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Abstract

Selecting a compact subset of visual instruction–following data has emerged as
an effective way to align large multimodal models with human intentions while
avoiding the high cost of full-dataset training. Yet we observe that both full-data
training and existing state-of-the-art data selection methods tend to inherit underly-
ing dataset biases such as position bias and spurious correlations, leading to biased
model behaviors. To address this issue, we introduce ARDS, a robustness-aware
targeted visual instruction-selection framework that explicitly mitigates these weak-
nesses, sidestepping the need for access to downstream data or time-consuming
gradient computation. Specifically, we first identify the worst-case evaluation sub-
groups through visual and textual task-specific perturbations. The robust training
mixture is then constructed by prioritizing samples that are semantically closer to
these subgroups in a rich multimodal embedding space. Extensive experiments
demonstrate that ARDS substantially boosts both robustness and data efficiency for
visual instruction tuning. We also showcase that the robust mixtures produced with
a smaller model transfer effectively to larger architectures. Our code and selected
datasets that have been demonstrated transferable across models are available at
https://github.com/xyang583/ARDS.

1 Introduction

Large multimodal models (LMMs) [23, 9, 30, 123, 64, 115, 75] have garnered significant attention
due to their strong zero-shot capabilities, enabling a wide range of applications in real-world scenarios.
Visual instruction tuning [64] has proven effective in enhancing these models’ abilities to follow user
instructions and reason deeply based on visual cues. Recent efforts have demonstrated that improved
performance after visual instruction tuning can be achieved by adjusting image resolutions [59],
optimizing training pipelines [75], and scaling up the data used during pre-training and instruction
tuning [9, 23, 32, 53, 117, 63, 115].

Despite these advances, existing LMMs often experience significant performance degradation when
exposed to minor input perturbations [118, 125]. For instance, as illustrated in Figure 1, LLaVA-
1.5 [63], trained on the original dataset, suffers nearly 32% drop in accuracy on the ScienceQA
benchmark [70] when answer choices are shuffled or option letters are replaced. Such vulnerabilities
are often attributed to dataset biases that inadvertently encourage shortcut learning or spurious
correlations [31, 90, 92, 96, 25, 80]. To mitigate the biases, past works have employed post-training
strategies such as prompt-based in-context learning [81, 28, 24] or inference-time calibration [118].
However, such methods are limited by researchers’ prior and incur additional computational costs
during inference. Therefore, we hope to be able to prevent LMMs from learning biased behaviors
during visual instruction tuning.
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Figure 1: (a) Illustration of biased behaviors exhibited by LMMs. (b) Robustness of visual-instruction-
tuned LLaVA-1.5-7B on a multimodal task (left) and LLaVA-1.5-13B on a pure-text task (right)
under symbol and permutation attacks. The results highlight a significant decline in accuracy due to
underlying dataset biases, and catastrophic forgetting further amplifies the vulnerability. Our curated
robust training mixture enhances the model’s robustness.

In this paper, we propose constructing a robust training mixture to improve the robustness of visual
instruction tuning without modifying the training pipeline or increasing inference costs. The key
challenge lies in how to recognize the dataset biases and select training samples that mitigate the
vulnerabilities of LMMs. To overcome this challenge, we aim to identify specific training examples
that reduce the model’s worst-case error. Formally, we introduce a simple but effective targeted
data selection method, dubbed as ARDS, to prioritize training on data that contribute most to the
worst-case subgroups. Inspired yet different from recent targeted instruction-following data selection
methods [107], our method utilizes training sample representations rather than gradients. Technically,
we first extract the conversation vector from each training sample to build a vector database. After
that, we perform hierarchical clustering to group a holdout set in the embedding space, from which
we construct worst-case evaluation subgroups by applying perturbations to identify samples most
sensitive to biased model predictions. We then select training samples that are most similar to these
specific subgroups. Our method introduces the aforementioned innovations that distinguish it from
prior targeted data selection methods [107]: (1) ARDS fully leverages the rich hidden representation
of LMMs, avoiding computation-intensive gradient-based information measures, which renders
it more efficient than prior methods. (2) Instead of requiring few-shot examples in downstream
tasks, ARDS adopts deep clustering and perturbation strategies to maintain the merits of zero-shot
generalization capabilities. The overall procedure is summarized in Algorithm 1.

Our contribution can be summarized as follows:

• We propose a gradient-free robustness-aware data selection framework (ARDS) for enhancing the
robustness and data efficiency of visual instruction tuning.

• To represent each training sample consisting of multi-turn conversations, the conversation vector
is introduced via an attention-score weighted mechanism. The worst-case evaluation subgroups
are constructed by clustering and task-specific perturbations, which are leveraged to identify
high-quality training samples.

• The robust training mixture curated using a small model demonstrates strong cross-model transfer-
ability, significantly improving robustness when applied to training a large model.

• Extensive experiments across eleven evaluation benchmarks validate the effectiveness of our
curated robust training mixture. Notably, with only 30% of the training data, ARDS improves
robust accuracy by up to 20.62% on multimodal tasks compared to state-of-the-art data selection
methods, demonstrating that ARDS can improve both efficiency and robustness.
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2 Related work

Visual Instruction Tuning for Large Multimodal Models. Large multimodal models (LMMs)
have witnessed significant advancements and evolved into versatile general-purpose assistants [87,
102, 6, 8, 30, 23, 56, 9, 64, 63, 75, 115]. A key component of the progress is visual instruction
tuning, which aligns LMMs to interpret visual content and diverse user prompts while enabling
remarkable zero-shot generalization across vision-language tasks [123, 64, 63]. Among existing
approaches, LLaVA [64, 63, 54] is distinguished by its data efficiency: whereas Q-former-based
models require 129M [23] to 1.4B [9] image–text pairs, LLaVA achieves superior performance with
only 665K conversation-style examples [64, 63, 54]. The training examples are carefully transformed
and synthesized from established image–text corpora [61, 73, 93, 78, 97] via text-only GPT-4 [2].
The result underscores a key insight of visual instruction tuning: a high-quality instruction dataset
can endow an LMM with superior visual perception and reasoning capability, lessening the reliance
on ever-larger training corpora [33].

Data Selection for (Visual) Instruction Tuning. Instruction-following data selection methods
aim to identify a smaller, yet representative, subset of training data that can achieve comparable
or even superior performance compared to using the full dataset, demonstrating promising results
in improving data efficiency for the alignment of instruction tuning [121, 57, 62, 13, 66, 107, 39,
111, 14, 65, 50, 17, 104, 3, 103] and visual instruction tuning [105, 15, 68, 51, 106]. As shown in
Table 1, existing state-of-the-art data selection methods can be categorized based on the information
proxy, objective and dependence on targeted downstream task [86, 7]. Based on gradient-based
influence function [49, 85, 82], LESS [107] introduces a targeted instruction selection framework,
modifying the gradient inner product with cosine similarity to select high-quality subsets responsible
for downstream error reduction. Subsequent work eliminates the downstream data requirement with
self-influence score [68] and extends to the multi-task setting with majority vote of multiple single
task selection [106]. While yielding strong performance, these methods still require computationally
expensive gradient information over the full training set. In contrast, we customized targeted
instruction selection [107] for improving the robustness against specific dataset biases while avoiding
gradient-based drawbacks. Another line of work leverages feature embedding to capture data
representation and perform task-agnostic selection based on predefined scores about the model
prediction [87, 83, 74], distance to cluster centroids [100], as well as cluster transferability and
density [1, 51]. Although effective, they demand a good feature representation space. For example,
COINCIDE [51] utilizes a reference model well-trained on the full dataset. In addition, the robustness
is overlooked by previous methods, which is the focus of this study. Moreover, our perturbation-based
strategy also contributes to the clean performance. We leave the detailed comparisons in Appendix C.

Table 1: Comparisons of existing visual instruction-following data selection methods with large
multimodal models. Information Proxy indicates the representation used to compute the information
measure. Objective means the selection goal emphasized when ranking samples. Task-Aware Selection
denotes methods explicitly target a specific task. Downstream-Data-free marks no downstream-task
samples are required during selection.

Method Information Proxy Objective Task-Aware Selection Downstream-Data-free
LESS [107] Gradient Quality ✓ ✗
ICONS [106] Gradient Quality ✓ ✗
TIVE [68] Gradient Diversity ✓ ✓
COINCIDE [51] Feature Diversity ✗ ✓
ARDS (Ours) Feature Robustness ✓ ✓

Data Selection for Robustness. Recent studies have shown that deep neural networks often leverage
dataset biases for vulnerable high performance on specific tasks, such as visual spurious features [88,
31, 99], language spurious association [36], position and stereotype bias [92, 80]. There is a series of
works that leverage data selection to enhance the model’s robustness and mitigate biased behavior
before training or after training. For example, DoReMi [108] trains a proxy model using Group
DRO [89] and prioritizes training on valuable and learnable samples with higher excess loss of the
proxy model (i.e., the difference between training and validation loss). [24] proposes a causal-guided
method to recognize samples that contain biases, which are used as negative examples to suppress bias
behavior via in-context learning. Most related to our work is D3M [44], which leverages TRAK [82]
to remove specific examples by measuring gradient-based influence on the worst-group loss. However,
our gradient-free approach enables extremely efficient and robust data selection for large multimodal
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models. To the best of our knowledge, we are the first to leverage data selection for improving the
large multimodal model’s robustness against spurious correlation and position bias.

3 Preliminary

Problem Formulation. We focus on improving both data efficiency and robustness in visual
instruction tuning for large multimodal models. After tuning, the model’s zero-shot generalization
capability is evaluated on clean as well as perturbed inputs across downstream tasks. This requires
the model to consistently interpret the visual cues and follow user instructions to answer the question.
During training, the model is optimized on a training corpus D consisting of multi-turn conversations
x = {xi}Ti=1, where T is the total number of turns and xi =

(
ximg
i ,xins

i ,xans
i

)
, where ximg

i ,xins
i ,

and xans
i denote the image, instruction, and answer in each conversation xi, respectively. We

hypothesize that vulnerabilities of model behaviors, such as position bias and spurious correlation,
arise from underlying dataset biases. Thus, we address this issue via a simple but effective data
selection strategy. Formally, given a target model fϕ with parameters ϕ, our goal is to build a
robust training mixture guided by a proxy model fθ with parameters θ, where ∥θ∥ = ∥ϕ∥ or even
∥θ∥ ≪ ∥ϕ∥. Our selection objective is to minimize the worst-case error of fϕ on downstream tasks.

Visual Instruction Tuning. LLaVA [64, 63] proposes two-stage instruction-following alignment
procedure. In the vision-language alignment pretraining stage, an MLP cross-modal connector is
trained to project the visual features extracted by the CLIP encoder to the language embedding space.
After that, in the visual instruction tuning stage, the decoder layers of the large language model
are optimized in a supervised fine-tuning manner. The training objective is auto-regressive teacher
forcing with the cross-entropy loss ℓ forecasting the Q answer tokens.

