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BACKGROUND

Given samples {xi}Ni=0, an adversarial budget
Sε = {δ|‖δ‖∞ ≤ ε} and the loss objective g of a
classifier parameterized by θ, adversarial training
is solving the min-max problem below:

min
θ
Lε(θ) :=

1

N

N∑
i=1

gε(xi, θ)

gε(xi, θ) := max
δ∈Sε

g(xi + δ, θ) .

(1)

Compared with non-adversarial training, adver-
sarial training has: 1) slower convergence 2)
larger generalization gap

LINEAR MODEL
For linear model, the trainable parameter is a ma-
trix W. Under different values of ε, we prove that:

• The set of "robust parameters", which
makes the model robust against attacks,
shrinks with the increase of ε.

• When ε is large enough, the optimal param-
eter of problem (1) is W = 0. The model is
a constant classifier.

For deep nonlinear networks, similar phenomena
are observed: we obtain a constant classifier from
adversarial training when ε is large and the model
is not over-parameterized.

CODE ON GITHUB:

github.com/liuchen11/AdversaryLossLandscape

NONLINEAR MODEL
Assume the Lipschitzian continuous of g:

‖g(x, θ1)− g(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθg(x, θ1)− Oθg(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖ ,
‖Oθg(x1, θ)− Oθg(x2, θ)‖ ≤ Lθx‖x1 − x2‖∞ .

(2)
Then we obtain:

‖Lε(θ1)− Lε(θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖OθLε(θ1)− OθLε(θ2)‖ ≤ Lθθ‖θ1 − θ2‖+ 2εLθx .

(3)
From the vanilla loss landscape to the adversar-
ial loss landscape, continuity is preserved but
smoothness is not. Non-smoothness arises from
the dependence of the adversarial perturbation
δ on the model parameters θ. Arbitrarily small
changes in θ can lead to large changes in δ.
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Figure 1: A plot of the vanilla (red lines) and the ad-
versarial loss landscape (blue lines) when g(x, θ) =
log(1 + exp(θx)). Left: ε = 0.6; Right: ε = 1.2.

The non-smooth nature of the adversarial loss
landscape is unfavorable for both optimization
and generalization.

• For optimization, there is no longer a guar-
antee that SGD converges to a critical point,
making training less stable.

• For generalization, the minima of Lε on θ
become sharper with the increase of ε.

A warmup of ε in adversarial training enables us
to start with an "easy" loss landscape and then
gradually switch to the target loss landscape. It
helps in 1) making the training less sensitive to
the learning rate, and in 2) improving the final
performance. Linear and cosine schedulers are
two classical warmup scheduling schemes.
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Sub-figures are labeled in the alphabet order from the left to the right.
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Figure 2: Adversarial training of ResNet18 on CIFAR10 with different values of ε. (a - c) show the first 2000 mini-
batches while (d) shows the last 2000 mini-batches. (a) and (d) illustrate the gradient’s norm; (b) shows the test
error and (c) shows the distance the model parameters have moved from initialization.
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Figure 3: Adversarial training of ResNet18 on CIFAR10 with different values of ε. (a) Numerical estimation of the
top 20 eigenvalues of the Hessian matrix O2

θLε. (b - e) Landscape visualization in the directions of the top 2 Hessian
eigenvectors. ε = 0, ε = 2/255, ε = 4/255, and ε = 8/255 from the left to the right, respectively.
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Figure 4: Mean and std of the test er-
ror under different learning rates and ε
schedulers on MNIST when ε = 0.4

ε
Scheduler

Clean Error
(%)

Robust Error (%)
PGD100

(%)
APGD100

CE (%)
APGD100
DLR (%)

Square5K
(%)

Constant 18.62(6) 54.97(9) 57.26(13) 56.60(25) 50.59(19)
Cosine 18.43(26) 53.85(21) 56.16(18) 55.77(24) 49.60(18)
Linear 18.55(14) 53.41(10) 55.69(17) 55.45(22) 49.66(28)

Table 1: Comparison between different ε schedulers with ResNet18 on
CIFAR10. The number between brackets indicates the standard devia-
tion across different runs. For example, 1.56(17) stands for 1.56± 0.17.
More results in the paper.

TAKEAWAY MESSAGE
With the increase of the adversarial budget’s size ε, the adversarial loss landscape in the model parame-
ter space becomes unfavorable for optimization, including 1) non-smoothness 2) less-connected min-
ima 3) hardness to escape from the initial suboptimal region. Using a warm-up ε scheduling scheme,
like a linear or cosine scheduler, improves performance and makes adversarial training less sensitive to
the learning rate.


