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Abstract

Robustness to adversarial attacks was shown to require a larger model capacity, and
thus a larger memory footprint. In this paper, we introduce an approach to obtain ro-
bust yet compact models by pruning randomly-initialized binary networks. Unlike
adversarial training, which learns the model parameters, we initialize the model
parameters as either +1 or −1, keep them fixed, and find a subnetwork structure
that is robust to attacks. Our method confirms the Strong Lottery Ticket Hypoth-
esis in the presence of adversarial attacks, and extends this to binary networks.
Furthermore, it yields more compact networks with competitive performance than
existing works by 1) adaptively pruning different network layers; 2) exploiting an
effective binary initialization scheme; 3) incorporating a last batch normalization
layer to improve training stability. Our experiments demonstrate that our approach
not only always outperforms the state-of-the-art robust binary networks, but also
can achieve accuracy better than full-precision ones on some datasets. Finally, we
show the structured patterns of our pruned binary networks.

1 Introduction

Deep neural networks have achieved unprecedented success in machine learning [19, 30, 56]. How-
ever, their state-of-the-art performance comes with costs. First, modern deep neural networks usually
have millions of parameters, making them difficult to deploy on devices with limited memory or
computational power. Second, these models are vulnerable to adversarial attacks: imperceptible
perturbations of the input can dramatically change their output and lead to incorrect predictions [55].
Furthermore, jointly addressing both issues is complicated by the fact that, as shown in [44, 60],
achieving robustness against adversarial attacks typically requires higher network capacity.

In this paper, we introduce an approach to obtaining compact and robust binary neural networks. Our
method follows a fundamentally different philosophy from typical adversarial training [44]: instead
of using adversarial examples to train the model parameters, we fix the model parameters and search
for a robust network structure. To this end, and to simultaneously achieve compactness, we prune
randomly-initialized binary networks. The resulting sparse and binary networks have much smaller
memory footprint than the dense or full-precision ones. They are inherently lightweight and robust.

Our work is motivated by the Strong Lottery Ticket Hypothesis [51], which observed that within a
random overparameterized network, there exists a subnetwork achieving performance similar to that
of trained networks with the same number of parameters. The Robust Scratch Ticket [22] extends this
hypothesis to the context of adversarial robustness. Here, we introduce a novel pruning strategy that
yields higher compression rates, and investigate the case of binary model parameters. Specifically,
we develop an adaptive pruning strategy to adaptively use different pruning rates for different layers.
Furthermore, we introduce a normalization-based technique to increase the algorithm’s stability for
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binary networks. The subnetworks obtained by our method are consequently more compact than a
full-precision one, while achieving a similar robustness to attacks.

We conduct extensive experiments on standard benchmarks to confirm the effectiveness of our method.
We obtain both better performance and a more stable training behavior than existing works [22].
Furthermore, our approach outperforms the state-of-the-art robust binary networks [25], achieving
performance on par with or even better than the state-of-the-art robust full-precision ones [8, 46, 54]
while producing much more compact networks.

Finally, we conduct preliminary investigations on the structure of the robust subnetworks obtained
by our algorithm. We find our methods prefer to prune the whole channel or the kernel in the
convolutional layers. In addition, for two consecutive convolutional layers, the kernels pruned in
the first layer are well aligned with the channels pruned in the second layer. Altogether, our work
sheds some light on understanding the structure of robust networks of high parameter sparsity, it also
indicates the potential of regular pruning.

Our code is available at https://github.com/IVRL/RobustBinarySubNet.

Notation. We use light letters, lowercase bold letters, and uppercase bold letters to represent scalars,
vectors, and higher dimensional tensors, respectively. ⊙ is the elementwise multiplication operation.
We use the term adversarial budget to represent the range of allowable perturbations. Specifically,
the adversarial budget Sϵ is based on the l∞ norm and defined as {∆|∥∆∥∞ ≤ ϵ}, with ϵ the strength
of the adversarial budget. We refer to the proportion of pruned parameters over the total number of
parameters in a layer or a model as the pruning rate r.

2 Related Work

Adversarial Robustness. Deep neural networks have been shown to be vulnerable to adversarial
attacks [55, 45]. To generate adversarial examples, the Fast Gradient Sign Method (FGSM) [24]
perturbs the input in the direction of the input gradient. The Iterative Fast Gradient Sign Method
(IFGSM) [38] improves FGSM by running it iteratively. Projected Gradient Descent (PGD) [44] uses
random initialization and multiple restarts on top of IFGSM to further strengthen the attack. Recently,
AutoAttack (AA) [15] has led to state-of-the-art attacks by ensembling different types of attacks; it is
used to reliably benchmark the robustness of models [13] and we thus use it in our experiments.

Many works have proposed defense mechanisms against these adversarial attacks. Early ones [5,
47, 59] used obfuscated gradients [3, 15] and thus were ineffective against adaptive attacks. As a
consequence, adversarial training [44] and its variants [1, 6, 32, 52, 37, 58, 63, 64] have in practice
become the mainstream approach to obtain robust models. Specifically, given a dataset {(xi, yi)}Ni=1,
a model f parameterized by w and a loss function L, adversarial training solves the min-max
optimization problem:

min
w

1

N

N∑
i=1

max
∆i∈Sϵ

L(f(w,xi +∆i), yi) . (1)

In practice, this is achieved by first generating adversarial examples xi +∆i, usually by PGD, and
then using these examples to train the model parameters.

While effective, adversarial training was shown to require a larger model capacity [44, 60]. Specifi-
cally, as the model capacity decreases, adversarial training first fails to converge while the training on
clean inputs still yields non-trivial performance. Conversely, as the model capacity increases, the
performance of training on clean inputs saturates before that of adversarial training. This highlights
the challenge of finding robust yet compact models. Here, we introduce a solution to this problem.

Model Compression. There are many ways to compress deep neural networks to achieve lower
memory consumption and faster inference, including pruning, quantization, and parameter encoding.
The pioneering works used information-theoretic methods [39] or second-order derivatives [29] to
compress models by removing unimportant weights. The seminal work [28] proposed to prune the
parameters with the smallest absolute values for deep networks. This motivated many follow-up
works, performing either irregular pruning [26, 61, 65], which removes individual parameters, or
regular pruning [31, 42], which aims to discard entire convolutional kernels. In contrast to pruning,
quantization [67, 48, 34] seeks to reduce the memory consumption and inference time by using
low-precision parameters. An extreme case of quantization is binarization, which can take the
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form of only binarizing the parameters [10, 11] or binarizing both parameters and intermediate
activations [33]. The models can be further compressed by combining pruning with quantization and
Huffman coding [27].