ℓ = − 1

Q

Q∑
i=1

logPθ

(
xi | ximg

i ,xins
i ,xans

i ,<i

)
. (1)

Targeted Data Selection. Inspired by the influence function [37, 49], LESS [107] builds the gradient
datastore by calculating gradients of all trainable parameters for each training sample gitr = ∂ℓi

∂θ ,
where ℓi denotes the average loss of all tokens of i-th training sample using the proxy model fθ.
The influence of a training sample xi is quantified by the cosine similarity between its gradient and
the gradients of the downstream few-shot examples and the maximum similarity over all few-shot
examples as its final influence score

I (xi) = max
j

cos
(
gitr; g

j
te

)
, (2)

where gjte denotes the gradient of the j-th downstream few-shot example.

4 Methods

The schematic illustration of our adversarial representation-based data selection is demonstrated in
Figure 2. In Sec. 4.1, we present the whole of our data selection pipeline. Then we detail each step of
our proposed method in Sec. 4.2.

4.1 Overview

We aim to improve the robustness of large multimodal models after visual instruction tuning while
minimizing the required amount of training data. Two key criteria are enforced in the building
of a robust training mixture. First, the selection proxy used to determine which samples to retain
should effectively preserve the most substantial and representative information from the original
data. Selecting irrelevant or uninformative samples could even exacerbate existing dataset biases
or spurious correlations in downstream tasks. Second, the data selection algorithm should avoid
excessive computational overhead. Pursuing training efficiency with fewer samples via computation-
intensive selection strategies (e.g., relying on full-parameter gradients) might make the proposed
algorithm impractical, particularly for large multimodal models, which typically encounter each
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Figure 2: ARDS Pipeline: (1) Conversation Vector Database: ARDS begins with extracting
token embeddings for each conversation and then aggregates the substantial information within the
conversation based on attention scores. (2) Worst-case Evaluation Subgroups: The hierarchical
clustering is performed in the embedding space. The perturbation is applied to find representative
samples that are most vulnerable to model-biased behavior. (3) Quality Score Measure: The
training sample scores are measured by distance with each worst-case subgroup. Subsequently, the
highest-scoring samples are selected to curate the robust training mixture.

training sample only once during fine-tuning with one epoch [63]. To resolve these challenges, we
propose to leverage hidden representations as lightweight yet expressive proxies for measuring the
contribution of each training sample. The key intuition is to construct a robust training mixture that
prioritizes training samples semantically similar to vulnerable samples in the worst-case subgroups.
To this end, we first build a vector database by extracting the conversation vector for each training
sample and then curate worst-case evaluation subgroups to evaluate potential biases. Finally, the
large multimodal models are instruction-tuned on the constructed robust training mixture to avoid
biased behaviors and enhance robustness against identified vulnerable subpopulations.

4.2 Data Selection for Robust Visual Instruction Tuning

Conversation Vector Database. Large multimodal models are often trained on samples consisting
of multi-turn conversations. To represent each training sample, we introduce an attention-score
weighted mechanism that aggregates the conversation vector from the token-level embeddings based
on their relevance. Formally, for an input with L tokens, we first extract token embeddings H
and then evaluate the importance of previous visual and textual tokens by examining the attention
score. Specifically, in the multi-head self-attention block of a typical transformer, the attention
score of each head h is calculated by Ah = QhK

⊤
h /

√
dk, where Qh and Kh are the query and key

embeddings, respectively. dk is the head dimension. We then obtain the average attention score across
heads Ã ∈ RL×L. Let Ht ∈ R1×d, t ∈ {1, · · · , L} represent the token hidden states at the final
embedding layer of the proxy model, where L is the sequence length and d is the hidden dimension.
For each sample, the attention scores corresponding to tokens before the last token are extracted, i.e.,
AL ∈ R1×(L−1), each element represents the relative importance of a token in the sequence. The
visual and textual tokens preceding the last token are then aggregated through the weighted sum,
Ĥ =

∑L−1
t=1 AL,t ·Ht. The final conversation vector r for each sample is obtained by concatenating

the last token and the aggregated token:

r = [HL; Ĥ], (3)

where r ∈ R2×d. The design of the conversation vector leverages both the information from the
last token and the contextual relationships between tokens, as encoded by the attention mechanism,
providing a robust and rich representation for each training sample. Unlike gradient-based data
selection methods involving both forward and backward computation, our method needs only one
forward to build the vector database over the training corpus.

Worst-case Evaluation Subgroups. We first partition the training set into semantically coherent
subgroups via hierarchical clustering over the instruction embeddings. Specifically, using the es-
tablished conversation vector database, we perform spherical K-means [5] clustering to yield M
subgroups. Let Cm denote the m-th subgroup, where m ∈ {1, . . . ,M}. After clustering, we aim to
find samples that are most susceptible to the model’s biased behavior. Drawing inspiration from the
crucial role of support vectors shaping the decision boundary [21, 40], we aim to apply perturbation to
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identify vulnerable samples near the decision boundary. Concretely, we impose diffusion noise [122]
on the image, which is more easily to trigger different or erroneous predictions than other visual
corruptions [124, 122]. For the textual variations, we inject task-aware perturbations designed to
improve robustness against specific attacks. To this end, we apply dual perturbations to obtain the
corrupted conversation x′. We then retrieve topB conversations with the largest loss difference for
each cluster, i.e.,

Sm = topB {x ∈ Cm : |ℓ (x)− ℓ (x′)|} , (4)

where ℓ is the cross entropy loss as Eq.(1) and topB denotes the operation of selecting B highest-
scoring samples. We can then leverage the balanced worst-case subgroups S = {S1, · · · ,SM}
to quantify the model bias by model performance degradation. To evaluate the difficulty for each
worst-case subgroup, we use the average loss ℓSm

= 1
B

∑
j∈Sm

ℓj . Note that we only incorporate
perturbations to construct worst-case evaluation subgroups and do not apply any intervention on the
original training data.

Robust Coreset Selection. To quantify the importance of each training sample in reducing biased
behaviors, we aim to capture the extent to which training samples contribute most to improving the
worst-case performance. Unlike the previous method [44] that removes training samples leading
to high worst-case error via gradient information, we assess training sample quality based on its
distance with our built worst-case evaluation subgroups in the embedding space. Specifically, for the
i-th training sample and m-th worst-case evaluation subgroup, we first measure the cosine similarity
between their conversation vectors,

diSm
=

1

B

∑
j∈Sm

cos
(
ritr; r

j
Sm

)
. (5)

Then, we follow [44] to use softmax-weighted aggregation to obtain the information value score as
below

I (xi) =

∑M
m=1 exp (ℓSm

) · diSm∑M
m=1 exp (ℓSm

)
. (6)

Robust Training Mixture. After the quality score measure, we select training conversations with
the highest scores to build a robust training mixture Drobust. The target model fϕ is fine-tuned on
the Drobust using the training objective Eq.(1). The complete algorithm is shown in Algorithm 1 of
Appendix I. We provide the theoretical analysis in Appendix J.

5 Experiments

In this section, we first elaborate on the experimental setup in Section 5.1. Then we compare our
proposed ARDS with the latest state-of-the-art methods to evaluate the effectiveness in Section 5.2.
Additionally, we present ablation studies in Section 5.3 and conduct a broader analysis in Section 5.4.

5.1 Experimental Setup

Implementation Details. We use the original training corpus LLaVA-665K [63] for our robust
training mixture curation without introducing any external data. After data selection, visual instruction
tuning is performed with the same training configuration for all instruction selection baselines.
Following LESS [107], we use a warmed-up LLaVA-1.5 (7B) model as our proxy model for data
selection, which is trained on the subset of data with randomly sampled 1000 examples for 4
epochs. We set the number of clusters K to 70 and the subgroup budget B to 50. When building
the worst-case evaluation subgroups and measuring robustness during test time, the adversarial
permutation attack (PA) is injected by generating all possible permutations via brute-force algorithms
(i.e., k! permutations, where k is the number of options) and the symbol attack (SA) is incorporated
through replacing the standard symbols used in answer choices (e.g., A/B/C/D) with a different set
of characters (e.g., Q/W/E/R). We refer to Appendix D for a more detailed description of selection,
training, and evaluation. We conduct a comprehensive hyperparameter study in Appendix E.

Baselines. We compare ARDS with several baseline methods. Specifically, the random sampling
selection, denoted by Random, randomly selects a subset from the original training mixture. We also
compare with the gradient-based targeted selection method LESS [107], which leverages downstream
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Table 2: Zero-shot robust accuracies (%, ↑) against spurious correlation and position bias. ARDS and the
baselines select the same size of training data for the visual instruction tuning of LLaVA-1.5 (7B) [63] with
the same training configurations. SA: symbol attack. PA: permutation attack. For each evaluation task, results
surpassing Full method are highlighted in bold and the optimal result achieved among all curated training
mixtures is underlined.

Selection Data ScienceQA SEED-Bench MMBench-EN MMBench-CN
Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Full 100% 69.76 54.34 65.74 37.63 56.87 59.65 41.92 54.83 22.40 44.69 74.84 61.15 69.39 41.09 61.62 69.95 52.34 65.33 34.90 55.63

Random 30% 69.76 52.60 59.44 23.75 51.39 56.84 35.74 46.58 12.73 37.97 74.20 57.75 65.49 31.83 57.32 69.76 49.50 63.78 34.33 54.34
LESS-SciQA [107] 30% 68.42 55.63 64.70 34.95 55.93 55.82 36.30 52.32 18.19 40.66 72.14 57.89 67.54 34.51 58.02 67.38 48.49 62.05 30.68 52.15
RHO-LOSS 30% 64.01 36.89 59.44 21.42 45.44 53.97 25.07 48.36 11.26 34.67 70.82 49.90 66.94 32.83 55.12 68.05 43.68 65.03 31.90 52.16
COINCIDE [51] 30% 67.72 52.21 61.08 28.06 52.27 57.49 36.02 48.93 15.88 39.58 73.78 58.65 68.10 37.65 59.54 69.48 49.64 64.84 35.97 54.98
ARDS (ours) 30% 69.26 59.40 68.57 47.60 61.21 58.11 40.73 56.83 31.52 46.80 74.43 61.03 72.37 53.22 65.26 70.48 53.73 68.98 46.02 59.80

Selection Data A-OKVQA MMMU ARC-e BoolQ
Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Full 100% 80.52 72.31 78.34 55.02 71.54 35.06 10.15 33.65 4.84 20.92 36.76 11.11 25.25 0.83 18.48 37.77 23.64 4.53 0.09 16.50

Random 30% 78.25 66.29 70.13 35.72 62.59 34.00 9.21 35.77 5.43 21.10 38.95 12.38 33.99 1.36 21.67 55.93 29.79 37.22 3.39 31.58
LESS-SciQA [107] 30% 78.60 66.72 74.41 45.94 66.42 37.43 11.81 33.53 4.49 21.82 37.86 13.57 35.18 3.03 22.41 57.58 40.86 39.36 3.27 35.27
RHO-LOSS 30% 76.86 55.02 71.00 37.64 60.13 34.00 5.31 32.23 3.19 18.68 38.21 5.49 34.39 1.27 19.84 43.79 8.41 37.80 0.61 22.65
COINCIDE [51] 30% 77.55 65.59 72.66 44.10 64.97 37.90 9.80 33.29 3.54 21.13 38.25 11.86 36.06 2.64 22.20 55.14 29.20 41.01 5.20 32.63
ARDS (ours) 30% 78.34 71.09 77.64 64.72 72.95 37.54 12.75 34.24 6.97 22.88 39.92 16.95 37.15 8.26 25.57 58.62 46.45 46.85 17.25 42.29

labeled few-shot examples for task-specific selection. Note that we use the same proxy model to
build the gradient store in LESS and our conversation vector database. Moreover, we compare
our method with the RHO-LOSS [76] implemented by directly training the proxy model on our
holdout worst-case subgroups to score training data with the excess loss [76, 108, 62]. For the recent
state-of-the-art coreset selection method COINCIDE [51], we reproduce its best version leveraging
the TinyLLaVA-2B [120] as the proxy model, which has already been well-trained on full training
data. The implementation details of the baseline methods are elaborated in Appendix D.

