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AI Comes with Risks

Including but not limited to:
▶ Wrong predictions with malicious input.
▶ Sensitive data or information leakage.
▶ Ethics violation.

Especially when modern AI systems broadly deploy deep neural networks, which are
hard to interpret and like black boxes.
Artificial intelligence is NOT human intelligence!
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Failure Cases of AI

Figure: https://www.youtube.com/watch?v=XPFQ9TBvtCE

1

1A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, S. Russell. “Adversarial Policies: Attacking Deep
Reinforcement Learning”. ICLR 2020.
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Failure Cases of AI

Figure: Dataset reconstruction. 1.

1N. Haim, G. Vardi, G. Yehudai, O. Shamir, M. Irani“Reconstructing Training Data from Trained Neural
Networks”. NeurIPS 2022.
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Failure Cases of AI
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Adversarial Examples

Figure: Image from pytorch.org.

For an AI model f : RM → RC which maps the M-dimensional input x to C categories,
adversarial examples x′ are the perturbed input that looks almost the same as x, but
f(x) is quite different from f(x′). Undefended neural network models can be easily
broken by adversarial perturbations!
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https://pytorch.org/tutorials/beginner/fgsm_tutorial.html


Adversarial Examples

▶ Adversarial perturbations
can be universal!
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Robust Learning Problem

min
θ

Ex∼D max
∆∈Sϵ

L(f(x +∆, θ))

Empirical robustness.
min
θ

Ex∼Dmax
∆∈Sϵ

L(f(x +∆, θ))

Adversarial attacks.
Adversarial training.

Verified robustness.
min
θ

Ex∼Dmax
∆∈Sϵ

L(f(x +∆, θ))

Robustness verification.
Training provably networks.

Verified robust accuracy ≤ “True” robust accuracy ≤ Empirical robust accuracy
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Linear Approximation of Deep Neural Networks

Motivation:
1. The decision boundary of deep neural network is complex and nonlinear.
2. The nonlinearity arises from the activation function.
3. Estimating the nonlinear activation function by linear functions can derive the

lower and the upper bound of the network outputs.
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Linear Approximation of Deep Neural Networks

▶ Given any nonlinear function σ(x) with bounded input l ≤ x ≤ u, we can introduce one
diagonal matrix D and two vectors m1, m2:

Dx + m1 ≤ σ(x) ≤ Dx + m2

▶ Equivalently, ∀x : l ≤ x ≤ u, we have D,m1,m2 and ∃m : m1 ≤ m ≤ m2, such that

σ(x) = Dx + m

C. Liu, R. Tomioka, V. Cevher. “On Certifying Non-uniform Bounds against Adversarial Attacks.”. ICML
2019.
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Linear Approximation of Deep Neural Networks
▶ Recall the N-layer neural network.

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ...,N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ...,N − 1
(1)

▶ We can linearize the output of each layer.

z(i) = W(i−1)(σ(W(i−2)(...(W(1)(x + m(1)) + b(1))...) + bi−2)) + b(i−1)

= W(i−1)(D(i−1)(W(i−2)(...(W(1)(x + m(1)) + b(1))...) + b(i−2)) + m(i−1)) + b(i−1)

=
(
Πi−1

j=2W(j)D(j)
)

W(1)x +

i−1∑
h=1

(
Πi−1

j=h+1W(j)D(j)
)

b(h) +
i−1∑
h=1

(
Πi−1

j=h+1W(j)D(j)
)

W(h)m(h)

(2)

▶ Bound for {m(h)}i−1
h=1 → bounds for z(i) → bound for m(i)

▶ Iteratively estimate the bounds for {z(i)}N
i=2
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Linear Approximation of Deep Neural Networks

Corollary (Model Linearization)
Given a classification model f(x, θ) : RH ×Θ→ RK parameterized by θ, a data point
(x, y) and a pre-defined adversarial budget Sϵ(x), ∃W ∈ RH×K,b ∈ RK such that

∀∆ ∈ Sϵ, f(x +∆, θ)− f(x +∆, θ, )y ≤W∆+ b (3)

▶ If ∀∆ ∈ Sϵ, W∆+ b ≤ 0, then f(x +∆, θ)− f(x +∆, θ, )y ≤ 0, the model is
guaranteed robust.

Chen Liu / CS8695 13 / 43
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Geometric Intepretation of Model Linearization
▶ {∆|W∆+ b ≤ 0} forms a polyhedron in RH space and is an envelope of the

model’s decision boundary.

▶ If ∆ ∈ Sϵ ∩ {∆|W∆+ b ≤ 0}, then x +∆ is guaranteed to have the same
prediction as x.

▶ Geometric interpretation: when ϵ is too big or too small.