Recently, some efforts have been made to incorporate adversarial training into model compression.
[23, 40, 50] suggest quantization as a defense against adversarial attacks. [46] uses Bayesian connec-
tivity sampling to prune the network while preserving its robustness. [8] dynamically generates a
robust subnetwork during adversarial training. [62] uses the alternating direction method of multipli-
ers (ADMM) to alternatively conduct adversarial training and network pruning. [25] extends this
framework to include other model compression techniques, such as quantization. Furthermore, [54]
introduces the HYDRA framework, which improves the performance of compressed robust models by
a three-phase method: Pretraining, score-based pruning, and fine-tuning. Here, we follow a different
strategy: Instead of performing adversarial training, we search for a robust binary subnetwork in a
randomly-initialized one. We show that our approach outperforms those based on adversarial training.

Lottery Ticket Hypothesis. This hypothesis, introduced in [21], states that overparameterized
neural networks contain sparse subnetworks that can be trained in isolation to achieve competitive
performance. These subnetworks are called the winning tickets. Based on this interesting observation,
[68, 51] further proposed the Strong Lottery Ticket Hypothesis. They showed that there exist winning
tickets with competitive performance even without training. Furthermore, [9] proposed an iterative
randomization scheme to reduce the size of the network in which one searches for the winning tickets.
[18] introduced the Multi-Prize Lottery Ticket Hypothesis to learn compact yet accurate binary
networks by pruning and quantizing randomly weighted DNNs. [17] showed that “lottery-ticket style”
approaches can also improve robustness against corruption in the frequency domain.

The recent work of [22] combines robustness with the Strong Lottery Ticket Hypothesis and demon-
strates the existence of robust sub-networks within a random network. Here, we focus on lighter-
weight binary networks, and introduce an adaptive pruning strategy and last batch normalization layer
to achieve higher pruning rates than [22] while maintaining a competitive accuracy.

3 Methodology

3.1 Preliminaries: Edge-Popup under Adversarial Attacks

Let us first formulate the problem in a similar manner to [22]. We consider a neural network
f parameterized by w ∈ Rn. For an input sample (x, y), the neural network outputs f(w,x).
L(f(w,x), y) then represents the training loss objective, where L is the softmax cross-entropy loss.
Given a dataset {(xi, yi)}Ni=1, an adversarial budget Sϵ, and a predefined pruning rate r, we search
for a binary pruning mask m that solves the following optimization problem:

min
m

1

N

N∑
i=1

max
∆i∈Sϵ

L (f(w ⊙m,xi +∆i), yi) s.t.m ∈ {0, 1}n, sum(m) = (1− r)n. (2)

Here, function sum calculates the summation of all the elements in a vector. In contrast to adversarial
training, we do not optimize the model parameters w in (2); instead w contains randomly-initialized
parameters that are kept fixed during optimization. As such, our algorithm aims to find a pruned
network structure, encoded via the n-dimensional binary vector m, corresponding to a robust
subnetwork. Since the mask m is a discrete vector, it cannot be directly optimized by gradient-based
methods. To overcome this, we replace it with a continuous “score” variable, s ∈ Rn, from which we
calculate the mask as

m = M(s, r) , (3)
where M is a binarization function. It constructs a binary mask from the continuous-valued scores
based on a pruning strategy and a required pruning rate r. The pruning strategy can be global or
layer-wise, and retains the parameters with the highest scores. In the layer-wise case, it automatically
determines the number of parameters retained in each layer.

To update the scores s, we use the same edge-popup strategy as in [22, 49]. Specifically, we use
straight through estimation [4] to calculate the gradient ∂L/∂s. Note that the approximation made in
straight through estimation does not affect the adversarial example generation in adversarial training.
Our experiments will show that we can effectively generate adversarial examples by PGD. We provide
the pseudo-code of our algorithm in Appendix C.
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3.2 Adaptive Pruning

As mentioned above, in addition to the given pruning rate r, the binarization function M in Equa-
tion (3) also depends on the pruning strategy. [25] uses global pruning, retaining the (1 − r)n
parameters with the highest scores, regardless of which layer they belong to. However, global pruning
does not consider the topology of the network, and the fact that the magnitude of the scores s can
differ from layer to layer. Furthermore, when the pruning rate r is close to 1, global pruning may
prune some layers entirely, thus causing a trivial performance. Therefore, other works [22, 51, 54]
use layer-wise pruning strategies. For an L-layer network with {ni}Li=1 parameters and a predefined
pruning rate r, such strategies first allocate the number of parameters {mi}Li=1 to retain in each layer,
and then retain the parameters with the highest scores in each layer.

In Appendix A.1, we discuss two special cases of layer-wise pruning: fixed pruning rate and fixed
number of parameters. With fixed pruning rate, we have 1−r = m1

n1
= m2

n2
= ... = mL

nL
. Theorem A.1

indicates that this maximizes the size of the search space of the subnetwork. However, this strategy
might retain too few parameters for the small layers when r is big, which has two serious drawbacks:
1) It greatly limits the expression power of the network; 2) it makes the edge-popup algorithm less
stable, because adding or removing a single parameter then has a large impact on the network’s output.
This instability becomes even more pronounced in the presence of adversarial samples, because the
gradients of the model parameters are more scattered than when training on clean inputs [41].

With fixed number of parameters, we have m1 = m2 = ... = mL. When the allocated number of
retained parameters exceeds the total number of the original parameters in one layer, we leave this
layer totally unpruned. As shown in Theorem A.2, this strategy maximizes the number of paths from
the input layer to the output layer. In contrast to the fixed pruning rate, a fixed number of parameters
may retain too many parameters in small layers. In the extreme case, some layers may be entirely
unpruned when the pruning rate r is small. This is problematic in our settings, since the model
parameters are random and not updated.

In other words, the two strategies discussed above are two extremes: the fixed pruning rate one
suffers when r is big, whereas the fixed number of parameters one suffers when r is small. To address
this, we propose a strategy in-between these two extremes. Specifically, we determine the number of
parameters retained in each layer by solving the following system of equations:

1− r =

∑L
i=1 mi∑L
i=1 ni

,
m1

np
1

=
m2

np
2

= ... =
mL

np
L

, (4)

where p ∈ [0, 1] is a hyper-parameter controlling the trade-off between the two extreme cases. When
p = 0, the strategy (4) is the fixed number of parameters one. When p = 1, the strategy becomes the
fixed pruning rate one. By setting 0 < p < 1, we can retain a higher proportion of parameters in the
smaller layers without sacrificing the big layers too much. We call this strategy adaptive pruning.
As discussed above, the strategy obtained with p = 1 tends to fail with a big r, while the strategy
resulting from setting p = 0 tends to fail with a small r. This indicates that we need to assign small
values of p given a big r and big values of p otherwise. We validate this and study the influence of p
on the results of our approach in experiments.

3.3 Binary Initialization and Last Normalization Layer

Our work focuses on binary networks, which have a much smaller memory footprint than full-
precision networks but are more challenging to train. To address this, we therefore study the influence
of the binary initialization scheme and introduce a last normalization layer approach to facilitate
training and boost the performance.

