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Introduction
Adversarial Training

Definition (Robustness Problem)

Given a classification model f (θ, x) : Θ× RM → RK parameterized by θ, data points drawn from the
distribution (x, y) ∼ D and loss function L, robustness problem is formulation as follows:

min
θ

E(x,y)∼D max
x′∈Sϵ(x)

L(f (θ, x′), y) (1)

where Sϵ(x) is called the adversarial budget: Sϵ(x) = {x′|∥x− x′∥∞ ≤ ϵ}.

Adversarial Training (AT): generate optimal x ′ and then optimize θ on x ′.
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Introduction
Challenges in Adversarial Training

Slow Convergence. Overfitting. Larger Data Need. Larger Model Capacity Need.

Slow Convergence. Overfitting. Larger Data Need. Larger Model Capacity Need.

For small model, adversarial training first fails to converge while vanilla training still
succeed to obtain non-trivial performance.

For big model, performance of vanilla training first saturates with increasing model size
while we still see improvement in adversarial training.
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Motivation
Incorporation of Model Compression into Adversarial Training

Related works

Adversarial training and model compression (pruning, quantization) at the same time. 1 2

Pre-train, compression, fine-tune. 3

Our proposed method: compression (pruning) itself as a way of training.

Adversarial training learns parameters, our method learns model architectures.

1Gui, et. al. ”Model compression with adversarial robustness: A unified optimization framework”. NeurIPS 2019.
2Ye, et. al. ”Adversarial robustness vs. model compression, or both”. ICCV 2019.
3Sehwa, et. al. ”Hydra: Pruning adversarially robust neural networks”. NeurIPS 2019.
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Motivation
Lottery Ticket Hypothesis

Lottery Ticket Hypothesis4: Overparameterized neural networks contain sparse
subnetworks that can be trained in isolation to achieve competitive performance. These
subnetworks are called winning tickets.

Strong Lottery Ticket Hypothesis5: There exist winning tickets with competitive
performance even without training.

Strong lottery ticket hypothesis in the context of adversarial training:
Finding robust models in random-initialized networks.

4Frankle, et. al. ”The lottery ticket hypothesis: Finding sparse, trainable neural networks”. ICLR 2019.
5Ramanujan, et. al. ”What’s hidden in a randomly weighted neural network”. CVPR 2020.
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Methodology
Adversarial Edge-popup

Definition (Adversarial Edge-Popup Problem)

Given a classificaiotn model f (θ, x) : Θ× RM → RK with initial parameter θ, data points
drawn from the distribution (x, y) ∼ D and loss function L, we aim to find the optimal
subnetwork with mask m ∈ {0, 1}|Θ| to solve the following problem:

min
m∈{0,1}|Θ|

E(x,y)∼D max
x′∈Sϵ(x)

L(f (θ ⊙m, x′), y) (2)

where Sϵ(x) is the adversarial budget and ⊙ the elementwise multiplication.

Instead of optimization parameter θ, we optimize the architecture represented by m.
Discrete optimization?
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Methodology
Adversarial Edge-popup

min
m∈{0,1}|Θ|

E(x,y)∼D max
x′∈Sϵ(x)

L(f (θ ⊙m, x′), y)

Trainable continuous alternative variable ’score’ s to replace m: m = M(s)

Forward pass: elements with top k scores are assigned 1 in m and 0 otherwise.

The value of k depends on the pruning policy.

Backward pass: treated as the identity function (’gradient goes through’).

Approximation in the backward does not affect adversarial examples generation.

Can be combined with any variant of adversarial training.

Accelerated version, adversarial training with regularization.
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Methodology
Adversarial Edge-popup

Algorithm 1: Edge pop-up algorithm for adversarial robustness.
Input: training set D, batch size B, PGD step size α and iteration number n, adversarial budget Sϵ, pruning rate r ,
mask function M, the optimizer.
Random initialize the model parameters θ and the scores s.
for Sample a mini-batch {xi , yi}Bi=1 ∼ D do

for i = 1, 2, ..., B do
Sample a random noise δ within the adversarial budget Sϵ.

x
(0)
i = xi + δ
for j = 1, 2, ..., n do

x
(j)
i = x

(j−1)
i + α▽

x
(j−1)
i

L(f (θ ⊙M(s, r), x
(j−1)
i ), yi )

x
(j)
i = xi +ΠSϵ

(
x
(j)
i − xi

)
end for

end for
Calculate the gradient g = 1

B

∑B
i=1 ▽sL(f (θ ⊙M(s, r), x

(n)
i ), yi )

Update the score s using the optimizer.
end for
Output: the pruning mask M(s, r).
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Methodology
Adaptive Pruning

Two pruning strategies for pruning rate r in existing works:

Global pruning: top (1− r)|Θ| elements with the largest scores.