C. Liu, M. Salzmann, S. Süsstrunk. “Training Provably Robust Models by Polyhedral Envelope
Regularization”. TNNLS 2021.
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Rethinking Linear Approximation

Limitations:
▶ Computational complexity.
▶ Degraded bounds when ϵ is big or model is deep.

It is difficult to apply linear approximation to complex models.
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Randomized Smoothing
Definition (Randomized Smoothing)
Consider a classification model f(x, θ) : RH ×Θ→ K mapping the input to a
category, its smoothed model g by a random distribution D is defined by
g(x, θ) := Eδ∈Df(x + δ, θ)

J. Cohen, E. Rosenfeld, Z. Kolter. “Certified Adversarial Robustness via Randomized Smoothing”. ICML
2019.
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Randomized Smoothing
▶ Adversarial examples are usually “in the corner” of the decision boundary.
▶ An adversarial example δ for f may be surrounded by non-adversarial examples, so

it will not be an adversarial example for g.
▶ Randomized smoothing effectively smooth the decision boundary of f.

Chen Liu / CS8695 17 / 43



Randomized Smoothing

We use p to represent the PDF of the distribution D and consider a perturbation ∆,
then

g(x, θ) =
∫
RH

p(δ)f(x + δ, θ)dδ

g(x +∆, θ) =

∫
RH

p(δ)f(x +∆+ δ, θ)dδ =
∫
RH

p(δ −∆)f(x + δ, θ)dδ
(4)

By Neyman-Pearson lemma, we can bound the lower bound of g(x +∆, θ) if we bound
the magnitude of ∆ and the lower bound of g(x, θ).

Chen Liu / CS8695 18 / 43
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Randomized Smoothing

Theorem
Let f be a classifier and g is defined as g(x, θ) := Eδ∼Df(x + δ, θ) where D is a
Gaussian distribution N (0, σ2I), we assume cA is one output label and pA, pB ∈ [0, 1]
satisfy Pδ∼D(f(x + δ, θ) = cA) ≥ pA ≥ pB ≥ maxc ̸=cA Pδ∼D(f(x + δ, θ) = c), then we
have g(x +∆, θ) for all ∥∆∥2 ≤ σ

2

(
Φ−1(pA)− Φ−1(pB)

)
where Φ is the cumulative

distribution function of standard Gaussian.

Chen Liu / CS8695 19 / 43



Rethinking Randomized Smoothing

Pros:
▶ Scalable to any model architecture.

Cons:
▶ Slow inference because of Monte Carlo sampling.
▶ Probability guarantee.

Chen Liu / CS8695 20 / 43
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Adversarial Training

min
θ

Ex∼Dmax
∆∈Sϵ

L(f(x +∆, θ))

▶ Generate adversarial examples.
▶ Run iteratively

∆←
∏

Sϵ
(∆ + α▽∆L(f(x +∆, θ)))

▶ Training using adversarial examples.

Vanilla training v.s. adversarial training.

L0(θ) = Ex∼DL(f(x, θ))
Lϵ(θ) = Ex∼Dmax

∆∈Sϵ

L(f(x +∆, θ))

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Vanilla Training
Adversarial Training

Figure: Learning curves of vanilla training (clean error)
and adversarial training (robust error). Dashed and
solid lines are for the training and test sets.
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Convergence ↓. Generalization gap ↑.
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Non-smooth Nature of Adversarial Loss Landscapes

g(x, θ) = L(f(x +∆, θ))

∥g(x, θ1)− g(x, θ2)∥ ≤ Lθ∥θ1 − θ2∥
∥▽θg(x, θ1)− ▽θg(x, θ2)∥ ≤ Lθθ∥θ1 − θ2∥
∥▽θg(x1, θ)− ▽θg(x2, θ)∥ ≤ Lθx∥x1 − x2∥

Lϵ(θ) = Ex∼D max
∆∈Sϵ

L(f(x +∆, θ))

∥Lϵ(θ1)− Lϵ(θ2)∥ ≤ Lθ∥θ1 − θ2∥
∥▽θLϵ(θ1)− ▽θLϵ(θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ 2ϵLθx

Adversarial perturbations depends on model parameters ⇒ Non-smoothness.
Abrupt changes in the optimal adversarial perturbations ⇒ Non-smooth points in the
loss landscape.

C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Süsstrunk. ”On the Loss Landscape of Adversarial Training:
Identifying Challenges and How to Overcome Them”. NeurIPS 2020.
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Adversarial perturbations depends on model parameters ⇒ Non-smoothness.
Abrupt changes in the optimal adversarial perturbations ⇒ Non-smooth points in the
loss landscape.