Binary initialization. The empirical studies of [51] demonstrate the importance of the initial-
ization scheme on the performance of a pruned network. As a result, [51] proposes the Signed
Kaiming Constant initialization: The parameters in layer i are uniformly sampled from the set{
−
√

2
li−1(1−r) ,

√
2

li−1(1−r)

}
, where li−1 represents the fan-out of the previous layer. Correspond-

ingly, the scores s are initialized based on a uniform distribution U [−
√

1
li−1

,
√

1
li−1

].

The magnitude of the Signed Kaiming Constant initialization is carefully calculated to keep the
variance of the intermediate activations stable from the input to the output. In modern deep neural
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networks, the convolutional layers, potentially together with activation functions, are typically
followed by a batch normalization layer. In [51] and our settings, these batch normalization layers only
estimate the running statistics of their inputs, they do not have trainable parameters representing affine
transformations. Because of these batch normalization layers, the magnitudes of the convolutional
layers do not affect the outputs of the “convolution-batch norm” blocks. Furthermore, the fully-
connected layers on top of the convolutional ones are homogeneous2 because their bias terms are
always initialized to zero and not updated during training. The activation functions we use, such as
ReLU or leaky ReLU [43], are also homogeneous. Therefore, the magnitudes of parameters in these
fully-connected layers do not change the predicted labels of the model either.

Based on the analysis above, we conclude that the magnitudes of the model parameters at initialization
do not change the predicted labels. Therefore, we propose to scale the model parameters w in all
linear layers, i.e., convolutional and fully-connected ones, so that they are all sampled from {−1,+1}.
Correspondingly, the scores s are initialized based on a uniform distribution [−a, a], where a is a
factor controlling the variance.

Our binary initialization scheme is beneficial to model compression and acceleration, since there are
no longer multiplication operations in linear layers. We discuss the efficiency improvement of the
binary networks in detail in Appendix A.2. Theoretically, for the RN34 models we use in this paper,
binary initialization can save approximately 45% and 32% FLOP operations compared with their full
precision counterparts in the training phase and evaluation phase, respectively. Since we use irregular
pruning in our method, taking full advantage of this improvement requires lower-level and hardware
customization.

Last normalization layer. Although scaling the model parameters does not affect the expression
power of the network nor change the predicted label given the input, it does change the optimization
landscape of the problem (2), because the softmax cross-entropy function used to calculate the loss
objective is not homogeneous. Compared with the Signed Kaiming Constant method, our binary

initialization multiplies the parameters initialized in the last layer by
√

lL−1(1−r)
2 . Therefore, the

output logits fed to the softmax cross-entropy function are also multiplied by the same factor. In

practice,
√

lL−1(1−r)
2 ≫ 1 greatly increases the output logits. Large logits will cause numerical

instability and thus greatly worsen the optimization performance. In particular, our detailed analysis
in Appendix A.3 shows that such scaling causes gradient vanishing for correctly classified inputs and,
even worse, gradient exploding for misclassified ones.

To address this issue, we add another 1-dimensional batch normalization layer at the end of the model,
just before the softmax layer. The analysis in Appendix A.3 shows this normalization layer cancels out
the multiplication factor applied to the weights in the last layer and thus facilitates the optimization.
In our experiments, we show that this normalization layer greatly improves the performance of
both the Signed Kaiming Constant method and our Binary Initialization one. Furthermore, the last
normalization layer also makes the performance more robust to different score s initializations.

4 Experiments

In this section, we present extensive experimental results to validate our approach. First, we describe
an ablation study and sensitivity analysis. Then, we compare our performance with existing works,
which achieve robustness and compression in either full-precision or binary cases. We also include
adversarial training [44] as a baseline. Finally, we analyze the structure of the pruned networks
that we obtain. We show some interesting patterns of these post-pruning networks, suggesting the
potential of our approach for more effective compression.

Unless explicitly stated otherwise, we use a 34-layer Residual Network (RN34) [30], the same as the
one in [51, 54].3 We use the CIFAR10 dataset [36] in the ablation study; we also use the CIFAR100
dataset [36] and the ImageNet100 dataset [16, 20] in the comparisons with the baselines. 4 We train

2We call a function f homogeneous if it satisfies ∀x ∀a ∈ R+, f(ax) = af(x).
3Note that the RN34 used in these papers and ours differs from the WideRN34-10 used in [44, 58], which is

larger and has almost twice the number of trainable parameters.
4All these datasets are free for non-commerical use. CIFAR10 and CIFAR100 are downloadable on PyTorch.

ImageNet can be downloaded from Kaggle and the subset we use can be found in Contunuum’s documentation.
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the models for 400 epochs on CIFAR10/100 and 100 epochs on ImageNet100. We use a cosine
annealing learning rate scheduler with an initial value of 0.1. Unless specified, we employ PGD
attacks [44] to generate adversarial examples during training, but we use AutoAttack (AA) [15] for
our robustness evaluation. While PGD is much faster than AutoAttack and thus suitable for training,
AutoAttack is the current state-of-the-art attack method, and we thus consider it a more reliable
metric of robustness. We use an l∞ norm-based adversarial budget, and the perturbation strength ϵ
is 8/255 for CIFAR10, 4/255 for CIFAR100 and 2/255 for ImageNet100. More details about the
experimental settings and hyper-parameters are listed in Appendix D.1.

4.1 Ablation Study and Sensitivity Analysis

Pruning Strategy and Pruning Rates. We first focus on binary initialization and on the models with
the last batch normalization layer (LBN). We compare the performance of our method under different
pruning rates r and adaptive pruning strategies with different values of p. The scores s are initialized
from a uniform distribution U [−0.01, 0.01].
Our results are summarized in Table 1, in which we include 7 different values of pruning rate r and
7 different values of p in the adaptive pruning strategy. First, we notice that the best performance
is achieved when r = 0.99 and p = 0.1. For the fixed pruning rate strategy (p = 1.0), the best
performance is achieved when r = 0.8. Compared with the vanilla (i.e., non-adversarial) case in [51],
which uses the fixed pruning rate strategy and shows that r = 0.5 achieves the best clean accuracy,
the best performance for robust accuracy is achieved at a much higher pruning rate. This interesting
observation is also consistent with the existing work [12], which shows that adversarial training
implicitly encourages sparse convolutional kernels.

Prune Strategy r = 0.5 r = 0.8 r = 0.9 r = 0.95 r = 0.99 r = 0.995 r = 0.998
p = 0.0 2.16 6.86 23.01 41.61 44.60 40.70 34.97
p = 0.1 4.35 15.03 28.12 42.65 44.88 40.97 33.09
p = 0.2 8.01 19.21 27.99 43.72 42.92 40.52 32.99
p = 0.5 9.21 32.70 42.84 43.62 42.45 40.55 30.08
p = 0.8 28.90 41.51 43.64 43.88 39.12 33.61 28.07
p = 0.9 39.09 41.71 43.07 42.28 38.68 33.89 17.43
p = 1.0 42.85 43.23 42.13 41.12 34.57 26.67 20.56

Table 1: Robust accuracy (in %) on the CIFAR10 test set under different pruning rates r and values
of p in adaptive pruning. The best result for each pruning rate is marked in bold.