5.2 Comparison with Baselines

Effectiveness of the robust training mixture. We evaluate visual instruction tuning on the mixture
with the size of 30 % training data selected by ARDS and by several baselines. As Table 2 shows,
ARDS consistently outperforms all competitors on a diverse set of downstream evaluation tasks
Concretely, ARDS yields the largest robustness gains while matching the full-data model on the clean
performance for multimodal input (e.g., MMMU, A-OKVQA), pure text input (e.g., ARC, BoolQ)
and cross-lingual tasks (e.g., MMBench-CN), underscoring its generality. Compared to representative
task-aware selector LESS [107], our method delivers higher robustness and data-efficiency without
requiring downstream few-shot examples or expensive gradient information. Moreover, recent state-
of-the-art task-agnostic method COINCIDE [51] remains susceptible to symbol and permutation
attacks. The performance of baseline RHO-LOSS [76] is less than satisfactory, which uses a proxy
model trained on the worst-case subgroups to score examples via the excess loss, probably because
fitting an optimal large multimodal model on the small held-out set is intrinsically hard. In contrast,
ARDS removes the biased samples and constructs the robust training mixture by utilizing worst-case
evaluation subgroups to pay more attention to samples near the decision boundary.

Table 3: Cross-Architecture-Scale Transferability. Our robust training mixture curated via LLaVA-1.5 (7B)
generalizes effectively to larger architectures, inducing strong robustness improvement when trained on selected
data for LLaVA-1.5(13B).

Proxy Target Selection Data ScienceQA SEED-Bench MMBench-EN MMBench-CN
Model Model Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

- LLaVA-1.5 (13B) Full 100% 71.05 57.21 64.20 37.58 57.51 61.12 43.85 56.19 23.08 46.06 76.02 64.06 71.73 47.79 64.90 72.88 57.36 68.68 37.77 59.17

- LLaVA-1.5 (13B) Random 30% 70.25 54.69 63.76 31.33 55.01 59.08 39.06 52.09 16.17 41.60 75.70 59.92 69.74 39.50 61.22 72.23 53.98 65.28 31.74 55.81
LLaVA-1.5 (7B) LLaVA-1.5 (13B) ARDS (ours) 30% 72.58 60.19 66.14 41.99 60.22 59.94 43.98 57.58 30.76 48.07 76.41 64.24 72.95 52.60 66.55 71.49 56.18 67.45 40.06 58.80

Proxy Target Selection Data A-OKVQA MMMU ARC-e BoolQ
Model Model Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

- LLaVA-1.5 (13B) Full 100% 82.36 73.28 80.70 62.88 74.80 38.25 14.29 35.77 6.14 23.61 18.36 0.53 14.58 0.09 8.39 19.66 2.94 0.09 0.01 5.68

- LLaVA-1.5 (13B) Random 30% 79.74 69.61 77.21 50.22 69.19 38.84 12.63 35.42 4.72 22.90 45.63 17.35 41.37 7.51 27.96 56.57 39.89 63.09 40.67 50.06
LLaVA-1.5 (7B) LLaVA-1.5 (13B) ARDS (ours) 30% 80.96 72.66 79.83 63.41 74.22 40.50 15.94 38.37 8.74 25.89 45.98 22.57 42.07 12.12 30.69 60.49 50.86 65.02 53.09 57.37

Scaling the model. To test cross-model-scale transfer, we fine-tune the larger LLaVA-1.5 (13B) on
the robust training mixture curated with the approximately 2x smaller proxy model LLaVA-1.5(7B).
The results in Table 3 demonstrate that ARDS effectively transfers the curated robust training mixture
from weaker models to larger, more powerful models. For example, with only 30% of the training data,
ARDS enhances the target model’s robustness against the strongest symbol plus permutation attacks
by 1.93% and 3.70% on ScienceQA and SEED-Bench, respectively. We also observe that train-test
modality mismatch further exacerbates the model’s vulnerability under input variations, especially
for larger models on text-only benchmarks, which may result from catastrophic forgetting [116, 60].
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Figure 3: Robust Accuracies (↑) across differ-
ent sizes of training mixture used for visual in-
struction tuning of LLaVA-1.5 on ScienceQA and
SEED-Bench benchmarks. Robustness is evalu-
ated through incorporating symbol and adversarial
permutation attacks.

The performance of Vicuna-v1.5-13B [119] on
BoolQ gradually degrades as the amount of vi-
sual instruction tuning data increases (see Ap-
pendix H.8). Interestingly, simple random selec-
tion alleviates this degradation, and the mixture
produced by ARDS surpasses it and delivers the
largest robustness gains. The results highlight
that our robustness-oriented selection is essen-
tial for reliably scaling LMMs.

Scaling the data. We next examine how ARDS
behaves across varying training mixture sizes
in Figure 3. Randomly discarding samples pro-
vides no robustness benefit and often incurs a
loss. In contrast, the robust mixtures selected by
ARDS deliver consistently higher robustness at
every budget. See Appendix F for more figures.

Improving robustness against visual spurious correlation. We further evaluate whether
ARDS mitigates biases that arise when particular visual attributes or textual descriptions dom-
inate the training corpus, creating spurious shortcuts [88, 31, 90, 58]. A classic example is a
model that tends to answer “yellow” for any banana, even when the image shows a green one.

Table 4: Zero-shot robust accuracies (%, ↑) against
visual spurious correlation.

Selection Data GQA
Method Percentage Original OOD-All OOD-Head OOD-Tail Avg.

Full 100% 61.94 57.51 61.17 51.55 58.04

Random 50% 60.69 55.97 60.30 48.92 56.47
COINCIDE 50% 61.88 56.58 60.30 50.52 57.32
ARDS (ours) 50% 62.43 58.44 62.26 52.21 58.84

Following the protocol of [47], we construct
the robust training mixture targeted for GQA-
OOD, which defines OOD samples as infrequent
events and creates fine-grained shifts by extract-
ing questions from the most imbalanced answer
groups of GQA [42]. We build our worst-case
subgroups using the validation split (See Ap-
pendix D for more details). As Table 4 shows, vi-
sual instruction tuning with our ARDS achieves
the highest accuracy and robustness against the subpopulation shifts on OOD tasks, surpassing both
the random-sampling baseline and COINCIDE [51], a state-of-the-art diversity-oriented selector.

5.3 Ablation Study

Effectiveness of conversation vector. We compare our attention-score-weighted conversation vector
with alternative vectorization strategies. A prevalent baseline in retrieval-augmented generation
(RAG) is the last-token embedding, which captures aggregated semantic information [113, 112].
However, the single last token often overlooks rich contextual cues from preceding turns, particularly
in multi-turn or multimodal settings. In contrast, our approach leverages the attention map to re-
weight all preceding visual and textual token embeddings according to their learned importance.
The design explicitly captures which parts of the conversation the model attends to when forming
its final prediction, thereby preserving cross-turn dependencies and text–vision interactions that
the last-token embedding fails to encode. To ensure a fair comparison, we re-implemented this
baseline to build the vector database and reran our selection pipeline. As shown in Table 5, the
attention-weighted conversation vector better preserves more significant and useful semantics and
achieves higher worst-case performance across benchmarks, demonstrating a clear advantage over
the simpler last-token representation, especially under limited training data budget.

Table 5: Ablation study results comparing conversation vector variants.

Conversation Data ScienceQA SEED-Bench MMBench-EN A-OKVQA
Vector Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Last Token 10% 66.68 54.04 64.06 36.69 55.36 55.13 35.02 52.29 23.90 41.58 73.11 57.61 71.06 49.53 62.82 76.33 64.45 74.59 54.32 67.42
Attention Weight 10% 69.66 55.88 69.21 52.35 61.78 53.86 38.30 53.38 35.11 45.16 72.07 59.90 71.56 57.13 65.16 77.90 70.04 76.94 66.72 72.90

Last Token 30% 69.41 57.36 65.99 43.73 59.12 58.23 41.47 56.12 30.07 46.47 75.84 62.09 73.48 53.22 66.15 78.95 71.18 78.08 63.32 72.88
Attention Weight 30% 69.26 59.40 68.57 47.60 61.21 58.11 40.73 56.83 31.52 46.80 74.43 61.03 72.37 53.22 65.26 78.34 71.09 77.64 64.72 72.95

The effect of worst-case evaluation subgroups. ARDS builds worst-case evaluation subgroups
through deep clustering to group semantically similar conversations, followed by dual perturbations
to identify samples near the decision boundary. To demonstrate the necessity of each component, we
conduct the ablation study by removing the components one by one in Table 6. Specifically, in the first
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row, we randomly sample the same number of samples MB as the final total size of the worst-case
subgroups, and aggregate the importance score of each training data via a sample-to-sample weighted

sum, formally given by I (xi) =
∑MB

j=1 exp(ℓj)·dij∑MB
j=1 exp(ℓj)

. For the second row, we apply Eq.(4) to directly

retrieve top-MB samples from the training dataset with the largest loss difference, and use the
sample-to-sample weighted-sum rule to obtain the importance score. The third row denotes our final
construction strategy, which first performs clustering and then retrieves top-B candidates from each
cluster via Eq.(4). The importance scores are aggregated using the sample-to-cluster weighted-sum
scheme defined in Eq.(6). Eliminating either component markedly reduces robustness, demonstrating
the benefits of clustering and perturbation strategies in discovering diverse and challenging subgroups.
Furthermore, a finer-grained ablation in Table 11 of Appendix G highlights the effectiveness of visual
and textual perturbations for the robustness gains.

Table 6: Ablation study results comparing different components for worst-case evaluation subgroups.
LLaVA-1.5 (7B) is utilized as the proxy and target model for all methods.

Worst-case Evaluation Subgroup Data ScienceQA SEED-Bench MMBench-EN A-OKVQA
Perturbation Clustering Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

✗ ✗ 30% 65.29 51.66 62.17 30.44 52.39 56.75 35.40 51.01 18.56 40.43 73.76 57.80 69.14 41.44 60.53 77.12 65.33 74.06 47.60 66.03
✓ ✗ 30% 67.43 54.34 64.35 36.49 55.65 58.38 40.42 56.24 26.57 45.40 74.15 60.89 71.96 49.36 64.09 79.04 70.92 76.77 59.56 71.57

✓ ✓ 30% 69.26 59.40 68.57 47.60 61.21 58.11 40.73 56.83 31.52 46.80 74.43 61.03 72.37 53.22 65.26 78.34 71.09 77.64 64.72 72.95

Score aggregation strategy. We conduct an ablation study comparing two score aggregation ap-
proaches in our robustness-aware selection. The Subgroup Maximum strategy follows the Equation 2
used in targeted instruction tuning [107], where the information score I(xi) is computed as the maxi-
mum cosine similarity between a training sample and any single worst-case subgroup. The Subgroup
Weighted Sum approach considers both subgroup similarity and subgroup difficulty. See Appendix G
for more details. As shown in Table 10 of Appendix G, the weighted sum strategy outperforms the
maximum-based aggregation, yielding higher robust accuracy under more challenging attack settings.
This suggests that incorporating subgroup difficulty helps select training samples that more effectively
target model-biased behaviors.