Fixed pruning rate: prune parameters of each layer with the same proportion.

However... these do not achieve ideal performance in the context of adversarial training.
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Methodology
Adaptive Pruning

Consider a neural network with n1, n2, ..., nL−1, nL parameters originally, and m1, m2, ...,
mL−1, mL parameters after pruning. The pruning rate 1− m1+m2+...+mL

n1+n2+...+nL
= r is fixed.

Fixed pruning rate

m1

n1
=

m2

n2
= ... =

mL

nL

Maximal of ΠL
i=1

(
ni
mi

)
Maximize the search space for m.

Poor performance when r is big.

Fixed parameter number

m1 = m2 = ... = mL

Maximal of ΠL
i=1mi

Maximize # input-output paths.

Poor performance when r is small.
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Methodology
Adaptive Pruning

Adaptive pruning strategy: m1

np1
= m2

np2
= ... = mL

npL

Degrade to fixed pruning rate and fixed parameter number with p = 1 and p = 0.

Larger r → smaller p; smaller r → larger p.
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Methodology
Binary Initialization

The scale of initializaiton is voided by normalization layers.

Each linear layer should be followed by a normalization layer, including the last layer.

Two advantages of models including the last normalization layer.

Arbitrary initialization scale of random parameters.

Binary initialization: save 1/2 and 1/4 computational time in forward and backward.

Insensitive to the initialization scale of m.
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Experiments
Ablation Study

Pruning rate r and p in adaptive pruning strategy.

Prune
Strategy

r = 0.5 r = 0.8 r = 0.9 r = 0.95 r = 0.99 r = 0.995 r = 0.998

p = 0.0 2.16 6.86 23.01 41.61 44.60 40.70 34.97
p = 0.1 4.35 15.03 28.12 42.65 44.88 40.97 33.09
p = 0.2 8.01 19.21 27.99 43.72 42.92 40.52 32.99
p = 0.5 9.21 32.70 42.84 43.62 42.45 40.55 30.08
p = 0.8 28.90 41.51 43.64 43.88 39.12 33.61 28.07
p = 0.9 39.09 41.71 43.07 42.28 38.68 33.89 17.43
p = 1.0 42.85 43.23 42.13 41.12 34.57 26.67 20.56

Table: Robust accuracy (in %) on the CIFAR10 test set under different pruning rates r and values of p in adaptive
pruning. The best result for each pruning rate is marked in bold.
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Experiments
Ablation Study

Advantages with the last batch normalization layer.
Assume the score s is initialized based on N (0, a2).

Model
Value of a in score initialization

0.001 0.01 0.1 1
no LBN 33.08 39.96 41.01 31.04
LBN 45.06 44.88 44.63 44.41

Table: Robust accuracy (in %) on the CIFAR10 test set for models with and without the last batch normalization layer
(LBN) under different values of a for score s initialization. The best results are marked in bold.
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Experiments
Ablation Study

Advantages with the last batch normalization layer.

Prune Signed KC Binary
Strategy no LBN LBN no LBN LBN
p = 0.0 39.38 42.83 40.94 44.65
p = 0.1 39.62 45.01 41.01 45.06
p = 0.2 36.66 45.04 37.85 41.58
p = 0.5 39.98 42.64 40.61 39.95
p = 0.8 37.96 41.71 35.15 38.95
p = 0.9 34.75 40.14 35.64 35.81
p = 1.0 36.88 39.32 30.02 30.62

Table: Robust accuracy (in %) on the CIFAR10 test set with the Signed Kaiming Constant (Signed KC) and the binary
initialization. We include models both with and without the last batch normalization layer (LBN). The best results are
marked in bold.
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Experiment
Comparison with Existing Works

Method Architecture
Pruning Pruning CIFAR10 CIFAR100
Strategy Rate FP Binary FP Binary

