
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Towards Mitigating Architecture Overfitting on
Distilled Datasets

Xuyang Zhong, Chen Liu∗

Department of Computer Science, City University of Hong Kong, Hong Kong SAR, China
xuyang.zhong@my.cityu.edu.hk, chen.liu@cityu.edu.hk

Abstract—Dataset distillation methods have demonstrated re-
markable performance for neural networks trained with very
limited training data. However, a significant challenge arises in
the form of architecture overfitting: the distilled training dataset
synthesized by a specific network architecture (i.e., training
network) generates poor performance when trained by other
network architectures (i.e., test networks), especially when the
test networks have a larger capacity than the training network.
This paper introduces a series of approaches to mitigate this
issue. Among them, DropPath renders the large model to be an
implicit ensemble of its sub-networks, and knowledge distillation
ensures each sub-network acts similarly to the small but well-
performing teacher network. These methods, characterized by
their smoothing effects, significantly mitigate architecture over-
fitting. We conduct extensive experiments to demonstrate the
effectiveness and generality of our methods. Particularly, across
various scenarios involving different tasks and different sizes of
distilled data, our approaches significantly mitigate architecture
overfitting. Furthermore, our approaches achieve comparable or
even superior performance when the test network is larger than
the training network.

Index Terms—Dataset distillation. Overfitting. Efficient learn-
ing. Neural network architecture.

I. INTRODUCTION

Deep learning has achieved tremendous success in various
applications [1, 2], but training a powerful deep neural network
requires massive training data [3, 4]. To accelerate training,
one possible way is to construct a new but smaller training set
that preserves most of the information of the original larger
set. In this regard, we can use coreset [5, 6] to sample a
subset of the original training set or dataset distillation [7, 8]
to synthesize a small training set. Compared with coreset,
dataset distillation is demonstrated to achieve much better per-
formance when the amount of data is extremely small [6, 9].
Furthermore, dataset distillation is shown to benefit various
applications, such as continual learning [8, 9, 10, 11], neural
architecture search [8, 11], and privacy preservation [12, 13].
Therefore, in this work, we focus on dataset distillation to
compress the training set.

In the dataset distillation framework, the small training set,
which is also called the distilled dataset, is learned by using
a neural network, which we call training network, to extract
the most important information from the original training
set. Existing data distillation methods are based on various
techniques, including meta-learning [7, 14, 15, 16, 17, 18]

∗ denotes the correspondence author.
Manuscript received February 2024; revised August 2024.

and data matching [8, 9, 11, 19, 20, 21, 22]. These methods
are then evaluated by the test accuracy of another neural
network, which we call test network, trained on the distilled
dataset. In summary, in the context of dataset distillation, the
training network serves as the model utilized for constructing
the distilled dataset, while the test network is employed to
showcase the performance achievable through the distilled
dataset.

Despite efficiency, dataset distillation methods generally
suffer from architecture overfitting [9, 11, 17, 18, 20]. That
is, the performance of the test network trained on the distilled
dataset degrades significantly when it has a different network
architecture from the training network. Moreover, the perfor-
mance deteriorates further when there is a larger difference
between the training and test networks in terms of depth and
topological structure. Specifically, due to high computational
complexity and optimization challenges in dataset distillation,
the training networks are usually shallow networks, such
as 3-layer convolutional neural networks (CNN) as used in
Zhou et al. [18], Cazenavette et al. [20]. However, such
shallow networks are rarely employed in practical applications
due to their limited representation power. Consequently, we
posit that the architecture overfitting seriously undermines the
practicality of distilled datasets in real-world scenarios.

Our analysis in this work indicates that the performance gap
between different network architectures is larger in the case of
training on the distilled dataset than in the case of training on
the subset of the original training set. In addition, compared
with methods compressing the training set by subset selection,
dataset distillation achieves better performance when using the
same amount of training instances and is thus more popular
in downstream applications [9, 11, 13]. Therefore, we mainly
focus on dataset distillation, in which the effectiveness of the
proposed method can be better revealed.

In this work, we demonstrate that the architecture overfitting
issue on distilled datasets can be mitigated by a better archi-
tecture design and training scheme of test networks on the
distilled dataset. Firstly, we combine DropPath with knowl-
edge distillation from a small teacher network. Specifically,
DropPath renders the large model to be an implicit ensemble of
its sub-networks, and knowledge distillation ensures each sub-
network acts similarly to the small but well-performing teacher
network. As a result, the large models could outperform small
teacher models on distilled datasets. Additionally, we propose
a series of approaches, including three-phase DropPath keep
rate, improved shortcut connection, periodical learning rates,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

1 10 50
Images per Class

30

40

50

60

70

Te
st

 A
cc

ur
ac

y 
(%

)

3-layer CNN
ResNet18 (baseline)
ResNet18 (ours)
AlexNet (baseline)
AlexNet (ours)
VGG (baseline)
VGG (ours)
ResNet50 (baseline)
ResNet50 (ours)

(a) When we use FRePo [18] to construct the distilled dataset.

1 10 50
Images per Class

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y 
(%

)

3-layer CNN
ResNet18 (baseline)
ResNet18 (ours)
AlexNet (baseline)
AlexNet (ours)
VGG (baseline)
VGG (ours)
ResNet50 (baseline)
ResNet50 (ours)

(b) When we use MTT [20] to construct the distilled dataset.

Fig. 1. Effectiveness of our method on different architectures, different dataset distillation methods, and different images per class (IPCs) on
CIFAR10. We use a 3-layer CNN as the training network, so it performs the best among various architectures in baselines (dashed lines).
Our methods (solid lines) can significantly narrow down the performance gap between the 3-layer CNN and other architectures.

a better optimizer and a stronger augmentation scheme, to
further boost the performance. These methods share a common
characteristic of smoothing the optimization problem from dif-
ferent aspects. Notably, our proposed methods are also generic:
we conduct comprehensive experiments on different network
architectures, different numbers of instances per class (IPC),
different dataset distillation methods and different datasets to
demonstrate the effectiveness of our methods. Figure 1 above
demonstrates the performance of our proposed methods in
various scenarios. It is clear that our methods greatly mitigate
architecture overfitting and make large networks trained on
distilled datasets achieve better performance in most cases.
As a result, the utility and transferability of distilled datasets
in practice is markedly enhanced even without modifying the
dataset distillation algorithm. In addition to dataset distillation,
our methods can also improve the performance of training on
a small real dataset, including those constructed by coresets.
Although some tasks, like synthetic-to-real generalization [23]
and few-shot learning [24], are also classical problems, cus-
tomizing our method for them is out of the scope of this work,
because we focus on training large networks on small datasets
from scratch. We leave these tasks as future works.

We summarize the contributions of this paper as follows:

1) We propose a series of approaches to mitigate architec-
ture overfitting on distilled datasets. Among them, Drop-
Path renders the large model to be an implicit ensemble
of its sub-networks, and knowledge distillation ensures
each sub-network acts similarly to the small teacher
network. These methods share a common characteristic
of smoothing the optimization problem. Our proposed
methods are plug-and-play and applicable to different
model architectures and training schemes.

2) We conduct extensive experiments to demonstrate that
our method significantly mitigates architecture over-
fitting across different network architectures, different
dataset distillation approaches, different numbers of in-
stances per class (IPC), and different datasets.

3) Moreover, our method generally improves the perfor-

mance of deep networks trained on limited real data. As
a result, large networks outperform small networks on
various amounts of training data, even when there are
only 100 training samples.

II. RELATED WORKS

Dataset Distillation: The goal of dataset distillation is to
learn a smaller set of training samples called distilled dataset
that preserves essential information of the original large dataset
so that models trained on this small dataset have similar
performance to those trained on the original large dataset.

Existing dataset distillation approaches are based on either
meta-learning or data matching [25]. The former category
includes backpropagation through time (BPTT) approach [7,
14, 15] and kernel ridge regression (KRR) approach [16, 17,
18, 26, 27]; the latter category includes gradient matching
[11, 19], trajectory matching [20, 21, 28, 29, 30, 31, 32, 33],
and distribution matching [9, 22, 34, 35, 36, 37, 38, 39]. In
addition, some works [40, 41, 42, 43, 44, 45, 46, 47, 48] lever-
age better optimization schemes to improve the performance
of dataset distillation. However, these methods are shown
to suffer from severe architecture overfitting: the significant
performance degradation when the architecture of the training
network and the test network are different. Recently, some
factorization methods [49, 50, 51, 52, 53, 54, 55], which
learn synthetic datasets by optimizing their factorized fea-
tures and corresponding decoders, greatly improve the cross-
architecture transferability. However, the instance per class
(IPC), which indicates the size of the distilled dataset, used
in these methods is much larger than that of meta-learning
and data matching approaches, which greatly cancels out the
advantages of dataset distillation. To better fit the motivation
of dataset distillation, we only consider small IPCs (1, 10 and
50) in this work, so the factorization methods are not included
for comparison.

Model Ensemble: Model ensemble aims to integrate multi-
ple models to improve the generalization performance. Popular
ensemble methods for classification models include bagging



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

[56], AdaBoost [57], random forest [58], random subspace
[59], and gradient boosting [60]. However, these methods
require training several models and thus are computationally
expensive. By contrast, DropOut [61] trains the model only
once but stochastically masks its intermediate feature maps
during training. At each training iteration with DropOut, only
part of the model parameters are updated, which forms a
sub-network of the model. In this regard, DropOut enables
implicit model ensembles of different sub-networks to improve
the generalization performance. Similar to DropOut, DropPath
[62] also implicitly ensembles sub-networks but it blocks a
whole layer rather than masking some feature maps. There-
fore, it is applicable to network architectures with multiple
branches, such as ResNet [63], otherwise, the model output
will be zero if a layer of a single branch network is dropped.
By contrast, we propose a DropPath variant in this work which
is generic, applicable to single-branch networks and effective
in mitigating architecture overfitting.

Knowledge Distillation: Knowledge distillation [64] aims
to compress a well-trained large model (i.e., teacher model)
into a smaller and more efficient model (i.e., student model)
with comparable performance. The standard knowledge dis-
tillation [64] is also known as offline distillation since the
teacher model is fixed when training the student model.
Online distillation [65, 66] is proposed to further improve the
performance of the student model, especially when a large-
capacity high-performance teacher model is not available. In
online distillation, both the teacher model and the student
model are updated simultaneously. In most cases, knowledge
distillation methods use large models as the teachers and small
models as the students, which is based on the fact that larger
models typically have better performance. However, in the
context of dataset distillation, a smaller test network with
the same architecture as the training network can achieve a
better performance than a larger one on the distilled dataset,
so we use the small model as the teacher and the large model
as the student in this work. In this way, the performance
of large models trained on distilled datasets can be boosted
significantly.