5.4 More Analysis

Table 7: Data selection clock time comparison.
All experiments are conducted on 8 Nvidia RTX
A6000 GPUs. Stage1: Warmup training of the
proxy model. Stage2: Gradient store or conver-
sation database is built. Stage3: Sample quality
measure.

Method Stage1 Stage2 Stage3
LESS [107] 8min 128h 1min

ARDS (Ours) 8min 30min 1min

Data Selection Computational Analysis. To
conduct the computational analysis, we first
compare with task-aware selection baselines
LESS [107], using the same LLaVA-1.5 (7B)
warmed up for four epochs for a fair comparison.
As shown in Table 7, LESS extracts LoRA gradi-
ents for each training sample along the discrete
training trajectory, which is computationally ex-
pensive. By contrast, ARDS encodes each con-
versation with only the final-layer embedding,
completely avoiding per-sample gradient calcu-
lations and cutting the wall-clock time by a wide margin. Furthermore, our runtime is comparable to
COINCIDE, which extracts representations from five layers in roughly 100 minutes.

The impact of LoRA parameter-efficient fine-tuning. We use Low-Rank Adaptation (LoRA) [41]
for parameter-efficient visual instruction tuning in our main experiments. We here study the impact
of this training approach on the robustness of large multimodal models. As shown in Table 12 of
Appendix H.1, we observe that LoRA tuning only 4.6% of the parameters achieves better robustness
with comparable clean performance. This outcome aligns with the findings in [16].

Generalization to More Challenging Benchmarks. We further evaluate the generalization capability
of our curated robust training mixture on several more challenging benchmarks, especially two math-
related visual reasoning benchmarks, MathVista [69] and DynaMath [126]. These two mathematical
benchmarks represent more difficult Out-of-Domain (OOD) tasks, as the original LLaVA–665K
dataset does not contain explicit mathematical training data [63] (See Appendix H.2 for more details.)
As shown in Table 13 of Appendix H.2, our curated robust training mixture consistently enhances
average performance across OOD tasks for visual instruction tuning, outperforming both full-data
training and previous state-of-the-art data selection strategies.
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Generalization to Other Large Multimodal Models. To assess the generality and effectiveness of
ARDS, we further conduct a transferability study across a range of backbone architectures beyond
the Vicuna-based LLaVA-1.5. Specifically, we apply ARDS to two representative state-of-the-art
large multimodal models, LLaVA-1.6-Mistral [45] (denoted LLaVA-Mistral) and Qwen2.5-VL-
Instruct [10] (denoted Qwen2.5-VL). We refer to Appendix H.4 for more training details. As
summarized in Table 15 of Appendix H.4, ARDS consistently enhances robustness and data efficiency
across architectures, yielding clear gains in both visual instruction tuning and post-training settings.
The results collectively demonstrate the adaptability of ARDS and can be easily applied to various
large multimodal models to achieve consistent robustness improvements.

Generalization under Unseen Attacks and Visual Corruptions. We here take a further step
to investigate the robustness and generalization of our robust training mixture. We introduce two
previously unseen symbol attacks and an additional visual corruption. Specifically, the canonical
answer labels A/B/C/D are replaced by S/N/V/F and U/I/O/P, respectively, thereby injecting novel
variations not encountered during data selection. Note that the used adversarial permutation attack is
adaptively generated for each new question by enumerating all possible permutations of the answer
options. As shown in Table 17 of Appendix H.6, ARDS consistently achieves strong robustness and
generalization even in the presence of these new, previously unseen attacks. Even when compared
with the COINCIDE+worst-case subgroup, ARDS maintains superior robust accuracy across all
scenarios, confirming that the robustness gains generalize well beyond attacks seen during data
selection. Moreover, the stronger diffusion noise is injected into the test images to simulate corrupted
visual input. The results in Table 16 of Appendix H.6 show that our ARDS maintains the highest
robust accuracy across all scenarios, confirming that our robustness gains are not fully confined to the
attacks used during selection.

Complementary with Data Augmentation. We investigated whether lightweight data-augmentation
schemes can eliminate dataset biases. To mitigate symbol-content spurious correlations and position
biases, we apply random symbol replacement and option shuffling during visual instruction tuning.
To address visual spurious correlation and subpopulation shifts, we apply AutoAugment [22] to the
training images. As shown in Table 18 of Appendix H.7, though textual-level augmentations improve
robustness against seen perturbations, they fail to generalize to unseen attacks. Furthermore, simple
image-level augmentation does not bring noticeably higher accuracy on shifted subgroups and even
degrades clean accuracy on GQA. The observations are consistent with recent findings that naive aug-
mentations often preserve the statistical properties of the original data and can inadvertently amplify
existing biases rather than mitigate them [11, 95, 79]. In contrast, combining data augmentations with
ARDS delivers the largest robustness gains, indicating our robust training mixture and augmentation
work in synergy to yield stronger debiasing and robustness improvement.

Effectiveness without Access to Full Training Data. We further evaluate ARDS in a practical
scenario where the entire training corpus is not available at once, and data arrive dynamically over
time. To investigate the influence of data volume on building worst-case evaluation subgroups, we
randomly sample 10% of the training data as the initially available subset and treat the remaining
90% as newly incoming training data. See Appendix H.9 for more details. As shown in Table 19 of
Appendix H.9, even when exposed to only one-tenth of the full corpus during subgroup construction,
ARDS∗ still achieves notable robustness gains, outperforming both LESS and COINCIDE. This
demonstrates the potential and applicability of our approach to more dynamic data selection scenarios.

6 Conclusions

In this work, we introduce a simple yet effective gradient-free robustness-aware data selection
approach for robust visual instruction tuning of large multimodal models. To enhance model
robustness against underlying dataset biases, our method first constructs a conversation vector
database and then performs deep hierarchical clustering and applies dual perturbations to build worst-
case evaluation subgroups. By identifying training data points that are most similar to samples in each
subgroup—particularly those susceptible to biased model behavior—we retrieve the highest-scoring
instances to curate the robust training mixture. Experimental results demonstrate that performing
visual instruction tuning on our mixture with only 30% of original training data achieves a large
robustness improvement and comparable clean performance compared to a full-data-trained model.
Future work includes broadening the definition of robustness beyond the current bias types and
extending data selection for more diverse and dynamic real-world applications.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We evaluate the effectiveness of our method on eight benchmarks.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Appendix A for details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See the Appendix M for details.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We elaborate our implementation details and evaluation metrics in Appendix
D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use public datasets, and we provide the dataset details in Appendix D. We
will release the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include the training details and evaluation metrics in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The variance of experimental results is smaller than the gap between different
methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: We include details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the Appendix B for details.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper for datasets used and include dataset details in
Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper studies efficient data selection for LLMs, and the methodology
designed for LLMs is significantly different from the one applied to traditional machine
learning models.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

In this paper, we present a robustness-aware visual instruction selection framework, paving a new
path for enhancing the robustness of large multimodal models. Extensive experiments demonstrate
that our approach improves robustness to symbol–content spurious correlations, positional bias, and
fine-grained visual sub-population shifts across multiple downstream tasks. Although the efficacy
of the proposed method has been confirmed, opportunities for refinement persist. One avenue
for improvement involves a more diverse investigation into the potential dataset biases and their
interaction effects. We also plan to extend the ARDS to other post-training and test-time training
scenarios where a few informative training samples are collected to align the model for diverse
real-world applications.

B Broader Impact

This work presents a novel approach to improving the robustness and data efficiency of visual
instruction tuning for large multimodal models, which can have significant implications for reducing
biases in AI systems. By mitigating the risks associated with dataset biases, our method could
contribute to more fair, transparent, and trustworthy AI applications across a variety of domains.

C More Related Work

Coreset Selection. Coreset selection attempts to extract a high-quality and most informative subset
of training data [84]. Existing coreset selection methods can be mainly categorized into geometry-
based [94, 4], uncertainty-based [20, 38], error-based [83, 101], gradient-based [77, 48], and decision
boundary-based methods [26, 110]. We refer readers to [35] for a more detailed literature compilation.
Our perturbation-based worst-case subgroup construction is closest to [110], which used adversarial
gradient ascent to find samples near the decision boundary. However, our gradient-free approach
enables efficient identification of vulnerable samples for robustness improvement.

Active Learning. Both data selection and active learning aim to identify a subset of data that yields
the best possible model, while the distinction lies in the focus on settings. Active learning defaults to
that data is unlabled and emphasizes on reducing annotation cost [43, 29, 27, 71, 55]. In contrast, data
selection methods usually have full access to all labels when selecting [7], and the goal is to improve
training efficiency [107] or robustness [44]. Our method ARDS is a data selection method with no
extra annotation required. Our focus is to boost robustness against specific dataset biases for visual
instruction tuning while avoiding computation-intensive gradient-based calculation in [107, 44].

Data Selection for Instruction Tuning. Recent instruction-following data selection methods show
promising results that carefully chosen subsets can align large language models (LLMs) as well as—or
better than—using the entire corpus, greatly improving data efficiency [121, 14, 66, 39, 62, 107, 7].
LIMA [121] was the first work to demonstrate that roughly one thousand human-curated examples
are sufficient for enabling LLM to follow instructions. Subsequent studies are proposed to use
various information measure strategies and emphasize different aspects of data while eliminating
human intervention. Some score-based methods directly utilize external closed-source models to
score quality and complexity [14, 66] or emphasize diversity [12] when ranking instruction data.
Other works introduce natural language indicators [13] or predictive uncertainty [65] for quality
estimation, utilize condition-based losses to capture difficulty [57], and compute Shapley value
to quantify sample interactions [39]. Reference-based methods require a well-trained model for
calculating metrics. For example, RHO-1 [62] utilizes the excess loss [89, 76] to selectively train on
useful and learnable tokens. Our setting is more similar to targeted instruction tuning [107], which
ranks candidate instructions by their gradient cosine similarity to a few examples from a specific
downstream task. Our work extends this line of research to curate robust training mixtures. We
select data that mitigates specific dataset bias without any gradient calculations, strengthening the
robustness of visual instruction tuning.
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D Detailed Experimental Setup

Training Datasets. We curate the robust training mixture by conducting visual instruction selection
from the original LLaVA-1.5 dataset, which contains 665K multimodal conversations [63] collected
from mixed sources, such as LLaVA-158K [64], VQAv2 [34], OKVQA [73], RefCOCO [46], and
TextCaps [97]. These conversations cover a broad spectrum of task types, including visual-question
answering, detailed image/region caption, localization and complex visual reasoning. Our mixture is
sampled directly from this corpus without altering the original data or introducing external examples.
We refer readers to LLaVA [64, 63] for a more detailed dataset description.