AT ResNet34 - - 43.26 40.34 36.63 26.49
AT ResNet34-LBN - - 42.39 39.58 35.15 32.98
HYDRA ResNet34 p = 0.1 0.99 42.73 29.28 33.00 23.60
HYDRA ResNet34 p = 1.0 0.99 40.51 26.40 31.09 18.24
HYDRA ResNet34-LBN p = 0.1 0.99 40.55 33.99 13.63 24.69
HYDRA ResNet34-LBN p = 1.0 0.99 32.93 26.23 29.96 17.75
ATMC ResNet34 Global 0.99 34.14 25.62 25.10 11.09
ATMC ResNet34 p = 0.1 0.99 34.58 24.65 25.37 11.04
ATMC ResNet34 p = 1.0 0.99 30.50 20.21 22.28 2.53
ATMC ResNet34-LBN Global 0.99 33.55 19.01 23.16 15.73
ATMC ResNet34-LBN p = 0.1 0.99 31.61 22.88 25.16 17.33
ATMC ResNet34-LBN p = 1.0 0.99 27.88 13.22 22.12 9.55
Ours ResNet34-LBN p = 0.1 0.99 - 45.06 - 34.83
Ours ResNet34-LBN p = 1.0 0.99 - 34.57 - 26.32
Ours (Fast) ResNet34-LBN p = 0.1 0.99 - 40.77 - 34.45
Ours (Fast) ResNet34-LBN p = 1.0 0.99 - 29.68 - 24.97

Table: Robust accuracy (in %) on the CIFAR10 and CIFAR100 for AT, HYDRA, ATMC and our proposed method. The
best results for full precision (FP) models are underlined; the best results for binary models are marked in bold.

C. Liu et. al. (EPFL) Robust Binary Models March 22, 2022 21 / 27



Experiment
Comparison with Existing Works

Method Architecture
Pruning Pruning CIFAR10 CIFAR100
Strategy Rate FP Binary FP Binary

AT ResNet34 - - 80.99 74.37 61.48 47.87
AT ResNet34-LBN - - 80.96 74.17 57.73 60.08
HYDRA ResNet34 p = 0.1 0.99 75.31 62.09 55.92 45.96
HYDRA ResNet34 p = 1.0 0.99 73.89 59.69 54.88 37.84
HYDRA ResNet34-LBN p = 0.1 0.99 74.37 68.43 53.65 46.09
HYDRA ResNet34-LBN p = 1.0 0.99 66.59 57.15 26.64 37.16
ATMC ResNet34 Global 0.99 81.85 72.97 57.15 36.39
ATMC ResNet34 p = 0.1 0.99 81.37 73.34 59.99 32.68
ATMC ResNet34 p = 1.0 0.99 74.33 57.01 54.06 5.19
ATMC ResNet34-LBN Global 0.99 80.72 68.25 55.69 40.51
ATMC ResNet34-LBN p = 0.1 0.99 76.39 51.31 57.34 43.97
ATMC ResNet34-LBN p = 1.0 0.99 69.83 19.26 49.69 28.78
Ours ResNet34-LBN p = 0.1 0.99 - 76.59 - 60.16
Ours ResNet34-LBN p = 1.0 0.99 - 65.70 - 47.21
Ours (Fast) ResNet34-LBN p = 0.1 0.99 - 81.63 - 63.73
Ours (Fast) ResNet34-LBN p = 1.0 0.99 - 70.72 - 50.98

Table: Clean accuracy (in %) on the CIFAR10 and CIFAR100 for AT, HYDRA, ATMC and our proposed method. The
best results for full precision (FP) models are underlined; the best results for binary models are marked in bold.
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Experiments
Structures of Pruned Subset Networks

Figure: Mask visualization of the weight of a random convolutional layer in our model. The parameters retained is
highlighted as blue dots. The dimension of the convolutional kernel is (rout , rin, 3, 3). We reshape this kernel in rectangle
of shape (rout × 3, rin × 3). Channels with no remaining weight are colored orange. The top bar indicates whether the
channel is empty (white) or not (blue).
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Experiments
Structures of Pruned Subset Networks

Figure: Distribution of weights in two consecutive layers. In layer1 (left), the masks are reshaped into (rout × 3, rin × 3)
while masks in layer2 (right) are reshaped into (rin × 3, rout × 3). The output channels totally pruned in layer1 and the
input channels totally pruned in layer2 are highlighted as the white bars in the middle.
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Conclusion

We extend ’Strong Lottery Hypothesis’ to robust learning.

We propose ’adaptive pruning strategy’ to improve the performance.

We adapt the algorithm to binary networks to accelerate computation.

Unsolved challenges and potential future works.

Automatic pruning strategy.

Structured pruning on randomly-initialized network.
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Thank You!
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