Table 1 further demonstrates the benefits of our adaptive pruning strategy. For larger pruning rates r,
a smaller value of p prevails; for smaller pruning rates, a bigger value of p prevails. This is consistent
with our analysis in Section 3.2. In particular, compared with the best results for a fixed pruning rate
strategy (p = 1.0, r = 0.8), which is the pruning strategy used in [51], our best adaptive pruning
(p = 0.1, r = 0.99) achieves not only better performance but also a higher pruning rate. That is to
say, using our adaptive pruning strategy improves both robustness and compression rates.

In Figure 4 of Appendix D.2.6, we provide the learning curves when r = 0.99 and when r = 0.5.
Regardless of the pruning rate r, these curves indicate the importance of the pruning strategy: a well
chosen p value not only improves the performance but also makes training more stable.

Last Normalization Layer. We then study how the last batch normalization layer (LBN) introduced
in Section 3.3 affects the performance. We focus on the binary initialization first and report the
performance of models with and without the last normalization layer under different values of a, the
hyper-parameter controlling the variance of the initial score s. Based on the results in Table 1, we use
the adaptive pruning strategy with p = 0.1 and a pruning rate r = 0.99.

The results are provided in Table 2 and clearly show that the last batch normalization layer (LBN)
greatly improves the performance. Furthermore, LBN makes the performance much less sensitive to
the initialization of the scores, which in practice facilities the hyper-parameter selection.

Initialization Scheme. Finally, we compare the performance of the binary initialization with the
Signed Kaiming Constant. We fix the pruning rate to r = 0.99 and employ an adaptive pruning
strategy with different values of p. Our results are summarized in Table 3. For binary initialization,
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Value of a in
no LBN LBNin Score

Initialization
0.001 33.08 45.06
0.01 39.96 44.88
0.1 41.01 44.63
1 31.04 44.41

Table 2: Robust accuracy (in %) on
the CIFAR10 test set for models with
and without the last batch normalization
layer (LBN) under different values of a
for score s initialization. The best results
are marked in bold.

Prune Signed KC Binary
Strategy no LBN LBN no LBN LBN
p = 0.0 39.38 42.83 40.94 44.65
p = 0.1 39.62 45.01 41.01 45.06
p = 0.2 36.66 45.04 37.85 41.58
p = 0.5 39.98 42.64 40.61 39.95
p = 0.8 37.96 41.71 35.15 38.95
p = 0.9 34.75 40.14 35.64 35.81
p = 1.0 36.88 39.32 30.02 30.62

Table 3: Robust accuracy (in %) on the CIFAR10 test
set with the Signed Kaiming Constant (Signed KC) and
the binary initialization. We include models both with
and without the last batch normalization layer (LBN).
The best results are marked in bold.

we use the optimal initialization scheme of the score s from Table 2; for Signed Kaiming Constant
initialization, we use the optimal setting from [51] to initialize s.

Based on the results in Table 3, we can conclude that the binary initialization achieves a comparable
performance with the Signed Kaiming Constant. Furthermore, the last batch normalization layer
also improves the performance when using the Signed Kaiming Constant. We show in Table 8 of
Appendix D.2.1 that these conclusions are also valid in a non-adversarial setting.

4.2 Comparison with Existing Methods

Baselines. In this section, we compare our approach with the state-of-the-art methods targeting
model compression and robustness. Specifically, we include FlyingBird, FlyingBird+[8], Bayesian
Connectivity Sampling (BCS) [46], Robust Scratch Ticket (RST) [22], HYDRA [54] and ATMC [25],
as well as adversarial training (AT) [44] with early stopping [53]. Given our previous results, we fix
the pruning rate to r = 0.99. For adversarial training, we use the full RN34 model and some smaller
networks with approximately the same number of parameters as our pruned models. These smaller
networks have the same architecture as the RN34 except that they have fewer channels. The details of
these small networks are shown in Table 7 of Appendix D.1. We follow the official implementations
of all the baselines, and thus, unlike in our method, the normalization layers in all the baselines that
update model parameters have an affine transformation with trainable parameters.

ATMC supports quantization but its parameterization introduces learnable quantized values. That
is, although the models obtained by ATMC’s 1-bit quantization have only two parameter values in
each layer, these values are different from layer to layer and are not necessarily −1 and +1. This
means that, compared with the binary networks obtained with our method, those from ATMC have
more trainable parameters and thus flexibility. Nevertheless, we still include ATMC for comparison
in the case of binary networks. Similarly to our method, RST does not update the model parameters.
It initializes the model parameters with full-precision values, and we thus only provide full-precision
results for RST. The other baselines and AT are not designed for quantization and do not inherently
support binary networks. To address this, we use BinaryConnect [10] to replace the model’s linear
layers so that their parameters are binary. BinaryConnect generates binarized model parameters by
taking the sign of the weights during the forward pass, and uses straight-through estimation [4] for
gradient calculation.

Our method uses binary initialization and the last batch normalization layer, so the models we
obtained are inherently binary. In addition to using PGD-based adversarial examples, we accelerate
our method by using adversarial examples based on FGSM [24] with ATTA [66]. FGSM with ATTA
generates adversarial examples by one-step attacks with accumulated perturbations across epochs.
This is much cheaper than the 10-step PGD attacks. For CIFAR10 and CIFAR100, we provide the
results of our method when using FGSM with ATTA as “Ours(fast)” in Table 4 for comparison.
For ImageNet100, since the dataset is bigger and the images are of much higher resolution, the
computational cost for multi-step PGD is huge. Therefore, we use FGSM with ATTA to generate
adversarial examples for all methods on ImageNet100. To decrease the memory overhead introduced
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Method Architecture Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49 53.92 34.20
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98 55.14 35.36
AT Small RN34 Not Pruned 38.81 26.03 27.68 15.85 25.40 10.44
FlyingBird RN34 Dynamic 45.86 34.37 35.91 23.32 37.70 9.54
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64 37.70 9.52
BCS RN34 Dynamic 43.51 - 31.85 - - -
RST RN34 p = 1.0 34.95 - 21.96 - 17.54 -
RST RN34-LBN p = 1.0 37.23 - 23.14 - 15.36 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60 43.18 18.22
ATMC RN34 Global 34.14 25.62 25.10 11.09 22.18 5.78
ATMC RN34 p = 0.1 34.58 24.62 25.37 11.04 23.52 4.58
Ours RN34-LBN p = 0.1 - 45.06 - 34.83 - 33.04Ours(fast) RN34-LBN p = 0.1 - 40.77 - 34.45

Table 4: Robust accuracy (in %) on the CIFAR10, CIFAR100 and ImageNet100 test sets for the
baselines and our proposed method. “RN34-LBN” represents ResNet34 with the last batch normal-
ization layer. “Small RN34” refers to Small RN34-p0.1 in Table 7 of Appendix D.1. The pruning
rate is set to 0.99 except for the not-pruned methods. Among the pruned models, the best results
for the full-precision (FP) models are underlined; the best results for the binary models are marked
in bold. The values of ϵ for CIFAR10, CIFAR100 and ImageNet100 are 8/255, 4/255 and 2/255,
respectively. “-” means not applicable or trivial performance.

by ATTA, we only store the downsampled perturbations in the current epoch for the perturbation
initialization of the next epoch. We provide the pseudo-code and more details in Appendix C.