Evaluation Setup. Following LLaVA-1.5 [63], we assess the zero-shot generalization capability
of visual instruction tuning on eight benchmarks including ScienceQA [70], SEED-Bench [52],
MMBench [67], MMMU [114], BoolQ [18], ARC [19], A-OKVQA [93] and GQA [42]. For
MMBench, we report the accuracy without circular evaluation because we apply stronger adversarial
permutation attacks (introduced below). We inject symbol and adversarial permutation attacks as
input variations for every evaluation task to probe model robustness against dataset biases, including
symbol-content spurious correlation and position bias. The adversarial permutation attack (PA) is
incorporated by generating all possible permutations via brute-force algorithms (i.e., k! permutations,
where k is the number of options), which is cheaper than gradient-based search at small k. The
symbol attack (SA) involves a large candidate space and we simply replace canonical choice labels
(A/B/C/D) with an alternative set (Q/W/E/R), disrupting symbol–content shortcuts. Robust accuracy
is defined as the proportion of tasks that the model answers questions correctly under all perturbations.
We additionally evaluate robustness to visual shortcuts by following the GQA-OOD protocol [47],
which constructs fine-grained subpopulation shifts for assessment.

Architecture. We consider LLaVA-1.5 [63] in our main experiments which consists of a CLIP-ViT-L-
336 visual encoder (336× 336) [87], a two-layer cross-modal MLP projector and Vicuna v1.5 [119]
as the language backbone. We initialize the MLP projector with the official LLaVA pre-trained
weights and focus on the visual instruction tuning stage. Only the projector and the large language
model are updated during visual instruction tuning while keeping the CLIP encoder frozen.

Implementation Details of Data Selection. We follow LESS [107] and adopt a warmed-up LLaVA-
1.5 (7B) model as our proxy model for data selection. The warm-up stage fine-tunes the model on
1000 randomly sampled training examples for four epochs. With the warmed-up model, we build
the attention-weighted conversation-vector database on the training corpus in which each vector
is r ∈ R2×d and the hidden state dimension d of the last embedding layer is 4096. To construct
the worst-case evaluation subgroups, we first apply hierarchical clustering to conversation vectors
from different multimodal tasks [68] (e.g., image captioning, regional description, open-ended
visual question answering). We set the number of clusters K to 70 and the subgroup budget B
to 50. To identify vulnerable samples near the decision boundary in subgroups, we inject task-
specific perturbations for robustness against targeted dataset biases. Specifically, we impose diffusion
noise [122] with the step size of 300 as the visual perturbation and inject symbol and permutation
attacks to expose position bias and symbol-content shortcuts. For visual spurious correlation in
GQA-OOD, we only incorporate diffusion noise. The robust training mixture is curated by selecting
samples that contribute most to the worst-case subgroups. We then perform visual instruction tuning
on this mixture using the standard LLaVA pipeline, leaving the original data and training procedure
unchanged.

Implementation Details of Visual Instruction Tuning. We do not perform hyperparameter sweeps
of visual instruction tuning for either our method or the baselines; instead, we adopt the official
LLaVA-1.5 configurations [63] so that results under full-data training and data selection baselines are
directly comparable. The CLIP image encoder is kept frozen, whereas the language model is updated
during supervised visual instruction tuning. We train for one epoch with a batch size of 128 and a
learning rate of 2e− 4 decayed by a cosine schedule. To reduce the memory requirements, we apply
Low-Rank Adaptation (LoRA) [41] to all linear layers in the multi-head self-attention (MHSA) and
feedforward network (FFN) modules of Vicuna v1.5 [119]. A complete list of hyperparameters is
provided in Table 8. At test time we use greedy decoding on every evaluation benchmark to ensure
full reproducibility.

Baselines We provide a more detailed explanation of the baselines.

• Random sampling method randomly selects a subset from the entire training mixture.
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Table 8: Hyperparameters of visual instruction tuning

(a) LLaVA-1.5 (7B)

Hyperparameter Finetune

LoRA rank 128
batch size 128
lr 2e-4
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 3

(b) LLaVA-1.5 (13B)

Hyperparameter Finetune

LoRA rank 128
batch size 128
lr 2e-5
lr schedule cosine decay
lr warmup ratio 0.03
weight decay 0
epoch 1
optimizer AdamW
DeepSpeed stage 3

• LESS [107] modified gradient-based influence function that ranks training samples by the cosine
similarity between their gradients and those of a few labeled downstream examples for targeted
instruction tuning. The downstream examples are also leveraged for test-time in-context learning.
For a fairer zero-shot comparison, we only utilize downstream examples for data selection. We
use the same warmed-up proxy model for LESS and our methods. To build the gradient store, all
Adam-based LoRA gradients are extracted and concatenated for each training sample, which are
then reduced to an 8192-dimensional vector using TRAK projection [82]. LESS-SciQA denotes
employing 100 examples randomly chosen from the ScienceQA validation split. The training
samples with higher gradient cosine similarity to these examples are selected for visual instruction
tuning.

• RHO-LOSS [76] exemplifies the excess-loss family of selectors [76, 108, 62]. We treat our
worst-case evaluation subgroups as a holdout set and train the reference model on those subgroups.
Each candidate training sample is then scored by the loss difference between the still-untrained
target model and that of the reference model. Samples with larger excess loss, deemed both difficult
and learnable, are chosen for visual-instruction tuning.

• COINCIDE [51] utilizes a proxy model, well-trained on the entire training corpus, to extract feature
embeddings from five multi-head self-attention layers (i.e., 3, 7, 11, 15, 19 layers). The uniform
clustering is then performed on these embeddings to form 10000 clusters. COINCIDE selects
training samples from each cluster with an emphasis on diversity, drawing more samples from low-
density and highly transferable clusters. We reproduce its best version with TinyLLaVA-2B [120]
as the proxy model.

E Hyper-parameter Studies of ARDS

To better understand the sensitivity and design choices of our proposed ARDS method, we conduct
controlled experiments on several key hyperparameters. Since we adopt the same proxy model setup
as the baseline LESS [107] for a fair comparison, we report the performance of reimplemented LESS
with the selection ratio 5% in Table 9 (a). The results show that training the proxy model for just
4 epochs on a small subset of 1,000 samples is already sufficient for effective data selection. The
results in Table 9 (b) demonstrate that doubling the number of clusters from 70 to 140 does not lead to
performance improvement, suggesting over-segmentation can dilute subgroup-level signals, reducing
the effectiveness of worst-case evaluation subgroup construction. As shown in Table 9 (c), a moderate
expansion of the subgroup selection budget helps capture more informative training examples that
contribute to robustness.

F More Results Across Training Data Scales

To better understand the performance of our ARDS under varying training budgets, we conduct a
robustness scaling analysis across different training mixture sizes—5%, 10%, 30%, 50%, and 70%
of the full dataset. As shown in Figure 4, we observe that random subsampling fails to improve
robustness across all scales. In many cases, it actually leads to performance degradation, especially
under stronger perturbation settings. In contrast, both variants of our ARDS consistently outperform
baselines at every training size and enhance the robustness of visual instruction tuning, surpassing the

27



Table 9: Hyper-paraemter studies of ARDS. (a) Effect of different warmup configurations for the
proxy models. (b) Effect of cluster size in ARDS. (c) Effect of subgroup budget. ⋆ denotes our
choice.

(a) Warmup Training

Epoch #Sample ScienceQA

4 33265 67.79

1 1000 66.88

4⋆ 1000 68.37

(b) Cluster Size

Method ScienceQA

Clean Robust

70⋆ 69.26 47.60

140 67.58 46.26

(c) Subgroup Budget

Method GQA

Clean Robust

20 61.75 51.18

50⋆ 62.43 52.21

full-data trained model. We choose 30% as the default training budget in our main experiments, as it
offers the best trade-off between data efficiency and both clean and robust performance.

G More Ablation Studies

Score aggregation strategy. To better understand the impact of the score aggregation strategy
used in our robustness-aware selection, we conduct an ablation comparing two approaches. The
Subgroup Maximum strategy follows the Equation 2 used in targeted instruction tuning [107], where
the information score I(xi) is computed as the maximum cosine similarity between a training sample
and any single worst-case subgroup. The Subgroup Weighted Sum approach considers both subgroup
similarity and subgroup difficulty. Specifically, we first compute the cosine similarity diSm

between
the training sample and each worst-case evaluation subgroup Sm, then weight each similarity by the
subgroup’s difficulty ℓSm

using a softmax normalization. This weighting encourages prioritizing
training samples that are close to more difficult subgroups, enabling the selection of more informative
and robustness-critical examples. As shown in Table 10, the weighted sum strategy outperforms
the maximum-based aggregation, yielding higher robust accuracy under more challenging attack
settings. This suggests that incorporating subgroup difficulty helps select training samples that more
effectively target model-biased behaviors.

Table 10: Ablation study comparing different score aggregation strategies for robust data selection.
LLaVA-1.5 (7B) is utilized as the proxy and target model for all methods.

Score Aggregation Data ScienceQA SEED-Bench
Strategy Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Subgroup Maximum 30% 70.05 57.61 68.12 43.88 59.91 57.23 41.02 56.13 30.65 46.25
Subgroup Weighted Sum 30% 69.26 59.40 68.57 47.60 61.21 58.11 40.73 56.83 31.52 46.80

Impact of visual and textual perturbations. We conduct a finer-grained ablation to compare
variants of our method using only diffusion-based visual noise or task-aware textual perturbations
(PA/SA) against the final dual perturbation strategy. As shown in Table 11, results highlight the
individual and combined contributions of visual and textual perturbations in constructing worst-case
evaluation subgroups.

Table 11: Ablation study comparing different perturbations for constructing worst-case evaluation
subgroups. LLaVA-1.5 (7B) is utilized as the proxy and target model for all methods.

Textual Visual Data ScienceQA SEED-Bench
Perturbation Perturbation Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

✓ ✗ 10% 68.82 58.25 65.74 45.61 59.61 54.08 37.82 52.60 28.45 43.23
✗ ✓ 10% 68.52 54.09 66.83 47.05 59.12 54.34 37.64 53.72 32.42 44.53

✓ ✓ 10% 69.66 55.88 69.21 52.35 61.78 53.86 38.30 53.38 35.11 45.16
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Figure 4: Zero-shot robust accuracy (↑) across varying training mixture sizes for visual instruction
tuning of LLaVA-1.5 on the ScienceQA, SEED-Bench, MMBench-EN, MMBench-CN, A-OKVQA
benchmarks. Our method consistently improves robustness across scales.
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H More Analayses

H.1 Comparison Between Full-model and LoRA Fine-tuning

In this section, we compare full-parameter fine-tuning with Low-Rank Adaptation (LoRA) [41]. As
reported in Table 12, updating only 4.6% of the parameters via LoRA not only preserves clean-set
accuracy but improves robustness. In our main experiments, visual instruction tuning with the full
training corpus and every data selection baseline adopts the same LoRA configuration to ensure a fair
comparison.

Table 12: Robustness comparison between Full-model and LoRA [41] visual instruction tuning for
LLaVA-1.5 (7B) on the full dataset.