We show in the following sections that combining DropPath
and knowledge distillation, architecture overfitting on distilled
datasets can be almost overcome.

III. METHODS

In this section, we introduce the approaches that are effec-
tive in mitigating architecture overfitting on distilled datasets.
Our methods are motivated by the intuition that the large
model can act as an implicit ensemble of small models
[61, 62]. First, we propose a DropPath variant, which implic-
itly ensemble sub-networks of models and is different from
vanilla DropPath [62] in that the proposed DropPath variant
is also applicable to single-branch architectures. Correspond-
ingly, we optimize the shortcut connections of ResNet-like
architecture to accommodate DropPath better. Second, we use
knowledge distillation [64] as a form of regularization to
ensure each sub-network induced by DropPath acts similarly
to the teacher network. In contrast to traditional knowledge

distillation approaches [64, 65], the teacher model is smaller
than the student model in our cases. Finally, we adopt a
periodical learning rate scheduler, a gradient symbol-based
optimizer [67], and a stronger data augmentation scheme to
improve the performance further.

A. DropPath with Three-Phase Keep Rate

Similar to DropOut [61], DropPath [62], a.k.a., stochas-
tic depth, was proposed to improve generalization. While
DropOut masks some entries of feature maps, DropPath ran-
domly prunes the entire branch in a multi-branch architecture.
To obtain a deterministic model for evaluation, DropPath is
deactivated during inference. To ensure the expectation of the
feature maps to be consistent for training and inference, we
scale the output of feature maps after DropPath during training.
Mathematically, DropPath works as follows:

DropPath(x) =
m

p
· x, m = Bernoulli(p). (1)

where p ∈ [0, 1] denotes the keep rate, m = Bernoulli(p) ∈
{0, 1} outputs 1 with probability p and 0 with probability 1−p.
The scaling factor 1/p is used to ensure the expectation of the
feature maps remains unchanged after DropPath. The detailed
derivation is in Appendix C. Figure 2 (a) illustrates how
DropPath is integrated into networks. It effectively decreases
the model complexity during training and can force the model
to learn more generalizable representations using fewer layers.
Same as DropOut, any network trained with DropPath can be
regarded as an ensemble of its subnetworks [68], which has
been proven to improve generalization [56, 57, 58, 59, 60].
Note that, DropOut masks part of the feature maps and
effectively decreases the network width; by contrast, DropPath
removes a branch and thus decreases the effective network
depth. In the context of dataset distillation, the test network
is deeper than the training network, so we can decrease
the effective depth of the test network by DropPath. This
approach implicitly bridges the architecture disparity between
the training and test networks. Consequently, we anticipate that
DropPath will mitigate the problem of architecture overfitting
on distilled datasets.

Three-Phase Keep Rate: The keep rate p is the key pa-
rameter that controls the effective depth of model architecture
when using DropPath. Since the mask m = Bernoulli(p),
the effective depth gets smaller as p decreases. In the early
phase of training, the model is underfitting, stochastic archi-
tecture brings optimization challenges for training the model,
so we turn off DropPath by setting the keep rate p = 1 in the
first few epochs to ensure that the network learns meaningful
representations. We then gradually decrease p to decrease the
effective depth and thus to decrease the architecture disparity
between the effective test network and the training network
until the value of p reaches the predefined minimum value
after several epochs. In the final phase of training, we decrease
the architecture stochasticity by increasing the value of p to
a higher value to ensure good training convergence. In the
experiments, we shrink the keep rate every few epochs.

The pseudo-code is demonstrated in Algorithm 1. Unless
specified, we set γ = 0.1, pmin = 0.5, pfinal = 0.8, T = 500,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

ConvBlock

ConvBlock
w/o ReLU

DropPath

ReLU

Shortcut

+

(a) Multi-branch

ConvBlock

ConvBlock
w/o ReLU

× m × (1-m)

ReLU

Virtual
Shortcut

+

(b) Single-branch

1×1 conv, 2

Norm

+

...

(c) Original shortcut

1×1 conv, 1

+

...

Norm

2×2 MaxPool

(d) Improved shortcut

Fig. 2. (a) The DropPath used for multi-branch residual blocks during training, it does not block the shortcut path. (b) The DropPath used
for single-branch networks during training. Here, m = Bernoulli(p) ∈ {0, 1}, p ∈ [0, 1] denotes the keep rate. Only when the main path
is pruned (m = 0), the virtual shortcut is activated, and vice versa. DropPath is always deactivated, i.e., p = 1, during inference. (c) The
original architecture of a shortcut connection to downsample feature maps, which consists of a 1× 1 convolution layer with the stride of 2
and a normalization layer. (d) The improved architecture of a shortcut connection to downsample feature maps, which is a sequence of a
2× 2 max pooling layer, a 1× 1 convolution layer with the stride of 1 and a normalization layer.

Algorithm 1 DropPath with Three-Phase Keep Rate
1: Input: the data: x; current epoch index: i; decaying

factor: 0 < γ < 1; minimum keep rate: pmin; final
keep rate: pfinal; period of decay: T ; warmup period: W ;
stabilization epoch: S.

2: if i < W then
3: p← 1
4: else if i < S then
5: p← max(pmin, 1−γ ·ceil((i−W )/T )) {ceil function

returns the smallest integer bigger than the input}
6: else
7: p← pfinal
8: end if
9: if is training then

10: m← Bernoulli(p) {Bernoulli distribution}
11: y← m

p · x
12: else
13: y← x
14: end if
15: Output: y

W = 500, S = 3000 in the experiments. The corresponding
curve of the dynamic keep rate is shown in Figure ?? of
Appendix B.

Generalize to Single-Branch Networks: DropPath prunes
the entire branch, so it is not applicable to single-branch net-
works, such as VGG [69]. This is because we need to ensure
the input and the output of the network are always connected,
otherwise, we will obtain a trivial constant model. By contrast,
in the case of multi-branch networks such as ResNet, we prune
the main path of a residual block stochastically, while the
shortcut connections are always kept.

To improve the performance of single-branch networks, we
propose a variant of DropPath. As illustrated in Figure 2(b),
we add a virtual shortcut connection between two layers, such

as two consecutive convolutional layers in VGG, to form a
“pseudo-residual” block. This structure is similar to a real
residual block, however, since we are training a single-branch
architecture instead of a real ResNet, the virtual shortcut
connection is only used when the main path is pruned by
DropPath during training. That is to say when the main path is
not pruned, the virtual shortcut connection is removed so that
we are still training a single-branch network. Correspondingly,
the virtual shortcut connection is discarded during inference.
It should be noted that the feature is not scaled in virtual
shortcut connection. The detailed derivation is also deferred
to Appendix C.

Improved Shortcut Connection: In the original ResNet
[63], if one residual block’s input shape is the same as
its output shape, the shortcut connection is just an identity
function, otherwise a 1×1 convolution layer of a stride larger
than one, which may be followed by a normalization layer as
shown in Figure 2(c), is adopted in the shortcut connection
to transform the input’s shape to match the output’s. In the
latter case, the resolution of the feature maps is divided by
the stride. For example, if the stride is 2, the top left entry in
each 2× 2 area of the input feature map is sampled, whereas
the rest 3 entities of the same area are directly dropped.

This naive subsampling strategy will cause dramatic infor-
mation loss when we use DropPath. Specifically, if DropPath
prunes the main path as in Figure 2 (a), the shortcut connection
will dominate the output of the residual block. In this regard,
the naive subsampling strategy may corrupt or degrade the
quality of the features, since it always picks a fixed entry of a
grid. To tackle this issue, we replace the original shortcut con-
nect with a 2×2 max pooling followed by a 1×1 convolutional
layer with the stride of 1. This improved structure will preserve
the most important information after pooling instead of the one
from a fixed entry. Figure 2 (c) and (d) show the comparison
between the original and improved shortcut connections when
the shapes of input and output are different.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

B. Knowledge Distillation from Small Teacher Model

Given sufficient training data, large models usually perform
better than small models due to their larger representation
capability. Knowledge distillation aims to compress a well-
trained large model (i.e., teacher model) into a smaller model
(i.e., student model) without compromising too much perfor-
mance. The basic idea behind knowledge distillation is to
distill the knowledge from a teacher model into a student
model by forcing the student’s predictions (or internal activa-
tions) to match those of the teacher [70]. Specifically, we can
use Kullback-Leibler (KL) divergence LKL with temperature
[64] to match the predictions of student and teacher models.
Then, we can combine the KL divergence as the regularization
term in addition to the classification loss. Mathematically, the
overall loss with knowledge distillation is:

L(ys,yt, y) = α ·τ2 ·LKL(ys,yt)+(1−α) ·LCE(ys, y) (2)

where τ denotes the temperature factor, and α ∈ (0, 1) denotes
the weight factor to balance the KL divergence LKL and the
cross-entropy loss LCE . The output logits of the student model
and teacher model are denoted by ys and yt, respectively. y
denotes the target.

When training on distalled dataset, small models perform
better than large ones, since small models are employed
as the training network to construct distilled dataset. As a
result, we adopt the small training network as the teacher
model yt and the large test network as the student model ys.
The computational overhead in knowledge distillation mainly
arises from calculating yt, i.e., the output of the teacher model.
In this case, the computational overhead is negligible because
evaluating on the small teacher model is much more efficient
than on the large student model.

C. Training and Data Augmentation

Besides aforementioned methods, we use the following
methods to further improve the performance.

Periodical Learning Rate: Because of the three-phase
stepwise scheduler for the keep rate p, we expect the network
to jump out of the current local minima, and tries to search
for a better one when p changes. Inspired by [71], we use
a cosine annealing curve with warmup to adjust the learning
rate, and we periodically reset it when p changes. Formally,
the learning rate lri in the i-th epoch is calculated as follows:

lri =

{
λi · mod(i,t)

Twarm
· lrmax, if mod(i, t) ≤ Twarm,

0.5λi(1 + cos(πmod(i,t)−Twarm

Tmax−Twarm
)) · lrmax, otherwise.