C. Liu, M. Salzmann, T. Lin, R. Tomioka, S. Süsstrunk. ”On the Loss Landscape of Adversarial Training:
Identifying Challenges and How to Overcome Them”. NeurIPS 2020.
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Non-smooth Nature of Adversarial Loss Landscape
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Figure: Lϵ(θ) = max
∥∆∥≤ϵ

log
(
1 + eθ∆

)
with ϵ = 0.6 (left) and ϵ = 1.2 (right).

∆ = ϵ when θ > 0 and ∆ = −ϵ when θ ≤ 0.
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Figure: Polynomial loss function with small ϵ (left) and big ϵ (right).
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Non-smoothness and Convergence Property
g(x, θ) = L(f(x +∆, θ))

∥g(x, θ1)− g(x, θ2)∥ ≤ Lθ∥θ1 − θ2∥
∥▽θg(x, θ1)− ▽θg(x, θ2)∥ ≤ Lθθ∥θ1 − θ2∥
∥▽θg(x1, θ)− ▽θg(x2, θ)∥ ≤ Lθx∥x1 − x2∥

Lϵ(θ) = Ex∼D max
∆∈Sϵ

L(f(x +∆, θ))

∥Lϵ(θ1)− Lϵ(θ2)∥ ≤ Lθ∥θ1 − θ2∥
∥▽θLϵ(θ1)− ▽θLϵ(θ2)∥ ≤ Lθθ∥θ1 − θ2∥+ 2ϵLθx

Theorem (Convergence Property of Adversarial Training)
Using the SGD update θt+1 = θt − αt▽θL̂ϵ(θt) with unbiased, variance-bounded
stochastic gradient ▽θL̂ϵ(θt) and αt =

1
Lθθ

√
T for T iterations, then:

∀γ > 2, P(∥▽θLϵ(θT)∥ ≥ γϵLθx) <
4

γ2 − 2γ + 4
(5)
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Overfitting in Adversarial Training
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Figure: Learning curves of vanilla training (clean error) and adversarial training (robust error). Dashed and solid
lines are for the training and test sets.
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Overfitting in Adversarial Training
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Figure: The loss values of the groups of instances of different difficulty levels.

Adversarial overfitting arises from hard adversarial instances.
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Training Instances of Different Difficulty Levels
plane, 0.999 plane plane, 0.999 plane plane, 0.998 plane

plane, 0.996 plane plane, 0.995 plane plane, 0.995 plane

plane, 0.995 plane plane, 0.995 plane plane, 0.994 plane

plane, 0.994 plane plane, 0.993 plane plane, 0.993 plane

plane, 0.991 plane plane, 0.989 plane plane, 0.989 plane

plane, 0.989 plane plane, 0.988 plane plane, 0.986 plane

plane, 0.000 bird plane, 0.002 frog plane, 0.002 frog

plane, 0.003 bird plane, 0.003 ship plane, 0.005 truck

plane, 0.005 truck plane, 0.006 frog plane, 0.006 deer

plane, 0.006 truck plane, 0.007 frog plane, 0.007 ship

plane, 0.007 car plane, 0.007 cat plane, 0.008 bird

plane, 0.008 deer plane, 0.008 horse plane, 0.009 frog

Figure: (Left) easy examples. (Right) hard examples.

How to quantitatively measure the difficulty?
Conditional variance: E[Var(y|x)].
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Overfitting in Adversarial Training: Why?

Data The data {(xi, yi)}ni=1 is binary, i.e., xi ∈ Rm, yi ∈ {−1,+1}. It is sub-Gaussian
with positive conditional variance σ2 = E[Var[y|x]] = σ2 > 0.

Theorem (Informal and Simplified)
Given training data {(xi, yi)}ni=1, and a model parameterized by bounded parameters
θ, we conduct adversarial training and let x′ to the adversarial examples of x. If the
training loss C = 1

n
∑n

i=1(f(x′i, θ)− yi)2 is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

C. Liu, Z. Huang, M. Salzmann, T. Zhang, S. Süsstrunk. ”On the Impact of Hard Adversarial Instances on
Overfitting in Adversarial Training”. 2022.
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∥x1−x2∥ is a good indicator of the
adversarial vulnerability.
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training loss C = 1

n
∑n

i=1(f(x′i, θ)− yi)2 is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(·, θ)) ≥ β(σ2 − C + h(ϵ,C)) (6)

where β is a constant, h(ϵ,C) decreases with C and increases with ϵ.
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n
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i=1(f(x′i, θ)− yi)2 is sufficiently small, then the Lipschitz
constant of the model is lower bounded by the following equation almost surely.