Selection Data ScienceQA SEED-Bench MMBench-EN A-OKVQA
Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Full 100% 69.51 55.08 60.44 25.14 52.54 58.66 40.81 52.08 16.53 42.02 74.04 61.86 69.37 39.27 61.13 81.05 71.18 74.76 45.33 68.08
Full-LoRA 100% 69.76 54.34 65.74 37.63 56.87 59.65 41.92 54.83 22.40 44.69 74.84 61.15 69.39 41.09 61.62 80.52 72.31 78.34 55.02 71.55

H.2 Results of Generalization to More Challenging Benchmarks

We further evaluate the generalization capability of our curated robust training mixture on several
more challenging benchmarks, including the text-only benchmark, SocialIQA [91], and two math-
related visual reasoning benchmarks, MathVista [69] and DynaMath [126]. These two mathematical
benchmarks represent more difficult Out-of-Domain (OOD) tasks, as the original LLaVA–665K
dataset does not contain explicit mathematical training data [63]. Specifically, MathVista [69]
assesses mathematical reasoning in visual complex scenarios (e.g., tables and function plots), while
DynaMath [126] is designed to systematically analyze the robustness of mathematical reasoning
across diverse topics (e.g., arithmetic, geometry and graph theory) under dynamic condition changes
(e.g., numerical value variants, geometric transformations and graph structure variants). Our proposed
permutation and symbol attacks, serving as an orthogonal analysis axis, offer a complementary
perspective for diagnosing potential biased behaviors in large multimodal models. As shown in
Table 13, our curated robust training mixture consistently enhances average performance across OOD
tasks for visual instruction tuning, outperforming both full-data training and previous state-of-the-art
data selection strategies.

Table 13: Zero-shot robust accuracies (%, ↑) against spurious correlation and position bias on additional
benchmarks. Results are reported on the text-only SocialIQA and two visual mathematical reasoning benchmarks,
MathVista and DynaMath.

Selection Method Data SocialIQA MathVista DynaMath
Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

Full 100% 66.17 51.59 55.83 21.24 48.70 40.37 16.48 34.44 2.22 23.38 39.53 19.80 36.88 1.74 24.48

Random 30% 68.83 52.97 57.22 18.01 49.25 39.44 15.56 23.15 1.30 19.86 38.39 16.97 27.32 1.56 21.06
LESS [107] 30% 66.22 51.54 59.37 26.61 50.93 36.85 19.44 31.85 5.37 23.38 35.56 20.88 36.28 8.06 25.19
COINCIDE [51] 30% 68.94 52.05 60.29 27.94 52.30 37.41 11.48 25.00 2.04 18.98 35.74 14.80 26.90 2.47 19.98
ARDS (ours) 30% 68.63 57.63 65.10 42.89 58.56 39.81 20.93 32.78 6.48 25.00 36.40 20.22 36.76 11.19 26.14

H.3 Results on Open-Ended Generation Benchmarks

Inspired by LESS [107], ARDS is a targeted data selection method designed to effectively and
efficiently perform task-aware instruction tuning on a small selected subset of data once the conversa-
tion vector database is established. However, ARDS explicitly aims to enhance robustness against
intrinsic dataset biases in visual instruction tuning. In this section, to assess the adaptability of our
framework for open-ended generation tasks, we evaluate ARDS on two representative benchmarks,
TextVQA [98] and GQA [42]. We denote our robustness-oriented variant in our main experiments
as ARDS-Robust and the variant targeting open-ended generation capability as ARDS-OG. As
shown in Table 14, our method achieves performance comparable to full-data training and previous
data selectors optimized for clean data efficiency. We further observe a natural trade-off between
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robustness and generation capability. A concurrent work ICONS [106] extends the line of targeted
instruction selection toward multi-task selection via majority voting. We believe such approaches as
complementary to our robustness-aware selection and could be integrated into our framework for
exploring robustness-aware and multi-objective instruction selection, which we leave as future work.

Table 14: Comparison of data selection methods on open-ended generation capability.

Selection Method Data Percentage TextVQA GQA

Full 100% 57.23 61.94

Random 30% 55.90 59.61
LESS-SciQA [107] 30% 49.45 56.49
COINCIDE [51] 30% 56.09 59.15
ARDS-Robust 30% 54.51 58.18
ARDS-OG 30% 56.97 60.32

H.4 Generalization to Other Large Multimodal Models

To assess the generality and effectiveness of ARDS, we further conduct a transferability study across
a range of backbone architectures beyond the Vicuna-based LLaVA-1.5 used in our main experiments.
Specifically, we apply ARDS to two representative state-of-the-art large multimodal models, LLaVA-
1.6-Mistral [45] (denoted LLaVA-Mistral) and Qwen2.5-VL-Instruct [10] (denoted Qwen2.5-VL).
For LLaVA-Mistral, we follow the official two-stage training procedure of LLaVA-1.5, first pre-
training the MLP projector and then performing visual instruction tuning. For Qwen2.5-VL-Instruct,
whose pre-training data are closed-source and no publicly released pre-trained version is available, we
directly perform post-training. All models are trained on the LLaVA-665K dataset using different data
selection strategies. As summarized in Table 15, ARDS consistently enhances robustness and data
efficiency across architectures, yielding clear gains in both visual instruction tuning and post-training
settings. The results collectively demonstrate the adaptability of ARDS and can be easily applied to
various large multimodal models to achieve consistent robustness improvements.

Table 15: Transferability across large multimodal architectures. The robust data mixture curated with
Vicuna-based LLaVA-1.5 (7B) transfers effectively to other architectures, including LLaVA-1.6-Mistral (7B)
and Qwen2.5-VL-Instruct (7B), yielding consistent robustness improvements across visual instruction tuning
and post-training settings.

Proxy Target Selection Data ScienceQA SEED-Bench MMBench-EN
Model Model Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

- LLaVA-Mistral (7B) Full 100% 73.03 60.78 68.32 42.79 61.23 59.22 39.65 56.62 28.98 46.11 77.04 62.05 73.30 47.05 64.86
- LLaVA-Mistral (7B) Random 30% 73.08 56.22 58.70 21.17 52.29 56.84 34.85 50.47 14.05 39.05 75.31 58.51 67.48 32.87 58.54
LLaVA-1.5 (7B) LLaVA-Mistral (7B) ARDS 30% 72.04 61.77 69.16 55.53 64.63 59.22 44.02 57.53 34.93 48.93 76.97 65.37 75.17 55.19 68.18

- Qwen2.5-VL (7B) - - 77.05 63.71 67.08 33.71 60.38 48.61 24.72 53.09 10.60 34.25 71.31 52.48 72.14 35.16 57.77
- Qwen2.5-VL (7B) Random 30% 80.32 69.31 67.43 31.78 62.21 52.06 28.50 53.67 8.98 35.80 74.27 57.36 73.83 34.63 60.02
LLaVA-1.5 (7B) Qwen2.5-VL (7B) ARDS 30% 83.84 76.55 70.15 36.19 66.68 61.71 41.81 55.40 10.46 42.35 80.85 69.81 75.44 40.29 66.60

Proxy Target Selection Data MMBench-CN A-OKVQA MMMU
Model Model Method Percentage Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg. Clean PA SA SA + PA Avg.

- LLaVA-Mistral (7B) Full 100% 71.63 52.34 66.99 38.51 57.36 80.00 68.38 77.99 59.21 71.39 38.84 12.51 35.54 6.49 23.34
- LLaVA-Mistral (7B) Random 30% 68.33 49.04 57.57 13.17 47.02 77.47 61.31 72.93 39.21 62.73 37.43 12.51 35.30 3.07 22.07
LLaVA-1.5 (7B) LLaVA-Mistral (7B) ARDS 30% 72.26 57.84 70.32 51.24 62.92 81.66 72.58 80.52 69.00 75.94 39.55 16.06 36.60 11.33 25.89

- Qwen2.5-VL (7B) - - 63.62 36.59 73.60 36.71 52.63 82.18 67.34 75.90 41.48 66.72 52.66 26.21 45.45 11.92 34.06
- Qwen2.5-VL (7B) Random 30% 68.05 41.79 73.46 32.92 54.05 84.54 73.01 75.90 38.25 67.92 53.72 26.56 46.40 10.74 34.35
LLaVA-1.5 (7B) Qwen2.5-VL (7B) ARDS 30% 79.05 63.99 75.88 38.58 64.38 85.85 77.03 77.55 42.01 70.61 53.13 26.92 45.93 11.57 34.39

H.5 Statistical Analysis of the Loss Distribution in Worst-case Evaluation Subgroups

To analyze the loss distribution of worst-case evaluation subgroups, we measure balance through
Shannon entropy given as e (ℓS) = −

∑M
m=0 p (ℓSm) log p (ℓSm), where p (ℓSm) is the weight of

the m-th cluster after Softmax (ℓSm). As entropy depends on the number of subgroups, we further
normalize entropy w.r.t. the number M of possible clusters: ē (ℓS) = e(ℓS)

log(M) , where log(M) is
equal to the entropy of a uniform distribution of size M . We obtained the normalized entropy
ē (ℓS) = 0.92. The result empirically verifies that selected samples remain well dispersed under the
loss-based weighted-sum aggregation strategy. Furthermore, as shown in Table 10, the weighted-sum
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aggregation strategy yields a better clean and robustness trade-off and avoids the skew that the max
variant exhibits.

H.6 Generalization under Distribution Shifts and Visual Corruptions

To further evaluate the robustness and generalization capability of our robust training mixture, we
conduct experiments on previously unseen perturbations not used during data selection, including
unseen symbol attacks and stronger visual corruptions. Specifically, the canonical answer labels
A/B/C/D are replaced by S/N/V/F and U/I/O/P, respectively, and the stronger diffusion noise is
injected into the test images. The adversarial permutation attack is adaptively generated for each new
question by enumerating all possible permutations of the answer options. As shown in Table 17 and
Table 16, our ARDS maintains the highest robust accuracy across all scenarios, demonstrating that
ARDS effectively prioritizes training examples that confer transferable robustness.

Table 16: Transferable robustness under image corruptions. SA: symbol attack, PA: permutation
attack. IC: image corruption.

Selection Data ScienceQA
Method Percentage Clean PA SA SA+PA Avg. IC IC+PA IC+SA IC+SA+PA Avg.

Full 100% 69.76 54.34 65.74 37.63 56.87 64.75 47.84 61.33 31.38 51.32
Random 30% 69.76 52.60 59.44 23.75 51.39 67.43 47.60 55.83 20.13 47.74
ARDS (Ours) 30% 69.26 59.40 68.57 47.60 61.21 66.04 53.94 64.80 41.55 56.58

Table 17: Transferable robustness under unseen attacks. PA: permutation attack, SA1: unseen symbol
attack (S/N/V/F), SA2: unseen symbol attack (U/I/O/P). WCS: incorporate our worst-case evaluation subgroups
during data selection.

Selection Method Data ScienceQA SEED–Bench A-OKVQA MMBench–EN
Percentage SA1 SA1 + PA SA2 SA2 + PA Avg. SA1 SA1 + PA SA2 SA2 + PA Avg. SA1 SA1 + PA SA2 SA2 + PA Avg. SA1 SA1 + PA SA2 SA2 + PA Avg.