(3)
where T is the decay period of the keep rate p of DropPath,
S is the stabilization epoch. t = T when i < S, otherwise
t = S. λi = λ⌊min(i,S)/T⌋ where λ is a base decaying factor,
and ⌊·⌋ denotes the floor function. lrmax denotes the maximum
learning rate, mod(x, y) denotes the remainder of x/y. The
maximum iterations of the cosine annealing function and the
number of warmup epochs are denoted by Tmax and Twarm,
respectively. Figure ?? of Appendix B shows an example of
how the learning rate changes.

Better Optimizer: Lion [67] is a gradient symbol-based
optimizer. It has faster convergence speed and is capable of
finding better local minima for ResNets. Thus, we use Lion
as the default optimizer in our experiments.

Stronger Augmentation: The data augmentation strategy
used in MTT [20] samples a single augmentation operation
from a pool to augment the input image. However, we observe
that sampling more operations will better diversify the model’s
inputs and thus improve the performance, especially when IPC
is small. For convenience, when sampling k operations, we call
this strategy k-fold augmentation. Empirically, we use 2-fold
augmentation when IPC is 10 or 50 and 4-fold augmentation
when IPC is 1.

In summary, our proposed methods share a common char-
acteristic of smoothing the optimization problem that can
improve generalization: (a) in terms of architecture, DropPath
smooths the predictions by forming an implicit ensemble of
sub-networks; (b) knowledge distillation smooths the objective
function by introducing the predictions of teacher models as
soft labels; (c) better optimizer is capable of finding flatter
local minima; (d) stronger data augmentation smooth the loss
landscape in the sample space [72, 73].

IV. EXPERIMENTS

In this section, we evaluate our method on different dataset
distillation algorithms, different numbers of instances per class
(IPC), different datasets and different network architectures.
Our methods are shown effective in mitigating architecture
overfitting in these settings and generic to improve the perfor-
mance on limited real data. In addition, we plot the Hessian
eigenvalues and visualize the landscape of different models
to corroborate the smoothing effect of the proposed methods.
Ultimately, we conduct extensive ablation studies for analysis.
Implementation details are deferred to Appendix A.

A. Mitigate Architecture Overfitting in Dateset Distillation

TABLE I
EXPERIMENTAL SETTINGS. DP DENOTES DROPPATH WITH THREE-PHASE

KEEP RATE, KD DENOTES KNOWLEDGE DISTILLATION. BESIDES, THE
MISCELLANEOUS (MISC.) INCLUDES THE METHODS IN SECTION III-C.

Method DP KD Misc.

Baseline ✘ ✘ ✘
w/o DP&KD ✘ ✘ ✔

w/o DP ✘ ✔ ✔
w/o KD ✔ ✘ ✔

Full ✔ ✔ ✔

We first evaluate our method on three representative dataset
distillation (DD) algorithms, i.e., neural Feature Regression
with Pooling (FRePo) [18], Matching Training Trajecto-
ries (MTT) [20] and Difficulty-Aligned Trajectory Matching
(DATM) [29]. Furthermore, we test several ablations of our
methods, the names and the settings of each ablation are
elaborated in Table I.

We comprehensively evaluate the performance of these
methods under various settings, including different numbers



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

TABLE II
TEST ACCURACIES OF MODELS TRAINED ON THE DISTILLED DATA OF CIFAR10 AND CIFAR100 [74] WITH DIFFERENT IPCS. 3-LAYER CNN IS THE

ARCHITECTURE USED FOR DATA DISTILLATION AND IS THE TEACHER MODEL OF KNOWLEDGE DISTILLATION. THE RESULTS IN THE BRACKET INDICATE
THE GAPS FROM THE BASELINE PERFORMANCE OF 3-LAYER CNN. NOTE THAT FOR IPC=100/500, THE TEACHER MODEL OF RESNET50 IS RESNET18

W/O DP&KD. THE RESULTS IN BOLD ARE THE BEST RESULTS AMONG DIFFERENT SETTINGS. NOTE THAT DP AND KD ARE NOT APPLICABLE FOR
3-LAYER CNN, SO WE DO NOT HAVE THE TEST ACCURACY OF 3-LAYER CNN IN THESE SETTINGS.

(a) CIFAR10

DD IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50

FR
eP

o
[1

8]

1

Baseline 44.3 34.4 (-9.9) 41.8 (-2.5) 44.0 (-0.3) 25.9 (-18.4)

w/o DP&KD 44.8 (+0.5) 35.6 (-8.7) 47.4 (+3.1) 41.5 (-2.8) 30.3 (-14.0)

w/o DP - 47.2 (+2.9) 49.7 (+5.4) 48.7 (+4.4) 39.3 (-5.0)

w/o KD - 37.0 (-7.3) 46.0 (+1.7) 41.1 (-3.2) 32.5 (-11.8)

Full - 49.3 (+5.0) 50.7 (+6.4) 48.8 (+4.5) 41.5 (-2.8)

10

Baseline 63.0 55.6 (-7.4) 59.3 (-3.6) 61.3 (-1.7) 44.4 (-18.6)

w/o DP&KD 64.7 (+1.7) 61.0 (-2.0) 62.3 (-0.7) 62.4 (-0.6) 54.7 (-8.3)

w/o DP - 64.0 (+1.0) 63.3 (+0.3) 63.6 (+0.6) 57.7 (-5.3)

w/o KD - 63.9 (+0.9) 63.8 (+0.8) 62.2 (-0.8) 54.0 (-9.0)

Full - 66.6 (+3.6) 64.8 (+1.8) 65.4 (+2.4) 62.4 (-0.6)

50

Baseline 70.5 66.7 (-3.8) 66.8 (-3.7) 68.3 (-2.2) 60.5 (-10.0)

w/o DP&KD 72.4 (+1.9) 73.0 (+2.5) 71.0 (+0.5) 70.9 (+0.4) 71.2 (+0.7)

w/o DP - 73.9 (+3.4) 72.1 (+1.6) 72.0 (+1.5) 72.9 (+2.4)

w/o KD - 74.5 (+4.0) 71.5 (+1.0) 70.1 (-0.4) 70.6 (+0.1)

Full - 74.5 (+4.0) 73.2 (+2.7) 72.8 (+2.3) 73.2 (+2.7)

M
T

T
[2

0]

1

Baseline 48.3 37.2 (-11.1) 40.5 (-7.8) 39.3 (-9.0) 22.4 (-25.9)

w/o DP&KD 46.8 (-1.5) 36.9 (-11.4) 43.2 (-5.1) 36.7 (-11.6) 24.7 (-23.6)

w/o DP - 41.6 (-6.7) 46.7 (-1.6) 38.6 (-9.7) 32.4 (-15.9)

w/o KD - 35.5 (-12.8) 41.1 (-7.2) 34.4 (-13.9) 28.5 (-19.8)

Full - 47.2 (-1.1) 47.3 (-1.0) 44.1 (-4.2) 43.0 (-5.3)

10

Baseline 63.6 48.9 (-14.7) 56.9 (-6.7) 52.6 (-11.0) 28.1 (-35.5)

w/o DP&KD 65.0 (+1.4) 51.3 (-12.3) 60.7 (-2.9) 56.0 (-7.6) 39.8 (-23.8)

w/o DP - 61.4 (-2.2) 52.7 (-10.9) 48.8 (-14.8) 49.9 (-13.7)

w/o KD - 60.7 (-2.9) 59.2 (-4.4) 57.6 (-6.0) 47.5 (-16.1)

Full - 67.4 (+3.8) 68.3 (+4.7) 67.1 (+3.5) 63.8 (+0.2)

50

Baseline 70.2 62.3 (-7.9) 67.5 (-2.7) 63.0 (-7.2) 53.1 (-17.1)

w/o DP&KD 70.5 (+0.3) 68.1 (-2.1) 69.5 (-0.7) 67.6 (-2.6) 66.5 (-3.7)

w/o DP - 66.9 (-3.3) 63.8 (-6.4) 61.2 (-9.0) 66.8 (-3.4)

w/o KD - 69.8 (-0.4) 67.2 (-3.0) 69.0 (-1.2) 65.0 (-5.2)

Full - 71.0 (+0.8) 72.0 (+1.8) 69.5 (-1.2) 70.0 (-0.2)

D
A

T
M

[2
9]

10

Baseline 58.2 50.4 (-7.8) 58.4 (+0.2) 53.1 (-5.1) 28.8 (-29.4)

w/o DP&KD 66.5 (+8.3) 51.0 (-7.2) 60.3 (+5.1) 57.4 (-0.8) 39.6 (-18.6)

w/o DP - 54.9 (-3.3) 65.8 (+7.6) 61.9 (+3.7) 43.2 (-15.0)

w/o KD - 59.6 (+1.4) 63.5 (+5.3) 60.5 (+2.3) 53.5 (-4.7)

Full - 64.3 (+6.1) 67.5 (+9.3) 63.4 (+5.2) 59.8 (+1.6)

50

Baseline 70.0 69.2 (-0.8) 71.5 (+1.5) 66.9 (-3.1) 54.4 (-15.6)

w/o DP&KD 74.5 (+4.5) 72.1 (+2.1) 73.7 (+3.7) 71.8 (+1.8) 70.0 (+0.0)

w/o DP - 73.0 (+3.0) 75.3 (+5.3) 71.9 (+1.9) 72.5 (+2.5)

w/o KD - 75.4 (+5.4) 73.8 (+3.8) 73.1 (+3.1) 73.3 (+3.3)

Full - 75.7 (+5.7) 77.2 (+7.2) 74.7 (+4.7) 75.7 (+5.7)

500

Baseline 76.5 82.5 (+6.0) 80.1 (+3.6) 77.0 (+0.5) 79.8 (+3.3)

w/o DP&KD 83.3 (+6.8) 86.0 (+9.5) 83.5 (+7.0) 82.3 (+5.8) 85.8 (+9.3)

w/o DP - 85.9 (+9.4) 84.4 (+7.9) 83.6 (+7.1) 86.5 (+10.0)

w/o KD - 86.7 (+10.2) 84.3 (+7.8) 84.2 (+7.7) 87.2 (+10.7)

Full - 86.8 (+10.3) 85.1 (+8.6) 85.3 (+8.8) 87.9 (+11.4)

(b) CIFAR100

DD IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50

FR
eP

o
[1

8]