Results. Our main results on CIFAR10, CIFAR100 and ImageNet100 are summarized in Table 4,
where we report the robust accuracy under AutoAttack (AA), which is considered as a reliable
evaluation metric for robustness [15]. The results of all baselines are based on their default settings in
architecture and pruning strategy based on publicly available codes. 5 The exceptions are that we
also include adaptive pruning (p = 0.1) for HYDRA, ATMC, and the last batch normalization layer
for RST, because we noticed such changes to improve their performance.

Our method using the adaptive pruning strategy (p = 0.1) achieves better performance than all
baselines in case of binary models. On CIFAR10 and CIFAR100, we also achieve comparable
performance to methods using full-precision models. Furthermore, our method achieves results
comparable with AT on the original unpruned models that has 100× more trainable parameters. In
addition, our method based on FGSM with ATTA, which is much faster than multi-step PGD, also
achieves better performance than all baselines in the case of binary networks. On ImageNet100,
our method, which aims to train binary networks, also outperforms most full-precision networks
trained by the baselines. BCS yields almost trivial performance on ImageNet100 (< 3%) and is thus
not included. This suggests that BCS cannot converge using a high compression rate and facing a
complicated dataset. Compared with adversarial training on the full network, which has 100 times as
many parameters as ours, we achieve comparable performance with the binary networks, but worse
performance than the full-precision networks. Note that fitting the high-dimensional ImageNet100
dataset under adversarial attacks using only 1% of the binary parameters is extremely challenging.
As demonstrated in Table 4, many baselines only achieve low robust accuracy in this setting.

For all baselines except RST, the last normalization layer does not improve the performance; it even
hurts the performance in the full-precision cases. This is because these baselines (except RST) update
the model parameters w. In the full precision cases, the magnitude of w, and thus of the output logits,
is automatically adjusted during training. The issue resulting from large output logits that we pointed
out in Section 3 does thus not happen in these cases, so the last batch normalization layer is not
necessary. In practice, we observed this layer to slow down the training convergence of these models.

5Publicly available code on GitHub: FlyingBird/FlyingBird+: VITA-Group/Sparsity-Win-Robust-
Generalization; BCS: IGITUGraz/SparseAdversarialTraining; RST: RICE-EIC/Robust-Scratch-Ticket; HYDRA:
inspire-group/hydra; ATMC: VITA-Group/ATMC. All the codes are free to use for non-commerical purposes.
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For the pruning strategy, the proposed adaptive pruning strategy (p = 0.1) consistently achieves
better performance than the fix pruning rate strategy (p = 1.0) and than global pruning. FlyingBird,
FlyingBird+ and BCS dynamically assign retrained parameters during training, which has similar
benefits to adaptive pruning but at the cost of training efficiency [8]. Furthermore, although the value
of p is selected based on the ablation study on CIFAR10, it also performs well on CIFAR100 and
ImageNet100. This observation indicates that for a fixed value of r, the selection of p generalizes
well across different datasets.

We further compare the baseline methods with various settings such as adding the last batch normal-
ization layer, changing the pruning strategy, using different AT methods, and provide a complete set
of comparison results in Appendix D.2.2. The conclusions drawn from Table 4 remain valid.

Method Architecture Pruning RN18 RN50
Strategy FP Binary FP Binary

AT RN Not Pruned 41.50 39.13 43.24 31.18
AT RN-LBN Not Pruned 42.25 39.86 44.33 37.25
AT Small RN Not Pruned 28.13 30.35 26.03 32.25
FlyingBird RN Dynamic 42.15 27.08 35.91 26.33
FlyingBird+ RN Dynamic 38.55 27.84 29.54 25.40
BCS RN Dynamic 39.60 21.46 41.85 17.54
RST RN p = 1.0 31.98 - 35.40 -
RST RN-LBN p = 1.0 33.27 - 34.71 -
HYDRA RN p = 0.1 40.20 30.90 44.14 22.36
ATMC RN Global 32.21 17.73 25.23 6.82
ATMC RN p = 0.1 32.31 19.67 33.61 16.12
Ours RN-LBN p = 0.1 - 39.65 - 42.72
Ours (fast) RN-LBN p = 0.1 - 30.86 - 37.93

Table 5: Robust accuracy (in %) on the CIFAR10 test set for AT, FlyingBird(+), BCS, RST, HYDRA,
ATMC and our proposed method on the RN18 and RN50 models. “RN-LBN” represents networks
with the last batch normalization layer. Among the compressed models, the best results for full
precision (FP) models are underlined; the best results for binary models are marked in bold.

All the results in Table 4 are based on a RN34 architecture, Table 5 provides the results on CIFAR10
using a smaller 18-layer network (RN18) and a larger 50-layer network (RN50). These results confirm
the effectiveness of our method on different network architectures.

In addition to robust accuracy, Table 10 in Appendix D.2.3 demonstrates the accuracy on the clean
test set for the models in Table 4. Our method also yields competitive performance on clean inputs.
Specifically, we achieve the best performance among all methods for binary networks. Combining
the results in Table 4 and 10, we conclude that our method yields a better trade-off between accuracy
on clean inputs and accuracy on adversarially perturbed inputs.

Finally, vanilla training can be considered as a special case of adversarial training, where ϵ = 0.
Therefore, our method, as well as all baselines, are applicable to vanilla training. The results when
ϵ = 0 are provided in Table 11 of Appendix D.2.4. Our method achieves the best performance
among the pruned binary networks. This indicates that our method is competitive under difference
adversarial budgets.

4.3 Analysis of the Subnetwork Patterns

In this work, we use irregular pruning. Compared with regular pruning, irregular pruning is more
flexible but less structured, which means that it requires lower-level customization to fully take advan-
tage of parameter sparsity for acceleration. However, visualizing the masks m of the convolutional
layers in our pruned binary network with a pruning rate r = 0.99 allowed us to find that the mask
is structured to some degree. For example, we visualize the mask of a convolutional layer with 256
input channels and 256 output channels in Figure 5 of Appendix D.2.5. We notice that the retained
parameters are quite concentrated and structured: Most retained parameters concentrate on few input
or output channels, while many other channels (40% of the total) are completely pruned.