Full 100% 67.72 40.80 66.73 36.49 52.93 56.62 25.47 55.04 19.88 39.25 77.21 52.40 76.07 48.03 63.42 69.05 46.29 68.91 36.61 55.21

Random 30% 64.06 32.92 63.81 31.28 48.01 47.82 13.57 47.22 8.29 29.22 60.26 24.98 65.15 18.34 42.18 60.18 29.36 62.51 21.30 43.33
COINCIDE [51] 30% 65.44 37.04 63.41 29.85 48.94 51.65 19.40 48.58 11.82 32.86 68.47 37.03 66.55 25.68 49.43 64.22 35.27 64.29 23.98 46.94
COINCIDE–WCS 30% 62.87 33.96 63.16 31.04 47.75 50.28 16.19 51.08 16.03 33.39 67.34 29.26 71.79 35.90 51.07 63.76 30.49 65.90 26.31 46.62
ARDS (ours) 30% 68.57 48.34 66.14 39.76 55.70 57.48 33.81 54.95 22.27 42.13 78.60 63.67 74.50 49.00 66.44 71.75 51.98 70.48 42.50 59.18

H.7 Complementary with Training Data Augmentation

We take a further step to investigate the impact of simple training data augmentation on mitigating
dataset biases. To reduce symbol-content spurious correlation and position biases, we apply random
symbol replacement and option shuffling as textual-level augmentations. To address visual spurious
correlations and subpopulation shifts, we adopt AutoAugment [22] for image-level augmentation
during training. As illustrated in Table 18, while textual augmentations help improve robustness
against seen perturbations, they fail to generalize to unseen attacks. This underscores that simple
augmentations alone are insufficient to resolve dataset biases. Our approach aims to curate a robust
training mixture as a complementary perspective to augmentation. Combining our ARDS with data
augmentation results in greater robustness gains, demonstrating their synergistic effect in debiasing
model behavior. More critically, AutoAugment does not significantly improve performance on shifted
subgroups, and in fact, harms clean accuracy on GQA and robustness on GQA-OOD. This aligns with
findings from recent studies, which show that simple data augmentations can generate problematic
data and inadvertently amplify existing dataset biases rather than mitigate them, since augmentations
typically preserve the statistical properties of the original training data [11, 95, 79].

Table 18: Performance comparisons of different selection methods under the data augmentation
during visual instruction tuning. The proxy model and target models are LLaVA-1.5 (7B). SA: symbol
attack, PA: permutation attack, SA1: unseen symbol attack (S/N/V/F), SA2: unseen symbol attack
(U/I/O/P).

Selection Method Training Data Data ScienceQA GQA
Aug. Pct. (Sci.) Pct. (GQA) Clean PA SA SA + PA Avg. SA1 SA1 + PA SA2 SA2 + PA Avg. Clean OOD-All OOD-Head OOD-Tail Avg.

Full ✗ 100% 100% 69.76 54.34 65.74 37.63 56.87 67.72 40.80 66.73 36.49 52.93 61.94 57.51 61.17 51.55 58.04
✓ 100% 100% 68.86 57.02 70.05 54.98 62.72 69.36 49.88 68.47 42.74 57.61 59.51 55.01 58.34 49.58 55.61

Random ✗ 30% 50% 69.76 52.60 59.44 23.75 51.39 64.06 32.92 63.81 31.28 48.01 60.69 55.97 60.30 48.92 56.47
✓ 30% 50% 68.91 52.65 69.41 49.43 60.10 66.48 42.19 64.80 34.51 51.99 56.46 51.07 54.41 45.63 51.89

ARDS (Ours) ✗ 30% 50% 69.26 59.40 68.57 47.60 61.21 68.57 48.34 66.14 39.76 55.70 62.43 58.44 62.26 52.21 58.84
✓ 30% 50% 70.40 58.90 69.21 60.14 64.66 70.30 57.06 69.11 53.64 62.53 59.64 55.22 58.45 49.95 55.82
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H.8 Analysis of Performance Degradation on Text-only Tasks

We conduct a detailed analysis of the observed performance degradation of the full-data trained model
on pure-text tasks such as ARC-e and BoolQ. We hypothesize that this phenomenon stems from the
catastrophic forgetting caused by modality imbalance in large-scale visual instruction tuning, which
aligns with prior work that identified text-only forgetting during multimodal alignment [116, 60]. For
example, WINGS [116] reports up to 13.33% text-only degradation after visual modality expansion.
In LLaVA-665K, only around 40688/665298 ≈ 6% of samples are pure-text instructions. During
large-scale multimodal tuning, the optimizer increasingly focuses on vision-centric tasks and gradually
forgets language knowledge acquired from text-only instruction tuning. To quantify this effect, we
measure text-only forgetting by training on random subsets of increasing size using LLaVA-1.5
(7B), as summarized in Figure 5. Larger subsets are expected to include more image-text pairs and
thus amplify modality mismatch between multimodal and text-only inputs. The results confirm that
incorporating more vision-heavy data helps models excel in multimodal tasks while accentuates
forgetting on text-only tasks.
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Figure 5: Comparison of multimodal and text-only task performance under different training data
scales. As the training subset grows and includes more vision-heavy data, multimodal performance
improves while text-only performance degrades, indicating modality-driven forgetting.

H.9 More Results in Settings without Access to Full Training Data

In this section, we further evaluate ARDS in a practical scenario where the entire training corpus
is not available at once, and data arrive dynamically over time. This setting differs from the static
setup used in our main experiments, where data selectors have full access to the entire training set to
construct gradient databases [107] or perform global clustering [51]. To investigate the influence of
data volume on building worst-case evaluation subgroups, we randomly sample 10% of the training
data as the initially available subset and treat the remaining 90% as newly incoming training data. We
denote the variant as ARDS∗. Specifically, ARDS∗ performs clustering on the 10% subset using the
same number of clusters K and subgroup budget B, followed by the same task-specific perturbations
as the ARDS. As shown in Table 19, even when exposed to only one-tenth of the full corpus during
subgroup construction, ARDS∗ still achieves notable robustness gains, outperforming both LESS and
COINCIDE. This demonstrates the potential and applicability of our approach to more dynamic data
selection scenarios.
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Table 19: Comparison results under incomplete training data settings.

Selection Method Selection Ratio ScienceQA
Clean PA SA SA + PA Avg.

LESS [107] 30% 68.42 55.63 64.70 34.95 55.93
COINCIDE [51] 30% 67.72 52.21 61.08 28.06 52.27
ARDS (ours) 30% 69.26 59.40 68.57 47.60 61.21
ARDS∗ (ours) 30% 68.86 58.30 67.13 42.39 59.17

H.10 More Results on Other Training Datasets

We further evaluate the proposed ARDS on another large-scale instruction-tuning dataset, Vision-
Flan [109], to assess its generalizability across different training sources. As shown in Table 20,
the robust training mixture curated by ARDS on Vision-Flan [109] achieves superior worst-case
robustness compared with full-data and random selection baselines. The results further validate the
effectiveness of our robustness-aware data selection framework in mitigating the model’s biased
behaviors due to spurious correlations and position biases across datasets.

Table 20: Zero-shot robust accuracies (%, ↑) against spurious correlation and position bias on Vision-Flan
training dataset.

Selection Method Selection Ratio ScienceQA
Clean PA SA SA + PA Avg.

Full [107] 100% 64.06 39.71 53.59 13.73 42.77
Random [51] 50% 61.38 34.41 53.59 18.89 42.06
ARDS (ours) 50% 62.87 37.98 60.54 33.56 48.74

H.11 Robustness Evaluation of Large Multimodal Models

In this section, we provide a more detailed robustness analysis for the large multimodal model trained
with standard visual instruction tuning. We perform a series of controlled evaluations by applying
textual and visual variations on the GQA benchmark [42]. To study whether the large multimodal
models learns instruction-following capability or simply memorize the specific instruction format, we
introduce InstructionPerturb by prompting ChatGPT to generate 20 alternative question instructions,
such as word replacement, symbol injection, and paraphrasing. Importantly, all variants preserve
the original semantic meaning. We then compute the average accuracy across these variants to
evaluate how sensitive the model is to instruction format changes. For visual input perturbation,
we apply a range of standard test-time augmentation techniques, including color jitter, brightness,
sharpness, and spatial transformations (e.g., rotate, shear, translate). Additionally, we evaluate the
impact of diffusion noise, which has been shown to more flexibly induce model output incorrect
predictions [124, 122]. We report the average robustness performance over diffusion steps 100, 200,
and 300. As shown in Figure 6, the model demonstrates moderate robustness to most common textual
and visual variations. However, the model exhibits the most significant performance degradation
under spurious subpopulation shifts (OOD-Tail [47]). Also, the diffusion noise introduces subtle yet
semantically preserving perturbations that can effectively disrupt model predictions, and its strength
can be flexibly controlled through the number of diffusion steps. These findings motivate our design
of robustness-oriented data selection and evaluation methods.

I The ARDS Algorithm

In Algorithm 1, we outline our robustness-aware data selection procedure to curate the robust training
mixture.

J Theoretical Analysis
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Figure 6: Robustness of LLaVA-1.5 (7B) on the GQA benchmark under diverse input variations.

J.1 Analysis on the Relationship Between Data Vulnerability and Gradient Magnitude

We begin by exploring the relationship between data vulnerability and gradient magnitude. Intuitively,
training samples that are more vulnerable tend to exhibit higher gradient norms, as their losses are
more sensitive to parameter updates. This motivates us to identify such samples through worst-case
subgroup construction.

We use linear models as examples to demonstrate the theoretical insights of our work. We consider
a linear classifier r(x) = Wx where x ∈ Rdin is the input and W ∈ Rdout×din represents the
parameters. As a classification problem, we use softmax-cross-entropy as the loss objective function:
L(x,y) = −yT log ŷ where ŷ = softmax(Wx) is the model’s probabilistic output.

The gradient of L with respect to the model parameters is calculated by:

g(x,y)
def
=

∂L
∂W

= (ŷ − y)x⊤ (7)

The gradient of L with respect to sample x is calculated by:

s(x,y) =
∂L
∂x

= W⊤(ŷ − y) (8)

Assumption J.1. The input data x is normalized, we have ∥x∥2 = 1 without the loss of generality.

Assumption J.1 is a benign assumption, as data normalization is quite common in practice.

Theorem J.2. Under Assumption J.1 and in binary classification, i.e., dout = 2, if a data instance
is adversarially perturbed by PGD, i.e., δ = ϵ · ∂L

∂x , then the data vulnerability, defined by L(x +
δ,y)− L(x,y), increases monotonically with the gradient magnitude g(x,y).

Proof. Without the loss of generality, we assume the data (x,y) belongs to the first category. Based
on the convexity of the loss function L, we have L(x+ δ,y)−L(x,y) ≥ δT L(x,y)

∂x = ϵ∥s(x,y)∥22.
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Algorithm 1 Data Selection for Robust Visual Instruction Tuning (ARDS)
1: Require: Training corpus D of size N ; Proxy model fθ; Number of subgroups K; Subgroup

budget B

2: Step 1: Conversation Vector Database
3: for i = 1 to N do
4: Obtain token embeddings Ht using fθ at the last layer with the attention-score matrix A
5: Aggregate the visual and textual tokens preceding the last token using an attention-score

weighted mechanism. Ĥ =
∑L−1

t=1 AL,t ·Ht

6: Obtain the conversation vector ri = [HL; Ĥ]
7: end for
8: Step 2: Worst-case Evaluation Subgroups S
9: Perform hierarchical clustering in the embedding space to group a small holdout set sampled

from Dtrain into M subgroups Cm.
10: Apply perturbations to calculate the loss difference Sm = topB {x ∈ Cm : |ℓ (x)− ℓ (x′)|}
11: For each subgroup, sample up to min(|Ck|, B) samples most vulnerable to model biased behavior

with the highest loss difference to build the worst-case evaluation subgroups.