1

Baseline 26.2 18.7 (-7.5) 22.9 (-3.3) 22.6 (-3.6) 13.5 (-12.7)

w/o DP&KD 26.1 (-0.1) 16.0 (-10.2) 22.3 (-3.9) 18.4 (-7.8) 14.5 (-11.7)

w/o DP - 21.3 (-4.9) 23.9 (-2.3) 21.8 (-4.4) 18.2 (-8.0)

w/o KD - 17.1 (-9.1) 22.1 (-4.1) 17.9 (-8.3) 14.3 (-11.9)

Full - 24.4 (-1.8) 25.3 (-0.9) 24.0 (-2.2) 23.7 (-2.5)

10

Baseline 34.4 32.1 (-2.3) 33.1 (-1.3) 34.1 (-0.3) 28.1(-6.3)

w/o DP&KD 40.2 (+5.8) 35.3 (+0.9) 37.9 (+3.5) 37.2 (+2.8) 33.7 (-0.7)

w/o DP - 39.4 (+5.0) 39.2 (-4.8) 38.9 (+4.5) 38.5 (+4.1)

w/o KD - 34.8 (+0.4) 38.5 (+4.1) 36.6 (+2.2) 35.0(+0.6)

Full - 40.6 (+6.2) 39.9 (+5.5) 39.4 (+5.0) 40.1 (+5.7)

50

Baseline 42.1 46.7 (+4.6) 45.5 (+3.4) 45.5 (+3.4) 45.8 (+3.7)

w/o DP&KD 46.2 (+4.1) 46.8 (+4.7) 46.1 (+4.0) 45.5 (+3.4) 46.9 (+4.8)

w/o DP - 48.3 (+6.2) 44.6 (+2.5) 45.8 (+3.7) 48.7 (+6.6)

w/o KD - 47.2 (+5.1) 47.0 (+4.9) 45.0 (+2.9) 46.1 (+4.0)

Full - 48.5 (+6.4) 46.6 (+4.5) 46.7 (+4.6) 49.1 (+7.0)

M
T

T
[2

0]
1

Baseline 24.4 14.3 (-10.1) 17.0 (-7.4) 15.6 (-8.8) 4.6 (-19.8)

w/o DP&KD 25.0 (+0.6) 12.5 (-11.9) 20.6 (-3.8) 8.2 (-16.2) 6.0 (-18.4)

w/o DP - 13.3 (-11.1) 24.4 (+0.0) 10.2 (-14.2) 8.5(-15.9)

w/o KD - 13.6 (-10.8) 19.7 (-4.7) 12.4 (-12.0) 9.3 (-15.1)

Full - 24.9 (+0.5) 25.8 (+1.4) 22.1 (-2.3) 24.6 (+0.2)

10

Baseline 38.4 32.9 (-5.5) 33.7 (-4.7) 28.8 (-9.6) 22.5 (-15.9)

w/o DP&KD 38.5(+0.1) 32.7 (-5.7) 36.0 (-2.4) 33.9 (-4.5) 30.6 (-7.8)

w/o DP - 35.0 (-3.4) 38.2 (-0.2) 35.5 (-2.9) 34.2 (-4.2)

w/o KD - 34.6 (-3.8) 34.9 (-3.5) 33.2 (-5.2) 32.9 (-5.5)

Full - 38.4 (+0.0) 39.9 (+1.5) 36.4 (-2.0) 38.5 (+0.1)

50

Baseline 44.5 43.1 (-1.4) 41.4 (-3.1) 39.3 (-5.2) 38.7 (-5.8)

w/o DP&KD 46.0 (+1.5) 46.2 (+1.7) 46.1 (+1.6) 44.5 (+0.0) 45.5 (+1.0)

w/o DP - 47.2 (+2.7) 47.1 (+2.6) 45.1 (+0.6) 47.2 (+2.7)

w/o KD - 46.9 (+2.4) 45.7 (+1.2) 43.4 (-1.1) 46.8 (+2.3)

Full - 48.9 (+4.4) 47.6 (+3.1) 45.1 (+0.6) 49.4 (+4.9)

D
A

T
M

[2
9]

10

Baseline 29.6 21.9 (-7.7) 26.8 (-2.8) 21.2 (-8.4) 8.7 (-20.9)

w/o DP&KD 32.4 (+2.8) 25.5 (-4.1) 32.4 (+2.8) 26.4 (-3.2) 17.9 (-11.7)

w/o DP - 29.7 (+0.1) 34.6 (+5.0) 31.1 (+1.5) 24.2 (-5.4)

w/o KD - 29.5 (-0.1) 32.3 (+2.7) 30.6 (+1.0) 28.2 (-1.4)

Full - 33.9 (+4.3) 35.3 (+5.7) 33.1 (+3.5) 35.2 (+5.6)

50

Baseline 46.8 44.0 (-2.8) 44.7 (-2.1) 41.7 (-5.1) 39.1 (-7.7)

w/o DP&KD 47.4 (+0.6) 47.6 (+0.8) 48.6 (+1.8) 46.5 (-0.3) 46.6 (-0.2)

w/o DP - 51.3 (+4.5) 50.6 (+3.8) 48.8 (+2.0) 50.5 (+3.7)

w/o KD - 49.9 (+3.4) 48.0 (+1.2) 48.2 (+1.4) 50.7 (+3.9)

Full - 52.0 (+5.2) 50.6 (+3.8) 50.3 (+3.5) 54.0 (+7.2)

100

Baseline 52.5 55.0 (+2.5) 53.1 (+0.6) 51.0 (-1.5) 52.1 (-0.4)

w/o DP&KD 53.6 (+1.1) 58.4 (+5.9) 55.6 (+3.1) 55.1 (+2.6) 58.9 (+6.4)

w/o DP - 59.3 (+6.8) 56.7 (+4.2) 56.3 (+3.8) 59.7 (+7.2)

w/o KD - 60.5 (+8.0) 55.8 (+3.3) 57.2 (+4.7) 60.6 (+8.1)

Full - 60.5 (+8.0) 56.5 (+4.0) 58.0 (+5.5) 60.9 (+8.4)

of instances per class (IPC), different datasets and different
architectures of the test networks. Table II(a) demonstrate the
results on CIFAR10, and the results on CIFAR100 and Tiny-
ImageNet are reported in Table II(b) and Table VIII, respec-
tively. Note that, DropPath and knowledge distillation are not
applicable when we use the same architecture for training and
test networks, i.e., 3-layer CNN, because 1) it is too shallow
for DropPath; 2) we will converge to the teacher model if we
use the same model architecture for the teacher and the student
models. We can observe from these results that architecture
overfitting is more severe in the case of small IPCs and large
architecture discrepancy between the training networks and the
test networks, but both DropPath and knowledge distillation
is capable of mitigating it. In addition, combining them can

further improve the performance and overcome architecture
overfitting in many cases. For instance, when evaluating our
method on distilled images of MTT (CIFAR10, IPC=10),
it contributes performance gains of 18.5% and 35.7% for
ResNet18 and ResNet50, respectively. We are also interested
in how much performance gap between training and test
networks we can close. Surprisingly, when IPC=10 and 50,
the test accuracies of most network architectures surpass that
of the architecture identical to the training network. Along
with it, the gaps between different test networks, such as
ResNet18 and ResNet50, are also narrowed down in most
cases. Additionally, when the IPC reaches 500, our method
can still contribute to performance gain.

DropPath enables an implicit ensemble of the shallow



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

subnetworks and thus mitigates architecture overfitting. How-
ever, each of these sub-networks may have sub-optimal per-
formance. Knowledge distillation can address this issue by
encouraging similar outputs between the teacher model and
the sub-networks and thus further improves the performance.
By contrast, the contribution of knowledge distillation could
be marginal without DropPath due to the big difference
in architecture [75]. Empirically, combining DropPath with
knowledge distillation not only achieves the best performance,
but also greatly decreases the performance difference among
different test network architectures.

To better validate the effectiveness of our method, we report
the standard deviations of test accuracies of CIFAR10 (FRePo)
in Table III. We calculate these standard deviations by running
the experiments three times with different random seeds. It can
be observed that the standard deviation generally increases
as IPC decreases. The reason could be that when IPC gets
smaller, there are more solutions that make the training error
zero, so the performance of training becomes more sensitive
to initialization. Despite this, we can still see significant
improvement introduced by our methods.

TABLE III
THE AVERAGE TEST ACCURACIES OF MODELS TRAINED ON THE

DISTILLED DATA OF CIFAR10 [74] WITH DIFFERENT IPCS. THE NUMBER
AFTER ± DENOTES THE STANDARD DEVIATION. THESE RESULTS ARE

OBTAINED THROUGH THREE REPETITIVE EXPERIMENTS WITH DIFFERENT
RANDOM SEEDS. 3-LAYER CNN IS THE ARCHITECTURE USED IN

DISTILLATION AND IS THE TEACHER MODEL OF KNOWLEDGE
DISTILLATION.

DD IPC Methods ResNet18 AlexNet VGG11 ResNet50

FR
eP

o 1

w/o DP&KD 35.6 ±2.5 47.4 ±0.9 41.5 ±1.1 30.3 ±1.9

w/o DP 47.2 ±0.5 49.7 ±0.7 48.7 ±0.6 39.3 ±1.4

w/o KD 37.0 ±1.0 46.0 ±0.6 41.1 ±1.3 32.5 ±1.4

Full 49.3 ±0.6 50.7 ±0.1 48.8 ±0.4 41.5 ±1.0

10 Full 66.2 ±0.5 64.8 ±0.9 65.4 ±0.2 62.4 ±0.9

50 Full 74.5 ±0.1 73.2 ±0.3 72.8 ±0.0 73.2 ±0.2

B. Comparison with Other Baselines

TABLE IV
COMPARISON WITH BASELINES. P IN DROPPATH AND DROPOUT DENOTES
THE KEEP RATE AND alpha IN MIXUP AND CUTMIX IS THE PARAMETERS

α AND β IN BETA DISTRIBUTION, WHERE α AND β ARE THE SAME.

Method Baseline DropPath
(p=0.5)

DropOut
(p=0.5)

MixUp
(alpha=0.5)

CutMix
(alpha=0.5) Ours

Test Acc. 55.6 46.2 44.3 57.6 56.9 66.2

We further compare our method with some regularization
methods on architectures, including DropOut [61] and Drop-
Path [62], and data augmentation methods, including MixUp
[76] and CutMix [77]. We use 3-layer CNN as the training
network and ResNet18 as the test network. We use FRePo to
generate distilled dataset and set IPC to be 10. Our results are
reported in Table IV. We observe that DropPath and DropOut
with a constant keep rate deteriorate the performance, com-
pared with the DropPath variant proposed by us. In addition,
MixUp and CutMix only contribute marginal performance
improvement, compared with 2-fold augmentation in this
work. These results further demonstrate the effectiveness of
our methods to train distilled datasets.