9



Furthermore, we visualize two consecutive convolutional layers in the same residual block of the
RN34 model. We call them layer1 and layer2 following the forward pass. In Figure 1, we plot the
distribution of the retained parameters in each input channel and in each output channel, respectively.
We find that many output channels of layer1 and input channels of layer2, 40% of all channels in this
case, are totally pruned. As a reference, we also plot the distribution of random pruning, based on the
average of 500 simulations. As demonstrated in Figure 1, the distribution of the retained parameters
in each channel is much more uniform in this case. Our theoretical analysis in Appendix A.4
demonstrates that, in a randomly pruned network, it is almost impossible to have even one entirely
pruned channel. The comparison indicates that the mask m obtained by our method is structured.
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Figure 1: Number of retained parameters in each input and output channel of layer1 (L1) and layer2
(L2) in the same residual block. We sort the numbers and plot the curves from the largest on the left
to the smallest on the right. The red curves represent the mask obtained by our method; the blue
curves depict what happens when randomly pruning the corresponding layer.

The observations in Figure 1 also hold for kernels: a few kernels,
of size 3× 3 and thus having 9 entries, are totally unpruned. We
show the distribution of the number of retained parameters in
each kernel in Figure 2 and provide the distribution by random
uniform pruning as a reference. Random uniform pruning yields
no kernels with more than 3 retained parameters, but many such
kernels can be observed in the masks generated by our method.
Finally, in Figure 3 of Appendix D.2.5, we visualize the positions
of the pruned output channels of layer1 and the pruned input chan-
nels of layer2. We observe those pruned channels to be aligned.
That is, some neurons representing both the output channels of
layer1 and the input channels of layer2 are entirely removed. We
defer additional discussions, figures and results to Appendix D.2.5.
The pattern of the structures learned by our method indicates the
potential of regular pruning for a randomly-initialized network in
the presence of adversarial attacks. We leave this as future work.
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Figure 2: Distribution of the
number of retained parameters
in each kernel. The y-axis is
in log-scale.

5 Conclusion

We have proposed a method to obtain robust binary models by pruning randomly-initialized networks,
thus extending the Strong Lottery Ticket Hypothesis to the case of robust binary networks. In contrast
to the state-of-the-art methods, we learn the structure of robust subnetworks without updating the
parameters. Furthermore, we have proposed an adaptive pruning strategy and last batch normalization
layer to stabilize the training and improve performance. Finally, we have relied on binary initialization
to obtain more compact models.

Our extensive results on various benchmarks have demonstrated that our approach outperforms
existing methods for training compressed robust models. Furthermore, we have observed interesting
structured patterns occurring in the parameters retained in the subnetworks. This opens the door to
further investigations on the structure of the robust subnetworks and on the design of regular pruning
strategies in the adversarial scenario.
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A Analysis

A.1 Analysis of Layerwise Pruning Strategies

A.1.1 Fixed Pruning Rate

We consider an L-layer neural network and each layer has n1, n2, ..., nL parameters, we retrain m1,

m2, ..., mL parameters after pruning. As such, the total number of combinations ΠL
i=1

(
ni

mi

)
is the

size of search space of the subnetworks. The following theorem shows, the fixed pruning rate strategy
is the strategy which approximates the maximization of the total number of combinations.
Theorem A.1. Consider an L-layer neural network with n1, n2, ..., nL parameters in each layer, we
retain m1, m2, ..., mL parameters after pruning. Given a predefined pruning rate r = 1−

∑L
i=0 mi∑L
i=0 ni

,

the optimal numbers of post-pruning parameters {mi}Li=1 that maximizing the total number of

combinations ΠL
i=1

(
ni

mi

)
satisfy the following inequality:

∀1 ≤ j, k ≤ L,

∣∣∣∣mj

nj
− mk

nk

∣∣∣∣ < 1

nj
+

1

nk
(5)

We defer the proof to Appendix B.1. Specifically, we let nk in (5) be the largest layer in the network
without the loss of generality, we then have ∀i ≤ j ≤ L, j ̸= k,

∣∣∣mj − mk

nk
nj

∣∣∣ < nj

nk
+ 1 ≤ 2. mj is

the number of retained parameters and thus an integer, so Theorem A.1 indicates the pruning rate
of each layer is close to each other when we aim to maximize the total number of combinations.
Therefore, we can consider the fixed pruning rate strategy, i.e., 1− r = m1

n1
= m2

n2
= ... = mL

nL
, as an

approximation to maximize the total number of combinations.

Drawbacks While this strategy may seem intuitive, it does not take the differences in layer size into
account. In practice, the number of parameters in different layers can vary widely. For example,
residual networks [30] have much fewer parameters in the first and last layers than in the middle ones.
Using fixed pruning rate thus yields very few parameters after pruning within such small layers. For
example, when r = 0.99, only 17 parameters are left after pruning for a convolutional layer with 3
input channels, 64 output channels and a kernel size of 3. Such a small number of parameters has
two serious drawbacks: 1) It greatly limits the expression power of the network; 2) it makes the
edge-popup algorithm less stable, because adding or removing a single parameter then has a large
impact on the network’s output. This instability becomes even more pronounced in the presence of
adversarial samples, because the gradients of the model parameters are more scattered than when
training on clean inputs [41].

A.1.2 Fixed Number of Parameters

To overcome drawbacks of the fixed pruning rate strategy, we study an alternative strategy aiming
to maximize the total number of paths from the input to the output in the pruned network. For a
feedforward network, the total number of such paths is upper bounded by ΠL

i=1mi. The following
theorem demonstrates that the pruning strategy that maximizes this upper bound consists of retaining
the same number of parameters in every layer, except for the layers that initially have too few
parameters, for which all parameters should then be retained. This optimal strategy is the fixed
number of parameters mentioned in Section 3.2.
Theorem A.2. Consider an L-layer feedforward neural network with n1, n2, ..., nL parameters in
its successive layers, from which we retain m1,m2, ...,mL parameters, respectively, after pruning.
Given a predefined sparsity ratio r = 1−

∑L
i=1 mi∑L
i=1 ni

, the numbers of post-pruning parameters {mi}Li=1

that maximize the upper bound of the total number of the input-output paths ΠL
i=1mi have the

following property: ∀1 ≤ j ≤ L, mj satisfies either of the following two conditions: 1) mj = nj; 2)
∀1 ≤ k ≤ L,mj ≥ mk − 1.

The two conditions in Theorem A.2 mean we retain the same number of parameters for each layer
except for ones totally unpruned. We defer the proof to Appendix B.2, where we use proof by
contraction.
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Drawbacks While this fixed number of parameters strategy addresses the problem of obtaining too
small layers arising in the fixed pruning rate one, it suffers from overly emphasizing the influence of
the small layers. That is, the smaller layers end up containing too many parameters. In the extreme
case, some layers are totally unpruned when the pruning rate r is small. This is problematic in our
settings, since the model parameters are random and not updated. The unpruned layers based on
random parameters provide a large amount of noise in the forward process. Furthermore, this strategy
significantly sacrifices the expression power of the big layers.