12: Step 3: Quality Score Measure and Robust Training Mixture
13: for i = 1 to N do
14: Calculate cosine similarity diSm between the conversation vector ri and each worst-case

subgroup Sm

15: Calculate the quality score I(xi) using softmax-weighted aggregation via Eq. (6).
16: end for
17: Select training samples with the highest quality scores to form Drobust for fine-tuning.
18: Output: Robust training mixture Drobust

On one hand, based on Equation (8), dout = 2, ŷ[1] + ŷ[2] = 1 and that the data belongs to the first
category, we have the following:

s(x,y) =
[
W[1, :]T ,W[2, :]T

] [−ŷ[2]
ŷ[2]

]
= ŷ[2] · (W[2, :]T −W[1, :]T ) (9)

On the other hand, based on Equation (7), dout = 2, ŷ[1] + ŷ[2] = 1 and that the data belongs to the
first category, we have the following:

g(x,y) =

[
−ŷ[2]xT

ŷ[2]xT

]
(10)

In summary, the vulnerability is lower bounded by ϵ∥s(x,y)∥22 = ϵ(ŷ[2])2∥W[2, :]−W[1, :]∥22, the
gradient norm is ŷ[2] · ∥x∥2. Considering ∥x∥2 = 1 as in Assumption J.1 and the parameter W is
fixed for different data, we can conclude that more vulnerability the data is, the larger magnitude its
gradient with respect to the parameters is.

Theorem J.2 discusses the binary classification case, but each step of a language model is a multi-class
classification with large number of categories, which is equal to the vocabulary size. We need to
extend the analysis to multi-class cases and start with the following assumption.

Assumption J.3. Different rows of the parameter W have approximately the same magnitude and
have low correlation, i.e., ∀i, j, we have ∥W[i,:]∥2−∥W[j,:]∥2

∥W[j,:]∥2
= o(1) and W[i,:]TW[j,:]

∥W[i,:]∥2∥W[j,:]∥2
= o(1).

Assumption J.3 is a benign assumption, the categories in the classification problem are usually
distinct, so the corresponding output vectors usually have small correlation. Assumption J.3 is also
consistent with the insights of normalization layers, which is popular in deep learning.

Theorem J.4. Under Assumption J.1 and J.3, if a data instance is adversarially perturbed by PGD,
i.e., δ = ϵ · ∂L∂x , then the data vulnerability, defined by L(x+δ,y)−L(x,y), increases monotonically
with the gradient magnitude g(x,y).
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Proof. We follow the technique in the proof of Theorem J.2 and have the bound of the vulnerability
L(x+ δ,y)− L(x,y) ≥ ϵ∥s(x,y)∥22. Without the loss of generality, we assume the data instance
belongs to the first category.

Following similar calculations as in Equation (9) and Equation (10), we have the following expression
for s(x,y) and g(x,y).

s(x,y) =
[
W[1, :]T ,W[2, :]T , ...,W[dout, :]

T
] −

∑dout

i=2 ŷ[i]
ŷ[2]
...

ŷ[dout]

 =

dout∑
i=2

ŷ[i]·(W[i, :]T−W[1, :]T )

(11)

g(x,y) =


−
(∑dout

i=2 ŷ[i]
)
xT

ŷ[2]xT

...
ŷ[dout]x

T

 (12)

Based on Assumption J.3 which means W[i, :] has approximately the same magnitude and low
correlation for different rows, we have:

∥s(x,y)∥22 =

∥∥∥∥∥
dout∑
i=2

ŷ[i]W[i, :]−
dout∑
i=2

ŷ[i]W[1, :]

∥∥∥∥∥
2

2

≃

(dout∑
i=2

ŷ[i]

)2

+

dout∑
i=2

ŷ[i]2

( 1

dout

dout∑
i=1

∥W[i, :]∥22

) (13)

∥g(x,y)∥22 =

(dout∑
i=2

ŷ[i]

)2

+

dout∑
i=2

ŷ[i]2

 ∥x∥22 (14)

Considering ∥x∥2 = 1 as in Assumption J.1 and the parameter W is fixed for different data, we can
conclude that more vulnerability the data is, the larger magnitude its gradient with respect to the
parameters is.

J.2 Analysis on Targeted Instruction Selection for Robustness Improvement

Built on TracIn [85], LESS [107] quantifies the influence of a training datapoint x on the loss of a test
data x′ via L

(
x′;θt+1

)
− L (x′;θt) ≈ −ηt ⟨∇L (x;θt) ,∇L (x′;θt)⟩. Let m denote vulnerable

samples selected by our worst-case evaluation subgroups and m′ denote a perturbed test sample
for robustness evaluation. If the gradient inner-products ⟨∇L (m;θt) ,∇L (m′;θt)⟩ is notably
non-negative, then the loss of perturbed test samples L

(
m′;θt+1

)
− L (m′;θt) decreases. The

decreased loss mirrors adversarial training for enhancing adversarial robustness [72]. For empirical
validation, we compute this gradient inner product using 100 training batches with the batch size of
32 and 128 perturbed ScienceQA samples. The results of training batches from our robust training
mixture show the average ⟨∇L (m;θt) ,∇L (m′;θt)⟩ = 25.76, while that of training batches from
random selection is 1.95. This strongly supports our theoretical premise.

J.3 Analysis on Alignment Between ARDS and Targeted Instruction Selection

To avoid the heavy cost of gradient-based calculations and sidestep the need for access to downstream
data, we leverage the rich hidden representation of LMMs and construct worst-case evaluation
subgroups on the training corpus. Now we study the cosine similarity discrepancy between feature
embeddings and gradients of two data instances. The theorem below demonstrates that the discrepancy
is upper bounded, especially for confident correct instances which are quite common in the realm of
large language models.
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Theorem J.5. Consider two data instances (xi,yi) and (xj ,yj). Let ri = r(xi), gi = g(xi,yi) for
brevity and we define the corresponding rj , gj . Suppose the maximum and minimum singular values
of parameters are σ1 and σ2. The cosine similarity discrepancy between two feature embeddings and
gradients of the i-th and j-th samples is bounded by

|∆ij | ≤ 2
σ2
1 + ϵ2

σ2
2

(15)

where ϵ = sup ∥ŷ − y∥2 is the upper bound of the probability mismatch.

Proof. We begin by explicitly writing ∆ij :

|∆ij | = |cos(ri, rj)− cos(gi, gj)|

=

∣∣∣∣ ⟨ri, rj⟩
∥ri∥∥rj∥

− ⟨gi, gj⟩
∥gi∥∥gj∥

∣∣∣∣
≤ |⟨ri, rj⟩ − ⟨gi, gj⟩|

∥ri∥ ∥rj∥
+

∣∣∣∣⟨gi, gj⟩( 1

∥ri∥ ∥rj∥
− 1

∥gi∥ ∥gj∥

)∣∣∣∣
≤ |⟨ri, rj⟩ − ⟨gi, gj⟩|

∥ri∥∥rj∥
+

∣∣g⊤i gj∣∣
∥gi∥ ∥gj∥

∣∣∣∣∥gi∥ ∥gj∥ − ∥ri∥ ∥rj∥
∥ri∥ ∥rj∥

∣∣∣∣
≤ |⟨ri, rj⟩ − ⟨gi, gj⟩|

∥ri∥ ∥rj∥︸ ︷︷ ︸
A

+

∣∣∣∣∥gi∥ ∥gj∥ − ∥ri∥ ∥rj∥
∥ri∥ ∥rj∥

∣∣∣∣︸ ︷︷ ︸
B

(16)

Using Cauchy-Schwarz inequality, the numerator of item A is

|⟨ri, rj⟩ − ⟨gi, gj⟩| =
∣∣(Wxi)

⊤(Wxj)− (ŷi − yi)
⊤(ŷj − yj) · x⊤

i xj

∣∣
=
∣∣x⊤

i W
⊤Wxj − x⊤

i xj · (ŷi − yi)
⊤(ŷj − yj)

∣∣
≤
∣∣x⊤

i

[
W⊤W − (ŷi − yi)(ŷj − yj)

⊤]xj

∣∣
≤ (σ2

1 + ϵ2)∥xi∥∥xj∥

(17)

The numerator of item B is
|∥gi∥ ∥gj∥ − ∥ri∥ ∥rj∥| ≤ ∥gi∥∥gj∥+ ∥ri∥∥rj∥

≤ ∥ŷi − yi∥∥xi∥ · ∥ŷj − yj∥∥xj∥+ ∥Wxi∥∥Wxj∥
≤ (σ2

1 + ϵ2)∥xi∥∥xj∥
(18)

And,
∥ri∥∥rj∥ ≥ σ2

2∥xi∥∥xj∥ (19)

By combining these parts, we can have

|∆ij | ≤ 2
σ2
1 + ϵ2

σ2
2

(20)

Table 21: Selection overlap between gradient-based selection (LESS) and feature-based selection
(ARDS) on ScienceQA. Higher overlap indicates stronger alignment between feature and gradient
spaces.

Selection Ratio 30% 40% 50% 60% 70%

Selection Overlap (%) 58.87 69.00 75.94 79.97 83.60

For empirical validation, we utilize the established gradient datastore in LESS and the conversation
vector datastore in our ARDS to compute the overlap between gradient-based selection and our
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feature-based selection for ScienceQA. As shown in Table 21, the two methods exhibit a high
selection overlap, providing strong evidence that ARDS effectively approximates targeted instruction
selection for robustness.

Guided by above theoretical insights and empirical evidence, we design a data-selection strategy for
robust visual instruction tuning that scores samples by the cosine similarity of their conversation
vectors, avoiding the heavy cost of gradient-based calculations.

39


	Introduction
	Related work
	Preliminary
	Methods
	Overview
	Data Selection for Robust Visual Instruction Tuning

	Experiments
	Experimental Setup
	Comparison with Baselines
	Ablation Study
	More Analysis

	Conclusions
	Limitations
	Broader Impact
	More Related Work
	Detailed Experimental Setup
	Hyper-parameter Studies of ARDS
	More Results Across Training Data Scales
	More Ablation Studies
	More Analayses
	Comparison Between Full-model and LoRA Fine-tuning
	Results of Generalization to More Challenging Benchmarks
	Results on Open-Ended Generation Benchmarks
	Generalization to Other Large Multimodal Models
	Statistical Analysis of the Loss Distribution in Worst-case Evaluation Subgroups
	Generalization under Distribution Shifts and Visual Corruptions
	Complementary with Training Data Augmentation
	Analysis of Performance Degradation on Text-only Tasks
	More Results in Settings without Access to Full Training Data
	More Results on Other Training Datasets
	Robustness Evaluation of Large Multimodal Models

	The ARDS Algorithm
	Theoretical Analysis
	Analysis on the Relationship Between Data Vulnerability and Gradient Magnitude
	Analysis on Targeted Instruction Selection for Robustness Improvement
	Analysis on Alignment Between ARDS and Targeted Instruction Selection