C. Improve the Performance of Training on Limited Real Data

In this section, we discuss the performance of our methods
when training on a limited amount of real data and compare it
with the case of the distilled dataset. Our methods have shown
effective on the distilled dataset, we expect them to improve
the performance on limited real training data as well. In this
case, smaller models also tend to perform better than larger
models because both can fit the training set perfectly but the
latter suffers more from overfitting.

As illustrated in Figure 3, we train models on different
fractions of CIFAR10 training set which are randomly sam-
pled. The 3-layer CNN still serves as the teacher model when
we use knowledge distillation. Since ResNet18 and ResNet50
exhibit the largest performance differences from the 3-layer
CNN in the previous experiments, we only show the results of
ResNet18 and ResNet50 here. ResNet18 and ResNet50 signif-
icantly outperform 3-layer CNN with enough training data, but
they show worse generalization performance than CNN when
the fraction is lower than 0.02, i.e., 1000 training instances.
Under our methods, the performances of both ResNet18 and
ResNet50 surpass that of 3-layer CNN even when the fraction
is as small as 0.002, i.e., 100 training instances. However,
the performance gain saturates or even declines when the
fraction of training data exceeds 0.05. This can be attributed to
the suboptimal performance of the teacher model (blue line).
Nevertheless, Figure 3 (d) shows that when the current teacher
does not contribute to performance gain anymore, a stronger
teacher can further improve the performance.

Furthermore, we observe that the performance gap of train-
ing on limited real data is much smaller than that of training
on distilled images. For instance, when the fraction of training
data is 0.002, which is equivalent to IPC=10, the performance
gap between 3-layer CNN and ResNet50 is 4.9% when they
are trained on real images. However, when we train them on
distilled images of FRePo, the performance gap increases to
18.6%. As for the distilled images generated by MTT, the
gap is even larger, which reaches 35.5%. Meanwhile, training
on a distilled dataset results in much better performance than
training on real data of the same size, which makes it popular
in downstream applications. Therefore, we focus on applying
our method in the context of dataset distillation, in which the
effectiveness of our method can be better revealed.

D. Smoothing Effect Induced by Proposed Methods

To corroborate the smoothing effect induced by our pro-
posed methods, we analyze the Hessian spectrum of models
trained with different ablations. It is known that the curvature
in the neighborhood of model parameters is dominated by
the top eigenvalues of the Hessian matrix ∇2LCE(θ), where
LCE(θ) denotes the cross-entropy loss w.r.t model parameters
θ. In the implementation, we use the power iteration as in
[78, 79] to iteratively estimate the top 20 eigenvalues and the
corresponding eigenvectors of the Hessian matrix.

As shown in Figure 4 (a), the eigenvalues of the Hessian
matrix for the ResNet18 trained with full setting and Lion
optimizer are the lowest among the evaluated settings, which
quantitatively indicates that the neighborhood of the minima



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

10 2 10 1 100

Fraction of Training Data
30

40

50

60

70

80

90
Te

st
 A

cc
ur

ac
y 

(%
)

10 22 × 10 3 4 × 10 36 × 10 3

35

40

45

50

55

CNN
RN18
RN18 DP+KD (CNN)

(a) ResNet18 v.s. 3-layer CNN

10 2 10 1 100

Fraction of Training Data
30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

10 22 × 10 3 4 × 10 36 × 10 3

35

40

45

50

55

CNN
RN50
RN50 DP+KD (CNN)

(b) ResNet50 v.s. 3-layer CNN

10 2 10 1 100

Fraction of Training Data
30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

10 22 × 10 3 4 × 10 36 × 10 3

35

40

45

50

55

CNN
VGG
VGG DP+KD (CNN)

(c) VGG11 v.s. 3-layer CNN

10 2 10 1 100

Fraction of Training Data
30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y 
(%

)

10 12 × 10 2 4 × 10 26 × 10 2
65

70

75

80

85

RN18
RN50
RN50 DP+KD (CNN)
RN50 DP+KD (RN18)

(d) ResNet50 v.s. ResNet18

Fig. 3. Test accuracies obtained from training on different fractions of CIFAR10, the shadow indicates the standard deviation. We compare
the test accuracies (a) between ResNet18 (RN18) and 3-layer CNN (CNN), (b) between ResNet50 (RN50) and CNN, (c) between VGG11
and 3-layer CNN (CNN), and (d) between ResNet50 (RN50) and ResNet18, respectively. The x-axis denotes the fraction of training data,
DP+KD denotes that the network is trained with DropPath and knowledge distillation. The model enclosed in the brackets after KD represents
the teacher model used. Note that we run the experiments three times with different random seeds.

0 5 10 15 20
Index

100

101

Va
lu

e

Full w/ L
Full w/ A
w/o DP&KD
w/o DP
w/o KD

(a) Hessian Eigenvalues

1

0.4
0.2

0.0
0.2

0.4

2

0.4
0.2

0.0
0.2

0.4

loss

0
2
4
6
8
10
12

0

1

2

3

(b) Full w/ Lion

1

0.4
0.2

0.0
0.2

0.4

2

0.4
0.2

0.0
0.2

0.4

loss

0
2
4
6
8
10
12

0

5

10

15

(c) Full w/ AdamW

1

0.4
0.2

0.0
0.2

0.4

2

0.4
0.2

0.0
0.2

0.4

 lo
ss

0.0
2.5
5.0
7.5
10.0
12.5
15.0

0

5

10

15

(d) w/o DP

1

0.4
0.2

0.0
0.2

0.4

2

0.4
0.2

0.0
0.2

0.4

 lo
ss

0
2
4
6
8
10
12

0

2

4

6

(e) w/o KD

1

0.4
0.2

0.0
0.2

0.4

2

0.4
0.2

0.0
0.2

0.4

 lo
ss

0
2
4
6
8
10
12

0

2

4

6

(f) w/o DP&KD

Fig. 4. Visualization of the smoothing effect induced by proposed methods. (a) Top 20 eigenvalues of Hessian matrix for ResNet18 trained
with different settings, including full setting with Lion optimizer (Full w/ L), full setting with AdamW (Full w/ A), w/o DP, w/o KD and w/o
DP&KD. For w/o DP, w/o KD and w/o DP&KD, Lion is adopted by default. (b)-(f) Loss landscape LCE(θ + α1v1 + α2v2) of ResNet18
around the minima found by models with different settings, where v1 and v2 are the eigenvectors corresponding to the top two eigenvalues
of Hessian matrices, respectively. Note that the training data is 100 (IPC=10) distilled images of CIFAR10 by FRePo. ResNet18 is trained
with DropPath and knowledge distillation. 3-layer CNN serves as the teacher model where knowledge distillation is adopted.

found by our method has smaller curvature. Furthermore,
Figure 4 (b)-(f) qualitatively shows that our method induces
a smoother loss landscape. Notably, DropPath, forming an
implicit ensemble of sub-networks, contributes the most to
loss landscape smoothing. By contrast, knowledge distillation
only has a marginal effect on smoothing.

E. Ablation Studies

We conduct extensive ablation studies here to validate the
effectiveness of each component in our methods. In this
subsection, we focus on the case of using 3-layer CNN as
the training network, ResNet18 as the test network, setting

IPC to 10 and generating the distilled dataset by FRePo. Note
that the baseline performance of 3-layer CNN trained on the
distilled data is 63.0%, its performance improves to 64.7%
with better optimization and data augmentation.

DropPath: We first try different minimum keep rates
in the three-phase scheduler introduced in Section III-A. As
illustrated in Figure 5 (a) and (c), a lower minimum keep rate
and a longer period of decay induce better performance, but
both of them make the training longer. To balance performance
and efficiency, we set the minimum keep rate and period
of decay to 0.5 and 500, respectively. Figure 5 (b) shows
that different final keep rates do not significantly affect the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Minimum Keep Rate

63

64

65

66

67

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet (full)
CNN (baseline)
CNN (improved)

(a) Minimum keep rate

0.6 0.7 0.8 0.9 1.0
Final Keep Rate

63.0
63.5
64.0
64.5
65.0
65.5
66.0
66.5

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet (full)
CNN (baseline)
CNN (improved)

(b) Final keep rate

200 400 600 800 1000
Period of Decay

63

64

65

66

67

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet (full)
CNN (baseline)
CNN (improved)

(c) Period of decay

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KD Weight

63.0
63.5
64.0
64.5
65.0
65.5
66.0
66.5

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet (full)
CNN (baseline)
CNN (improved)

(d) KD weight

0.5 1 1.5 2 2.5 3 5 8 10
KD Temperature

63.0

63.5

64.0

64.5

65.0

65.5

66.0

Te
st

 A
cc

ur
ac

y 
(%

)

ResNet (full)
CNN (baseline)
CNN (improved)

(e) KD temperature

Fig. 5. Ablation studies on minimum keep rate, final keep rate, period of decay, weight and temperature of knowledge distillation (KD). (a)
Test accuracies of different minimum keep rates. (b) Test accuracies of different keep rates at the final phase. (c) Test accuracies of different
periods of decay. (d) Test accuracies of different KD weights. (e) Test accuracies of different KD temperatures. Regardless of the variation
of hyperparameters, ResNet18 trained with our approach generally outperforms 3-layer CNN trained with baseline (orange dashed line) and
that trained with better optimization and data augmentation (green dashed line).

TABLE V
ABLATION STUDIES ON THE HIGH KEEP RATE IN THE FINAL PHASE OF

TRAINING AND IMPROVED SHORTCUT CONNECTION (SC).

Final phase Improved SC Test Acc.

✘ ✘ 65.2
✔ ✘ 65.6
✘ ✔ 65.9
✔ ✔ 66.6

TABLE VI
ABLATION STUDIES ABOUT OPTIMIZATION AND DATA AUGMENTATION. IF

PERIODICAL LEARNING RATE (LR), LION OPTIMIZER AND STRONGER
AUGMENTATION (AUG.) ARE NOT ADOPTED, WE REPLACE THEM WITH

COSINE ANNEALING LEARNING RATE, ADAMW AND 1-FOLD
AUGMENTATION, RESPECTIVELY.

Periodical LR Lion stronger Aug. Test Acc.