Lip(f(·, θ)) ≥ H(σ2, ϵ,C) (6)

σ ↑, H ↑; ϵ ↑, H ↑; C ↓, H ↑.
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▶ C is sufficiently small =⇒ Lipschitz constant indicates generalization gap.
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Overfitting in Adversarial Training: How?

Methods mitigating adversarial overfitting implicitly downplay hard instances.
▶ Weaker perturbation.
▶ Adaptive and easier targets.
▶ Smaller weights when calculating the loss objective.

Chen Liu / CS8695 30 / 43
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Adversarial Training is Expensive

min
θ

Ex∼D max
∆∈Sϵ

L(f(x +∆, θ))

▶ If we run projected gradient descent (PGD) for M iterations, then the complexity
of adversarial training will be (M + 1) times that of training on clean inputs.

▶ We can decrease the value of M to decrease the complexity.
▶ But at the cost of performance and stability.
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Catastrophic Overfitting

Figure: Catastrophic Overfitting.

▶ Small M typically means large step sizes.
▶ Large gradient norm ▽∆L indicates distorted loss landscape.
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Catastrophic Overfitting

Catastrophic
Overfitting

Distorted Loss Landscape

Figure: Loss landscape distortion when catastrophic overfitting happens.
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Solutions for Catastrophic Overfitting

Inspired by pre-conditioned optimizers.
▶ Large gradients → hard examples → smaller step size.
▶ Small gradients → easy examples → larger step size.

▶ We use exponential moving average to calculate the expected gradient magnitude
m← βm + (1− β)∥▽∆L∥2 for each training instance.

▶ The actual step size is α
m for each training instance.

Z. Huang, Y. Fan, C. Liu, W. Zhang, Y. Zhang, M. Salzmann, S. Süsstrunk, J. Wang. “Fast Adversarial
Training with Adaptive Steps”. TIP 2023.

Y. Jiang, C. Liu, Z. Huang, M. Salzmann, S. Süsstrunk. “Towards Stable and Efficient Adversarial Training
against l1 Bounded Adversarial Attacks”. ICML 2023.
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Other Solutions for Catastrophic Overfitting

▶ Smaller step size but memroize the perturbations in the last epoch.
▶ Gradient regularization to make the loss landscape more smooth.

H. Zheng, Z. Zhang, J. Gu, H. Lee, A. Prakash. “Efficient adversarial training with transferable adversarial
examples”. CVPR 2020.

M. Andriushchenko, N. Flammarion. “Understanding and improving fast adversarial training”. NeurIPS 2020.

Chen Liu / CS8695 36 / 43



Other Ways to Improve Effectiveness

▶ Pruning network to make it more sparse can help robustness.
▶ We can even prune the network with their initialized parameters unchanged. (strong

lottery ticket hypothesis)
▶ Proper quantization can help robustness.

C. Liu, Z. Zhao, S. Süsstrunk, M. Salzmann. “Robust Binary Models by Pruning Randomly-initialized
Networks”. NeurIPS 2022.

Chen Liu / CS8695 37 / 43
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Challenges of Obtaining Robustness

▶ Larger models.
▶ Larger datasets.
▶ Higher complexity.
▶ Poor transferability between different types of perturbations.
▶ ...

Chen Liu / CS8695 39 / 43



Additional Benefits of Obtaining Robustness

Adversarial perturbations can be considered as a strong data augmentation.

▶ Use clean inputs to train convolutional layers + normalization layers A.
▶ Use adversarial inputs to train convolutional layers + normalization layers B.
▶ Then we will get two models with shared convolutional layers. Both has good

performance, since the shared layers are trained by more data.

C. Xie, M. Tan, B. Gong, J. Wang, A. Yuille ,Q. Le. “Adversarial Examples Improve Image Recognition”.
CVPR 2020.
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Additional Benefits of Obtaining Robustness
Adversarial perturbations destroy the non-robust features of the input and force the
model to learn robust features, which is aligned with human perception.

Figure: The visualization of ▽∆L.

A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, A. Madry. “Adversarial Examples are not Bugs,
They are Features”. NeurIPS 2019.
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Additional Benefits of Obtaining Robustness

Robust features are usually more general features.
▶ Pretrained models by adversarial training can achieve better performance after

fine-tuning on a related task.

H. Salman, A. Ilyas, L. Engstrom, A. Kapoor, A. Madry. “Do adversarially robust imagenet models transfer
better?”. NeurIPS 2020.
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Remaining Challenges

▶ A better trade-off between clean accuracy and robust accuracy.
▶ Robustness against multiple types of adversarial perturbations.
▶ Narrow the gap between empirical robustness and verified robustness.
▶ ...

Chen Liu / CS8695 43 / 43
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