61.77	69.16	55.53	64.63	59.22	44.02	57.53	34.93	48.93	76.97	65.37	75.17	55.19	68.18
-	Qwen2.5-VL (7B)	-	-	77.05	63.71	67.08	33.71	60.38	48.61	24.72	53.09	10.60	34.25	71.31	52.48	72.14	35.16	57.77
-	Qwen2.5-VL (7B)	Random	30%	80.32	69.31	67.43	31.78	62.21	52.06	28.50	53.67	8.98	35.80	74.27	57.36	73.83	34.63	60.02
LLaVA-1.5 (7B)	Qwen2.5-VL (7B)	ARDS	30%	83.84	76.55	70.15	36.19	66.68	61.71	41.81	55.40	10.46	42.35	80.85	69.81	75.44	40.29	66.60
Proxy	Target	Selection	Data		M	IMBenc	h-CN				A-OKV	QA				MMM	IU	
Proxy Model	Target Model	Selection Method	Data Percentage	Clean	PA N	IMBenc SA	h-CN SA + PA	Avg.	Clean	PA	A-OKV SA	QA SA + PA	Avg.	Clean	PA	MMM SA	IU SA + PA	Avg.
•		Method		Clean				Avg.	Clean				Avg. 71.39	Clean	PA 12.51			Avg.
•	Model	Method	Percentage		PA	SA	SA + PA			PA	SA	SA + PA			12.51	SA	SA + PA	
•	Model LLaVA-Mistral (7B)	Method Full Random	Percentage 100%	71.63	PA 52.34 49.04	SA 66.99 57.57	SA + PA 38.51	57.36	80.00	PA 68.38 61.31	77.99 72.93	SA + PA 59.21	71.39	38.84	12.51 12.51	SA 35.54	SA + PA 6.49 3.07	23.34
Model - -	Model LLaVA-Mistral (7B) LLaVA-Mistral (7B)	Method Full Random	Percentage 100% 30%	71.63 68.33	PA 52.34 49.04	SA 66.99 57.57	38.51 13.17	57.36 47.02	80.00	PA 68.38 61.31	77.99 72.93	59.21 39.21	71.39 62.73	38.84	12.51 12.51	SA 35.54 35.30	SA + PA 6.49 3.07	23.34 22.07
Model - -	Model LLaVA-Mistral (7B) LLaVA-Mistral (7B) LLaVA-Mistral (7B)	Method Full Random	Percentage 100% 30% 30%	71.63 68.33 72.26	PA 52.34 49.04 57.84	SA 66.99 57.57 70.32	38.51 13.17 51.24	57.36 47.02 62.92	80.00 77.47 81.66	PA 68.38 61.31 72.58	77.99 72.93 80.52	59.21 39.21 69.00	71.39 62.73 75.94	38.84 37.43 39.55	12.51 12.51 16.06 26.21	SA 35.54 35.30 36.60	SA + PA 6.49 3.07 11.33	23.34 22.07 25.89

- ➤ Attention-weighted conversation vector consistently preserves more significant and useful semantics
- ➤ Effectiveness of component to build the worst-case evaluation subgroups

➤ Incorporating subgroup difficulty helps select training samples that more effectively target model-biased behaviors.

➤ The robust data mixture curated with Vicunabased LLaVA-1.5 (7B) transfers effectively to other architectures across visual instruction tuning and post-training settings.

Take Away

1. This paper introduces *robustness* as a new and important data selection objective for visual instruction tuning.

Method	Information Proxy	Objective @	Task-Aware Selection	Downstream-Data-free
LESS [107]	Gradient	Quality	√	X
ICONS [106]	Gradient	Quality	\checkmark	×
TIVE [68]	Gradient	Diversity	\checkmark	\checkmark
COINCIDE [51]	Feature	Diversity	×	\checkmark
ARDS (Ours)	Feature	Robustness	\checkmark	\checkmark

2. Our proposed ARDS is a simple yet effective gradient-free and robustness-aware data selection approach, curating a robust training mixture to enhance model robustness against underlying dataset biases.

Paper

Code

Thanks!