✘ ✘ ✘ 61.6
✔ ✘ ✘ 61.9
✔ ✔ ✘ 64.8
✔ ✔ ✔ 66.6

performance. Moreover, we verify the effectiveness of the high
keep rate in the final phase of training, and the improved
shortcut connection (SC) introduced in Section III-A. The
results shown in Table V indicate that both of them contribute
to the performance.

Knowledge Distillation: We also test different hyper-
parameters of knowledge distillation (KD). As illustrated in
Figure 5 (d) and (e), when weight α and temperature τ
are in the range of [0.5, 0.8] and [1, 10], respectively, the
performance does not vary significantly. It indicates that our
method is quite robust to different hyperparameter choices.

Optimization and Data Augmentation: In Table VI, we
replace each of the optimization and data augmentation ap-
proaches with a baseline. The results indicate that each of
these approaches improves performance. Among them, Lion
optimizer contributes a performance improvement of 2.9%.

Impact of Augmentation when IPC=1: It should be noted
that the results of IPC=1 in Table II(a) are obtained with 4-
fold augmentation. For comparison, we also get the results
with 2-fold augmentation (see in Table VII). Compared with
Table II(a), the test accuracies of w/o DP&KD and w/o &
KD in Table VII are higher, but those of w/o DP and Full
are lower. Especially for ResNet50, the performance of Full

increases by 7.7% with 4-fold augmentation. This indicates
that stronger augmentation is necessary when using knowl-
edge distillation when there are extremely limited data, and
when the architecture difference between the training and test
networks is big. Moreover, we observe that the contribution
of 4-fold augmentation is marginal under a larger IPC, so we
adopt 4-fold augmentation only when IPC=1.

TABLE VII
TEST ACCURACIES OF MODELS TRAINED ON THE DISTILLED DATA OF
CIFAR10 (FREPO, IPC=1). HOWEVER, 2-FOLD AUGMENTATION IS

ADOPTED HERE. EXCEPT THAT, THE OTHER SETTINGS ARE THE SAME AS
TABLE II(A).

IPC Methods 3-layer
CNN ResNet18 AlexNet VGG11 ResNet50

1

Baseline 44.3 34.4 (-9.9) 41.8 (-2.5) 44.0 (-0.3) 25.9 (-18.4)

w/o DP&KD 44.8 (+0.5) 41.2 (-3.1) 45.4 (+1.1) 45.9 (+1.6) 32.8 (-11.5)

w/o DP - 41.0 (-3.3) 44.5 (+0.2) 47.0 (+2.7) 30.0 (-14.3)

w/o KD - 39.4 (-4.9) 47.1 (+2.8) 38.9 (-5.4) 31.0 (-13.3)

Full - 45.5 (+1.2) 47.8 (+3.5) 46.7 (+2.4) 33.8 (-10.5)

V. CONCLUSION

This paper studies architecture overfitting when we train
models on distilled datasets. To mitigate this issue, we propose
a series of approaches based on the intuition that the large
model can act as an implicit ensemble of small models. These
methods also exhibit a smoothing effect from different aspects.
Our methods are efficient and generic, and can improve the
performance when training on a small real dataset directly.
We believe that our work can help extend the utility of
distilled datasets in more real-world scenarios. Recognizing
that this work only mitigates architecture overfitting in the
evaluation stage, our future work will focus on developing
a more generalizable dataset distillation algorithm to address
this issue in essence.

ACKNOWLEDGMENTS

This work is supported by the internal funds of City
University of Hong Kong (No. 9610614 and No. 9229130).
It is also supported by the NSFC project (No. 62306250). We
also thank Shuqi Liu for her support in experiments.

REFERENCES

[1] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and
B. Ommer, “High-resolution image synthesis with latent
diffusion models,” 2022.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

[2] J. Jumper, R. Evans, A. Pritzel et al., “Highly accurate
protein structure prediction with alphafold,” Nature,
vol. 596, pp. 583–589, 2021. [Online]. Available:
https://doi.org/10.1038/s41586-021-03819-2

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly et al., “An image is worth
16x16 words: Transformers for image recognition at
scale,” arXiv preprint:2010.11929, 2020.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell et al., “Language models are few-shot learn-
ers,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[5] C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman,
P. Bailis, P. Liang, J. Leskovec, and M. Zaharia, “Selec-
tion via proxy: Efficient data selection for deep learning,”
arXiv preprint:1906.11829, 2019.

[6] M. Hwang, Y. Jeong, and W. Sung, “Data distribution
search to select core-set for machine learning,” in The
9th International Conference on Smart Media and Ap-
plications, 2020, pp. 172–176.

[7] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros,
“Dataset distillation,” arXiv preprint:1811.10959, 2018.

[8] B. Zhao, K. R. Mopuri, and H. Bilen, “Dataset condensa-
tion with gradient matching,” arXiv preprint:2006.05929,
2020.

[9] B. Zhao and H. Bilen, “Dataset condensation with dis-
tribution matching,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
2023, pp. 6514–6523.

[10] A. Rosasco, A. Carta, A. Cossu, V. Lomonaco,
and D. Bacciu, “Distilled replay: Overcoming forget-
ting through synthetic samples,” in Continual Semi-
Supervised Learning: First International Workshop,
CSSL 2021, Virtual Event, August 19–20, 2021, Revised
Selected Papers. Springer, 2022, pp. 104–117.

[11] B. Zhao and H. Bilen, “Dataset condensation with differ-
entiable siamese augmentation,” in International Confer-
ence on Machine Learning. PMLR, 2021, pp. 12 674–
12 685.

[12] G. Li, R. Togo, T. Ogawa, and M. Haseyama, “Soft-label
anonymous gastric x-ray image distillation,” in 2020
IEEE International Conference on Image Processing
(ICIP). IEEE, 2020, pp. 305–309.

[13] J. Goetz and A. Tewari, “Federated learning via synthetic
data,” arXiv preprint:2008.04489, 2020.

[14] O. Bohdal, Y. Yang, and T. Hospedales, “Flexible
dataset distillation: Learn labels instead of images,” arXiv
preprint:2006.08572, 2020.

[15] I. Sucholutsky and M. Schonlau, “Soft-label dataset
distillation and text dataset distillation,” in 2021 Inter-
national Joint Conference on Neural Networks (IJCNN).
IEEE, 2021, pp. 1–8.

[16] T. Nguyen, Z. Chen, and J. Lee, “Dataset meta-learning
from kernel ridge-regression,” in Proceedings of the
International Conference on Learning Representations
(ICLR), 2021.

[17] T. Nguyen, R. Novak, L. Xiao, and J. Lee, “Dataset
distillation with infinitely wide convolutional networks,”
Advances in Neural Information Processing Systems,
vol. 34, pp. 5186–5198, 2021.

[18] Y. Zhou, E. Nezhadarya, and J. Ba, “Dataset
distillation using neural feature regression,” arXiv
preprint:2206.00719, 2022.

[19] S. Lee, S. Chun, S. Jung, S. Yun, and S. Yoon, “Dataset
condensation with contrastive signals,” in International
Conference on Machine Learning. PMLR, 2022, pp.
12 352–12 364.

[20] G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and
J.-Y. Zhu, “Dataset distillation by matching training tra-
jectories,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp.
4750–4759.

[21] J. Cui, R. Wang, S. Si, and C.-J. Hsieh, “Scaling up
dataset distillation to imagenet-1k with constant mem-
ory,” arXiv preprint:2211.10586, 2022.

[22] K. Wang, B. Zhao, X. Peng, Z. Zhu, S. Yang, S. Wang,
G. Huang, H. Bilen, X. Wang, and Y. You, “Cafe:
Learning to condense dataset by aligning features,” in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 12 196–12 205.

[23] W. Chen, Z. Yu, S. De Mello, S. Liu, J. M. Alvarez,
Z. Wang, and A. Anandkumar, “Contrastive syn-to-real
generalization,” arXiv preprint:2104.02290, 2021.

[24] A. Parnami and M. Lee, “Learning from few examples:
A summary of approaches to few-shot learning,” arXiv
preprint:2203.04291, 2022.

[25] S. Lei and D. Tao, “A comprehensive survey to dataset
distillation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 46, no. 1, pp. 17–32, 2023.

[26] N. Loo, R. Hasani, A. Amini, and D. Rus, “Efficient
dataset distillation using random feature approximation,”
in Proceedings of the Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[27] N. Loo, R. Hasani, M. Lechner, and D. Rus, “Dataset
distillation with convexified implicit gradients,” in Pro-
ceedings of the International Conference on Machine
Learning (ICML), 2023, pp. 22 649–22 674.

[28] J. Du, Y. Jiang, V. T. F. Tan, J. T. Zhou, and H. Li,
“Minimizing the accumulated trajectory error to improve
dataset distillation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023, pp. 3749–3758.

[29] Z. Guo, K. Wang, G. Cazenavette, H. Li, K. Zhang,
and Y. You, “Towards lossless dataset distillation via
difficulty-aligned trajectory matching,” in Proceedings of
the International Conference on Learning Representa-
tions (ICLR), 2024.

[30] J. Du, Q. Shi, and J. T. Zhou, “Sequential subset
matching for dataset distillation,” in Proceedings of
the Advances in Neural Information Processing Systems
(NeurIPS), 2023.

[31] Y. Lee and H. W. Chung, “SelMatch: Effectively scaling
up dataset distillation via selection-based initialization
and partial updates by trajectory matching,” in Pro-

https://doi.org/10.1038/s41586-021-03819-2


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

ceedings of the International Conference on Machine
Learning (ICML), 2024.

[32] D. Liu, J. Gu, H. Cao, C. Trinitis, and M. Schulz,
“Dataset distillation by automatic training trajectories,”
in Proceedings of the European Conference on Computer
Vision (ECCV), 2024.

[33] S. Yang, S. Cheng, M. Hong, H. Fan, X. Wei, and S. Liu,
“Neural spectral decomposition for dataset distillation,”
in Proceedings of the European Conference on Computer
Vision (ECCV), 2024.

[34] A. Sajedi, S. Khaki, E. Amjadian, L. Z. Liu, Y. A.
Lawryshyn, and K. N. Plataniotis, “Datadam: Efficient
dataset distillation with attention matching,” in Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), October 2023, pp. 17 097–17 107.

[35] G. Zhao, G. Li, Y. Qin, and Y. Yu, “Improved distribution
matching for dataset condensation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, pp. 7856–7865.