A.2 Analysis of Acceleration by Binary Initialization

In this section, we analyze the acceleration benefit of binary initialization. Since most of the
forward and backward computational complexity for the models studied in this paper is consumed
by the “Convolutional-BatchNorm-ReLU” block, the acceleration rate on such blocks is a good
approximation of that on the whole network. Therefore, we concentrate on the “Convolution-
BatchNorm-ReLU” block here.

For simplicity, we assume the feature maps and convolutional kernels are all squares. Without the
loss of generality, we consider rin-channel input feature maps of size s, the size of the convolutional
kernel is c and the convolutional layer outputs rout channels. Here, the binary layers represent the
layer whose parameters are either −1 or +1.

Forward Pass For full-precision dense networks, the number of FLOP operations of the convolu-
tional layer is 2c2s2rinrout. By contrast, the complexity can be reduced to c2s2rinrout for binary
dense layers, convolution operation with a binary kernel does not include any multiplication opera-
tions. Correspondingly, for sparse layers whose pruning ratio is r, the complexity of full-precision
sparse networks and of the binary sparse networks can be reduced to 2(1 − r)c2s2rinrout and
(1− r)c2s2rinrout, respectively.

The batch normalization layer will consume 3s2rout FLOP operations during inference and 10s2rout
during training. The additional operations during training are due to the update of running statistics.
Note that, the batch normalization layer in our random initialized network does not contain any
trainable parameters, so there is no scaling parameters after normalization. The ReLU layer will
always consume s2rout FLOP operations.

To sum up, we calculate the complexity ratio of the binary “Convolution-BatchNorm-ReLU” block
over its full-precision counterpart in the forward pass. For dense layers, the ratio is c2rin+11

2c2rin+11 for the

training time and c2rin+4
2c2rin+4 for the inference. For sparse layers, the ratio is (1−r)c2rin+11

2(1−r)c2rin+11 for the

training time and (1−r)c2rin+4
2(1−r)c2rin+4 for the inference.

Backward Pass Compared with the forward pass, the backward pass has some computational
overhead, because we need to calculate the gradient with respect to the score variable s associated
with the convolutional kernels. For both dense and sparse networks, the overhead is 2c2s2rinrout +
c2rinrout for full precision layers and 2c2s2rinrout for binary layers. Note that, the overhead is
independent of the pruning rate r because the pruning function is treated as the identity function in
the backward pass. In addition, the difference here between the full precision layer and binary layer
arises from the multiplication when we backprop the gradient through the weights.

To sum up, we calculate the complexity ratio of the binary “Convolution-BatchNorm-ReLU” block
over its full-precision counterpart in the backward pass. We only back propagate the gradient in the
training time, so the batch normalization layer is always the training mode. For dense layers, the ratio
is 3c2s2rin+4s2

4c2s2rin+4s2+c2rin
. For sparse layers, the ratio is 3(1−r)c2s2rin+4s2

4(1−r)c2s2rin+4s2+c2rin
.

Full Precision Binary
Forward - Training 2(1− r)c2s2rinrout + 11s2rout (1− r)c2s2rinrout + 11s2rout
Forward - Evaluation 2(1− r)c2s2rinrout + 4s2rout (1− r)c2s2rinrout + 4s2rout
Backward - Training 4(1−r)c2s2rinrout+4s2rout+c2rinrout 3(1− r)c2s2rinrout + 4s2rout

Table 6: The complexity in FLOP operations of the sparse “Convolution-BathNorm-ReLU” block in
both full precision and binary case. The pruning rate is r.
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Discussion We summarize the complexity in FLOP operations of the sparse “Convolution-BatchNorm-
ReLU” block in different scenarios. We can now conclude that compared with the full precision
block, the binary block decrease the overall complexity in two places: 1) we save (1− r)c2s2rinrout
FLOPs for the convolution and transpose convolution operations in the forward and backward pass,
respectively; 2) for the backpropagation, we save c2rinrout FLOPs, because there is no multiplication
when we backprop the gradient through the weights for binary blocks.

We consider the practical settings: r = 0.99, c = 3, rin = rout = 128, s = 16. The complexity ratio
of the binary block over the full precision block in the forward pass is (1−r)c2rin+11

2(1−r)c2rin+11 = 0.6616 for

the training mode and (1−r)c2rin+4
2(1−r)c2rin+4 = 0.5740 for the evaluating mode, respectively. The complexity

ratio in the backward pass is 3(1−r)c2s2rin+4s2

4(1−r)c2s2rin+4s2+c2rin
= 0.7065. That is to say, compared with the

full precision block, the binary block under this setting can save around 34% and 29% time in the
forward and backward passes during training; for inference, it can save 43% time.

A.3 Analysis of the Normalization Layer before Softmax

We consider a L-layer neural network and each layer has l1, l2, ..., lL neurons. Let u ∈ RlL−1 ,
W ∈ RlL×lL−1 , o ∈ RlL be the output of the penultimate’s output, the weight matrix of the last
fully-connected layer and the last layer’s output, respectively. In addition, we use c ∈ {1, 2, ..., lL}
to denote the label of the data and omit the bias term of the last layer since it is initialized as 0 and
is not updated. For the 1-dimensional batch normalization layer, we use b ∈ RlL and v ∈ RlL to
represent the running mean and running standard deviation, respectively.

Therefore, the loss objective Lwo and its gradient of the model without the 1-dimensional batch
normalization layer is:

Lwo = −log eoc∑lL
i=1 e

oi

∂Lwo

∂oj
=

eoj∑lL
i=1 e

oi

− 1(j = c)

(6)

Correspondingly, the loss objective Lwi and its gradient of the model with the 1-dimensional batch
normalization layer is:

Lwi = −log
e(oc−bc)/vc∑lL
i=1 e

(oi−bi)/vi

∂Lwi

∂oj
=

1

vj

(
e(oc−bc)/vc∑lL
i=1 e

(oi−bi)/vi

− 1(j = c)

) (7)

Now we consider the case when the model parameter W is multiplied by a factor α > 1: W′ = αW
and assume the output of the penultimate layer is unchanged. In practice, α is far more than 1. For
example, if the penultimate layer has 512 neurons, α will be 16 when we change kaiming constant
initialization to binary initialization. Based on this, the new output of the last layer is o′ = αo. For
the model with the normalization layer, the new statistics are b′ = αb and v′ = αv. In this regard,
we can then recalculate the gradient of the loss objective as follows:

∂L′
wo

∂o′
j

=
eo

′
j∑lL

i=1 e
o′
i

− 1(j = c) =
eαoj∑lL
i=1 e

αoi

− 1(j = c)

∂L′
wi

∂o′
j

=
1

v′
j

(
e(o

′
c−b′

c)/v
′
c∑lL

i=1 e
(o′

i−b′
i)/v

′
i

− 1(j = c)

)
=

1

αvj

(
e(oc−bc)/vc∑lL
i=1 e

(oi−bi)/vi

− 1(j = c)

) (8)

We first study the case without the normalization layer. The first term eαoj∑lL
i=1 eαoi

of the gradient ∂L′
wo

∂o′
j

converge to 1(j = argmaxioi) exponentially. For correctly classified inputs, ∂L′
wo

∂o′
j

converge to 0
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exponentially with α. In addition, the gradient ∂L′
wo

∂u = W′T ∂L′
wo

∂o′
j

= αWT ∂L′
wo

∂o′
j

also vanish with α.
∂L′

wo

∂u is backward to previous layers, leading to gradient vanishing. For incorrectly classified inputs,
∂L′

wo

∂o′
j

converge to 1(j = argmaxioi) − 1(j = c), which is a vector with c-th element being −1,
the element corresponding to the output label being +1 and the rest elements being 0. In this case,
the gradient backward ∂L′

wo

∂u = αWT ∂L′
wo

∂o′
j

will be approximately multiplied by α, causing gradient
exploding.