[36] H. Zhang, S. Li, P. Wang, and S. Zeng, Dan Ge, “M3D:
Dataset condensation by minimizing maximum mean
discrepancy,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2024.

[37] W. Deng, W. Li, T. Ding, L. Wang, H. Zhang, K. Huang,
J. Huo, and Y. Gao, “Exploiting inter-sample and inter-
feature relations in dataset distillation,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2024, pp. 17 057–17 066.

[38] H. Zhang, S. Li, F. Lin, W. Wang, Z. Qian, and S. Ge,
“DANCE: Dual-view distribution alignment for dataset
condensation,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2024.

[39] H. Li, Y. Zhou, X. Gu, B. Li, and W. Wang, “Diversified
semantic distribution matching for dataset distillation,”
in Proceedings of the ACM International Conference on
Multimedia (MM), 2024.

[40] L. Zhang, J. Zhang, B. Lei, S. Mukherjee, X. Pan,
B. Zhao, C. Ding, Y. Li, and X. Dongkuan, “Accelerating
dataset distillation via model augmentation,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023, pp. 11 950–
11 959.

[41] Y. Liu, J. Gu, K. Wang, Z. Zhu, W. Jiang, and Y. You,
“DREAM: Efficient dataset distillation by representative
matching,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2023, pp.
17 314–17 324.

[42] Y. He, L. Xiao, and T. J. Zhou, “You Only Condense
Once: Two rules for pruning condensed datasets,” in
Proceedings of the Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2023.

[43] Y. Shang, Z. Yuan, and Y. Yan, “MIM4DD: Mutual infor-
mation maximization for dataset distillation,” in Proceed-
ings of the Advances in Neural Information Processing
Systems (NeurIPS), 2023.

[44] X. Chen, Y. Yang, Z. Wang, and B. Mirzasoleiman,
“Data distillation can be like vodka: Distilling more times
for better quality,” in Proceedings of the International

Conference on Learning Representations (ICLR), 2024.
[45] F. Yunzhen, V. Ramakrishna, and K. Julia, “Embarass-

ingly simple dataset distillation,” in Proceedings of the
International Conference on Learning Representations
(ICLR), 2024.

[46] Y. He, L. Xiao, J. Tianyi Zhou, and I. Tsang, “Multisize
dataset condensation,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR),
2024.

[47] N. Loo, A. Maalouf, R. Hasani, M. Lechner, A. Amini,
and D. Rus, “Large scale dataset distillation with domain
shift,” in Proceedings of the International Conference on
Machine Learning (ICML), 2024.

[48] Y. Xu, Y.-L. Li, K. Cui, Z. Wang, C. Lu, Y.-W. Tai,
and C.-K. Tang, “Distill gold from massive ores: Bi-
level data pruning towards efficient dataset distillation,”
in Proceedings of the European Conference on Computer
Vision (ECCV), 2024.

[49] J.-H. Kim, J. Kim, S. J. Oh, S. Yun, H. Song, J. Jeong,
J.-W. Ha, and H. O. Song, “Dataset condensation via ef-
ficient synthetic-data parameterization,” in International
Conference on Machine Learning. PMLR, 2022, pp.
11 102–11 118.

[50] Z. Deng and O. Russakovsky, “Remember the past:
Distilling datasets into addressable memories for neural
networks,” arXiv preprint:2206.02916, 2022.

[51] S. Liu, K. Wang, X. Yang, J. Ye, and X. Wang, “Dataset
distillation via factorization,” arXiv preprint:2210.16774,
2022.

[52] H. B. Lee, D. B. Lee, and S. J. Hwang, “Dataset
condensation with latent space knowledge factorization
and sharing,” arXiv preprint:2208.10494, 2022.

[53] X. Wei, A. Cao, F. Yang, and Z. Ma, “Sparse parameteri-
zation for epitomic dataset distillation,” in Proceedings of
the Advances in Neural Information Processing Systems
(NeurIPS), 2023.

[54] D. Shin, S. Shin, and I.-c. Moon, “Frequency domain-
based dataset distillation,” in Proceedings of the Ad-
vances in Neural Information Processing Systems
(NeurIPS), 2023.

[55] H. Zheng, J. Sun, S. Wu, B. Kailkhura, Z. Mao, C. Xiao,
and A. Prakash, “Leveraging hierarchical feature sharing
for efficient dataset condensation,” in Proceedings of
the European Conference on Computer Vision (ECCV),
2024.

[56] L. Breiman, “Bagging predictors,” Machine learning,
vol. 24, pp. 123–140, 1996.

[57] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class
adaboost,” Statistics and its Interface, vol. 2, no. 3, pp.
349–360, 2009.

[58] L. Breiman, “Random forests,” Machine learning,
vol. 45, pp. 5–32, 2001.

[59] T. K. Ho, “Random decision forests,” in Proceedings of
3rd international conference on document analysis and
recognition, vol. 1. IEEE, 1995, pp. 278–282.

[60] J. H. Friedman, “Stochastic gradient boosting,” Compu-
tational statistics & data analysis, vol. 38, no. 4, pp.
367–378, 2002.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[61] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929–1958,
2014.

[62] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractal-
net: Ultra-deep neural networks without residuals,” arXiv
preprint:1605.07648, 2016.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[64] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowl-
edge in a neural network,” arXiv preprint:1503.02531,
2015.

[65] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep
mutual learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp.
4320–4328.

[66] D. Chen, J.-P. Mei, C. Wang, Y. Feng, and C. Chen,
“Online knowledge distillation with diverse peers,” in
Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 34, no. 04, 2020, pp. 3430–3437.

[67] X. Chen, C. Liang, D. Huang, E. Real, K. Wang,
Y. Liu, H. Pham, X. Dong, T. Luong, C.-J. Hsieh et al.,
“Symbolic discovery of optimization algorithms,” arXiv
preprint:2302.06675, 2023.

[68] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, Eds., vol. 25.
Curran Associates, Inc., 2012. [Online]. Available:
https://proceedings.neurips.cc/paper files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[69] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” arXiv
preprint:1409.1556, 2014.

[70] L. Beyer, X. Zhai, A. Royer, L. Markeeva, R. Anil,
and A. Kolesnikov, “Knowledge distillation: A good
teacher is patient and consistent,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pp. 10 925–10 934.

[71] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and
K. Q. Weinberger, “Snapshot ensembles: Train 1, get m
for free,” arXiv preprint:1704.00109, 2017.

[72] C. Shorten and T. M. Khoshgoftaar, “A survey on image
data augmentation for deep learning,” Journal of big
data, vol. 6, no. 1, pp. 1–48, 2019.

[73] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg,
O. Wiles, and T. A. Mann, “Data augmentation can
improve robustness,” Advances in Neural Information
Processing Systems, vol. 34, pp. 29 935–29 948, 2021.

[74] A. Krizhevsky, G. Hinton et al., “Learning multiple
layers of features from tiny images,” 2009.

[75] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Mat-
sukawa, and H. Ghasemzadeh, “Improved knowledge
distillation via teacher assistant,” in Proceedings of the

AAAI conference on artificial intelligence, vol. 34, no. 04,
2020, pp. 5191–5198.

[76] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-
Paz, “mixup: Beyond empirical risk minimization,” arXiv
preprint:1710.09412, 2017.

[77] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo,
“Cutmix: Regularization strategy to train strong classi-
fiers with localizable features,” in Proceedings of the
IEEE/CVF international conference on computer vision,
2019, pp. 6023–6032.

[78] Z. Yao, A. Gholami, Q. Lei, K. Keutzer, and M. W.
Mahoney, “Hessian-based analysis of large batch train-
ing and robustness to adversaries,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[79] C. Liu, M. Salzmann, T. Lin, R. Tomioka, and
S. Süsstrunk, “On the loss landscape of adversarial train-
ing: Identifying challenges and how to overcome them,”
Advances in Neural Information Processing Systems,
vol. 33, pp. 21 476–21 487, 2020.

[80] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 2009, pp. 248–255.

Xuyang Zhong is currently a
Ph.D. student at the department
of computer science, City
University of Hong Kong and
is supervised by Chen Liu. He
obtained his Master’s degree
from Technical University
of Munich in 2022 and his
Bachelor’s degree from Beijing
Institute of Technology in 2020.
His research interest mainly
focuses on the optimization
and robustness in deep
learning.

Chen Liu is currently an as-
sistant professor at the department
of computer science, City Univer-
sity of Hong Kong. He obtained
his Ph.D. degree from École
Polytechnique Fédérale de Lau-
sanne (EPFL) in August 2022 and
was supervised by Prof. Sabine
Süsstrunk and Dr. Mathieu Salz-
mann. Previously, he obtained his
Master degree from École Poly-
technique Fédérale de Lausanne

(EPFL) in 2017 and Bachelor degree from Tsinghua Uni-
versity in 2015, both in Computer Science. Chen’s research
interest focuses on machine learning, optimization, robustness
and privacy. He was supported by Microsoft Research Ph.D
Scholarship programme between 2017 and 2019.

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

APPENDIX

A. Implementation Details

Datasets: The training sets in the experiments are the
distilled datasets of CIFAR10, CIFAR100 [74] and Tiny-
ImageNet [80], but the test sets are their respective original
test sets. To better validate the effectiveness of our method,
we use the distilled images synthesized by different dataset
distillation algorithms, e.g., neural Feature Regression with
Pooling (FRePo) [18] and Matching Training Trajectories
(MTT) [20]. In addition, we evaluate the performance of our
method in different numbers of instances per class (IPC),
e.g., 1, 10 and 50. Note that MTT does not provide the final
trainable learning rates in the released checkpoints, we adopt
the reported initial learning rates in our baselines.

Models: The networks used to synthesize the distilled im-
ages (training networks) in FRePo and MTT are 3-layer CNN.
Consistent with the hyperparameters reported in the paper, the
output channels of hidden layers of the network used in FRePo
are 128, 256 and 512, respectively. However, in MTT, all the
output channels of hidden layers are set to 128. ResNet18,
ResNet50 [63], AlexNet [68] and VGG11 [69] are adopted
in the evaluation, they are thereby called test networks. The
hyperparameters of networks are the same as those set in [20].
Note that when training networks on distilled images of FRePo
and MTT, batch and instance normalization layers are adopted
in networks following the settings of [18, 20], respectively.

DropPath: As shown in Algorithm 1, the decaying factor
of keep rate γ = 0.1, minimum keep rate pmin = 0.5, final
keep rate pfinal = 0.8, period of decay T = 500, warmup
period W = 50, stabilization epoch S = (1+ pmin/γ)×T =
3000. The total epochs N is set to S + 2× T = 4000. In the
improved shortcut, the pooling area depends on the stride of
1× 1 convolutional layer in the original one. e.g., if the stride
of 1 × 1 convolutional layer in the original shortcut is 2, we
use a 2× 2 max pooling.

Knowledge distillation: As shown in Eq. 2, the temperature
factor τ = 1.5, and the weight factor α = 0.5. If not
specifically indicated, the default teacher model is the 3-layer
CNN. Note that the teacher model is trained on the same data
set as the student model.

Periodical learning rate: In Eq. 5, the maximum learning
rate lrmax = 5× 10−5, the base decaying factor for learning
rate λ = 0.8. The period of the cosine function Tmax and
the number of warmup epochs Twarm are 1000 and 50,
respectively.

Optimizer: Lion [67] is adopted in our method, where
weight decay λwd = 5 × 10−3, coefficient β1 = 0.95, and
β2 = 0.98.

Augmentation: There are color jittering, cropping, cutout,
flipping, scaling, and rotating in the augmentation pool, we
sample more operations instead of just one as in [20].

Training: For CIFAR10, the batch sizes for different IPCs
are 10 (IPC=1), 100 (IPC=10) and 128 (IPC=50), respectively.
For CIFAR100, the batch sizes are 100 (IPC=1), 256 (IPC=10)
and 256 (IPC=50), respectively. Cross-entropy is adopted as
the loss function in our experiments. Since the labels of images
are learnable in FRePo, we divide them with a temperature

factor t = 0.3 for CIFAR10, 0.04 for CIFAR100, and 0.02 for
Tiny-ImageNet, respectively.

B. Supplementary Figures of Methods

The corresponding curve of the dynamic keep rate is shown
in Figure 6 (a). Mathematically, the dynamic keep rate p is
formulated as

p =

{
max(pmin, 1− γ · ceil((i−W )/T )), if i < S,

pfinal, otherwise.
(4)

where γ ∈ [0, 1] is a decaying factor. i, W , T and S denote the
current epoch, warmup period, decay period and stabilization
epoch, respectively. Unless specified, we set γ = 0.1, pmin =
0.5, pfinal = 0.8, T = 500, W = 500, S = 3000 in the
experiments.

Figure 6 (b) shows how the periodical learning rate changes.
The learning rate lr at epoch i is defined as

lri =

{
λi · mod(i,t)

Twarm
· lrmax, if mod(i, t) ≤ Twarm,

0.5λi(1 + cos(πmod(i,t)−Twarm

Tmax−Twarm
)) · lrmax, otherwise.

(5)
where T is the decay period of the keep rate p of DropPath,
S is the stabilization epoch. t = T when i < S, otherwise
t = S. λi = λ⌊min(i,S)/T⌋ where λ is a base decaying factor,
and ⌊·⌋ denotes the floor function. lrmax denotes the maximum
learning rate, mod(x, y) denotes the remainder of x/y. The
maximum iterations of the cosine annealing function and the
number of warmup epochs are denoted by Tmax and Twarm,
respectively. In implementation, the maximum learning rate
lrmax = 5 × 10−5, the base decaying factor for learning
rate λ = 0.8. The period of the cosine function Tmax and
the number of warmup epochs Twarm are 1000 and 50,
respectively.

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

ke
ep

 ra
te

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
epoch

0

1

2

3

4

5

le
ar

ni
ng

 ra
te

1e 5

(b)

Fig. 6. Supplementary figures. (a) Scheduler of three-phase keep rate. (b)
Curve of periodical learning rate.

C. Effect of scaling factor 1/p in DropPath

For multi-branch networks, Eq. 1 shows that
DropPath(x) = m

p · x, m = Bernoulli(p), where
p ∈ [0, 1] denotes the keep rate, m = Bernoulli(p) ∈ {0, 1}
outputs 1 with probability p and 0 with probability 1 − p.
We consider the module output y = DropPath(x) in
the training phase, then the expectation of y given x is
E(y) = p · 1

p · x + (1 − p) · 0
p · x = x. In the test phase,

DropPath is disabled, so the module output is simply x and
consistent with the expectation in the training phase. If there
is no scaling factor 1/p in Eq. 1 and p < 1, the expectation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

TABLE VIII
TEST ACCURACIES OF MODELS TRAINED ON THE DISTILLED DATA OF TINY-IMAGENET [80] WITH DIFFERENT IPCS. 3-LAYER CNN IS THE

ARCHITECTURE USED FOR DATA DISTILLATION AND IS THE TEACHER MODEL OF KD. NOTE THAT FOR DATM (IPC=50), THE TEACHER MODEL OF
RESNET50 IS RESNET18 W/O DP&KD.

DD IPC Methods CNN ResNet18 AlexNet VGG11 ResNet50

FR
eP

o
[1

8]
1

Baseline 16.6 15.6 (-1.0) 16.5 (-0.1) 16.6 (+0.0) 13.4 (-3.2)
w/o DP&KD 17.7 (+1.1) 12.3 (-4.3) 13.7 (-2.9) 14.1 (-2.5) 12.8 (-3.8)

w/o DP - 15.8 (-0.8) 16.6 (+0.0) 16.4 (-0.2) 16.6 (+0.0)
w/o KD - 12.5 (-4.1) 14.9 (-1.7) 13.6 (-3.0) 11.9 (-4.7)

Full - 18.9 (+2.3) 18.5 (+1.9) 18.3 (1.7) 19.1 (+2.5)

10

Baseline 24.9 24.2 (-0.7) 24.8 (-0.1) 25.2 (+0.3) 24.9 (+0.0)
w/o DP&KD 23.0 (-1.9) 21.7 (-3.2) 23.8 (-1.1) 24.2 (-0.7) 23.1 (-1.8)

w/o DP - 25.4 (+0.5) 25.2 (+0.3) 26.4 (+1.5) 26.9 (+2.0)
w/o KD - 21.5 (-3.4) 22.4 (-2.5) 24.0 (-0.9) 21.6 (-3.3)

Full - 26.8 (+1.9) 24.9 (+0.0) 26.6 (+1.7) 27.3 (+2.4)

M
T

T
[2

0]

1

Baseline 8.8 6.2 (-2.6) 6.7 (-2.1) 7.3 (-1.5) 2.7 (-6.1)
w/o DP&KD 9.6 (+0.8) 6.1 (-2.7) 8.4 (-0.4) 7.2 (-1.6) 3.2 (-5.6)

w/o DP - 6.5 (-2.3) 9.1 (+0.3) 7.9 (-0.9) 3.6 (-5.2)
w/o KD - 6.7 (-2.1) 8.1 (-0.7) 6.8 (-2.0) 4.0 (-4.8)

Full - 8.1 (-0.7) 9.2 (+0.4) 8.2 (-0.6) 8.2 (-0.6)

10

Baseline 19.3 17.2 (-2.1) 14.3 (-5.0) 15.1 (-4.2) 11.2 (-8.1)
w/o DP&KD 20.1(+0.8) 16.6 (-2.7) 18.7 (-0.6) 16.2 (-3.1) 15.2 (-4.1)

w/o DP - 17.3 (-2.0) 21.2 (+1.9) 19.9 (+0.6) 18.7 (-0.6)
w/o KD - 19.0 (-0.3) 17.7 (-1.6) 15.2 (-4.1) 17.7 (-1.6)

Full - 22.6 (+3.3) 21.6 (+2.3) 20.5 (+1.2) 21.8 (+2.5)

D
A

T
M

[2
9]

10

Baseline 16.0 13.8 (-2.2) 16.0 (+0.0) 14.7 (-1.3) 10.6 (-5.4)
w/o DP&KD 18.4 (+2.4) 13.7 (-2.3) 17.2 (+1.2) 16.4 (+0.4) 13.7 (-2.3)

w/o DP - 13.8 (-2.2) 17.8 (+1.8) 18.2 (+2.2) 15.3 (-0.7)
w/o KD - 16.3 (+0.3) 15.9 (-0.1) 17.6 (+1.6) 12.7 (-3.3)

Full - 17.3 (+1.3) 17.6 (+1.6) 18.2 (+2.2) 15.9 (-0.1)

50

Baseline 23.5 27.7 (+4.2) 28.4 (+4.9) 24.6 (+1.1) 21.6 (-1.9)
w/o DP&KD 24.8 (+1.3) 29.2 (+5.7) 29.6 (+6.1) 25.3 (+1.8) 22.8 (-0.7)

w/o DP - 28.2 (+4.7) 29.8 (+6.3) 27.7 (+4.2) 26.1 (+2.6)
w/o KD - 28.5 (+5.0) 28.2 (+4.7) 26.5 (+3.0) 23.2 (-0.2)

Full - 29.9 (+6.4) 30.1 (+6.6) 28.3 (+4.8) 26.9 (+3.4)

of the module outputs in the training and test phases will be
different, which leads to performance degradation.

However, virtual shortcut connection is adopted in single-
branch networks, so the implementation of DropPath is dif-
ferent from that in multi-branch networks. In single-branch
networks, the DropPath affects both main and shortcut paths.
Therefore, given an input x and the output of the main path
x′ , if scaling factor is not considered here, the formulation of
DropPath can be rewritten as DropPath(x) = m·x′+(1−m)·
x, m = Bernoulli(p). Assume that the expectations of x′

and x are the same, the expectation of module output y given
x is E(y) = m ·E(x′)+(1−m) ·x = m ·x+(1−m) ·x = x,
which is not changed by m. As a result, the scaling factor is
not necessary here.

D. Results on Tiny-ImageNet

The results on Tiny-ImageNet are reported in VIII, re-
spectively. The observations on CIFAR10 and CIFAR100 are
analogous to those on and Tiny-ImageNet, which indicates that
our method is effective on different datasets.


	Introduction
	Related Works
	Methods
	DropPath with Three-Phase Keep Rate
	Knowledge Distillation from Small Teacher Model
	Training and Data Augmentation

	Experiments
	Mitigate Architecture Overfitting in Dateset Distillation
	Comparison with Other Baselines
	Improve the Performance of Training on Limited Real Data
	Smoothing Effect Induced by Proposed Methods
	Ablation Studies

	Conclusion
	Appendix
	Implementation Details
	Supplementary Figures of Methods
	Effect of scaling factor 1/p in DropPath
	Results on Tiny-ImageNet