By contrast, in the case of the model with the normalization layer, ∂L′
wi

∂o′
j

= 1
α

∂Lwi

∂oj
. The factor 1

α is

cancelled out when we calculate ∂L′
wi

∂u = W′T ∂L′
wi

∂o = WT ∂Lwi

∂o . This means the gradient backward
remains unchanged if we use the 1-dimensional batch normalization layer, which maintains the
stability of training if we scale the model parameters.

To conclude, the 1-dimensional batch normalization layer is crucial to maintain the stability of training
if we use binary initialization. Without this layer, the training will suffer from gradient vanishing for
correctly classified inputs and gradient exploding for incorrectly classified inputs.

A.4 Analysis of the structure of a randomly pruned network

In this section, we provide preliminary analysis of the structure of a randomly pruned network.

As a starting point, we first estimate the probability of k retained parameters in a 3 × 3 kernel.
Given the pruning rate ri for the layer i with ni weights, the number of the retained parameters is
mi := (1 − ri)ni. We assume mi lies in a proper range: 9 ≪ mi <

1
9ni. This is true when ni is

large and ri >
8
9 .

For each kernel j, we use Xj to represent its number of retained parameters. It is difficult to calculate
P (Xj = k) directly because {Xj}j are constrained by: 1)

∑
j Xj = mi; 2) ∀j, 0 ≤ Xj ≤ 9.

However, in the case of random pruning, we have E[Xj ] =
9mi

ni
= 9(1− ri) < 1. In this regard, we

can make the approximation by removing the constraint Xj ≤ 9.

Therefore, we can reformulate the problem of calculating P (Xj = k) as: Given mi steps, randomly
select one box out of the total ni

9 boxes and put one apple in it. P (Xj = k) is then the probability
for the box j to have k apples.

In this approximation, it is straightforward to have P (Xj = k) =
(
mi

k

)
P k
i · (1−Pi)

mi−k, 0 ≤ k ≤ 9

where Pi = 9
ni

. Based on the assumption that ni is large, Pi ≈ 0. Therefore, P (Xj = 0) =

(1− 9
ni
)mi ≈ e9(1−ri). For k > 1, we apply Stirling approximation n! ≈

√
2πn(ne )

n to the binomial
coefficient, then

P (Xj = k) ≈ mmi+0.5
i√

2πkk+0.5(mi − k)mi−k+0.5
· ( 9

ni
)k · (1− 9

ni
)mi−k

=

√
mi

2πk(mi − k)
· (9(1− ri)

k
)k · (1 + k

mi − k
)mi−k · (1− 9

ni
)mi−k

(9)

The second equality is based on the fact mi = (1− ri)ni. Since mi ≫ 9 > k by the assumption and
ni ≫ mi, we can approximate (1− 9

ni
)mi−k to 1− 9(mi−k)

ni
≈ 1, then

P (Xj = k) ≈
√

mi

2πk(mi − k)
· (9e(1− ri)

k
)k =

√
mi

2πk(mi − k)
· ( c

k
)k (10)

where c = 9e(1− ri) is a constant.

As shown in the equation above, P (Xj = k) decreases drastically when k increases. Therefore, in a
randomly pruned layer i with ni = 3×3×256×256 = 589824 and ri = 0.99, it is almost impossible
to see kernels who have at least 4 retained parameters, because according to the above formula, the
estimated number of kernels in that layer having 3 retained parameters is ni

9 × P (Xj = 3) ≈ 8.19,
and the number of kernels having 4 retained parameters is ≈ 0.18.
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Now we consider the number of retained parameters in a channel. For the layer of rin input channels
and rout output channels, it has rin × rout × 3× 3 parameters. We use Yj to represent the number of
the retained parameters for the input channel j. Similarly, for the random pruning, we have

P (Yj = k) ≈
√

mi

2πk(mi − k)
· (c

′

k
)k · (1− 1

rin
)mi−k (11)

where c′ = 9erout(1− ri) is a constant.

By plotting the distribution P (Yj), it is easy to find that the distribution of Yj concentrates around
the neighborhood of k = mi

a , and decreases significantly as Yj deviates from it.

B Proofs of Theoretical Results

B.1 Proof of Theorem A.1

Proof. We pick arbitrary 0 < j, k ≤ L and generates two sequences {m̂i}Li=1, {m̃i}Li=1 as follows:

m̂j = mj − 1, m̂k = mk + 1, m̂i = mi∀i ̸= j, i ̸= k.

m̃j = mj + 1, m̃k = mk − 1, m̃i = mi∀i ̸= j, i ̸= k.
(12)

Consider {mi}Li=1 the optimality that maximizes the combination number ΠL
i=1

(
ni

mi

)
. We have the

following inequality:

1 >

ΠL
i=1

(
ni

m̂i

)
ΠL

i=1

(
ni

mi

) =
mj

nj −mj + 1

nk −mk

mk + 1

1 >

ΠL
i=1

(
ni

m̃i

)
ΠL

i=1

(
ni

mi

) =
nj −mj

mj + 1

mk

nk −mk + 1

(13)

Reorganize the inequalities above, we obtain:

−
(

1

nk
+

mk −mj + 1

njnk

)
<

mk

nk
− mj

nj
<

(
1

nj
+

mj −mk + 1

njnk

)
(14)

Consider 1 ≤ mj ≤ nj and 1 ≤ mk ≤ nk, we have mk−mj+1
njnk

≤ 1
nj

and mj−mk+1
njnk

≤ 1
nk

. As a
result, we have the following inequality:

∀j, k,−
(

1

nj
+

1

nk

)
<

mk

nk
− mj

nj
<

(
1

nj
+

1

nk

)
(15)

This concludes the proof.

B.2 Proof of Theorem A.2

Proof. We proof the theorem by contradictory. We assume the optimal {mi}Li=1 does not satisfy
the property mentioned in Theorem A.2. This means ∃1 ≤ j ≤ L such that mj < nj and
∃1 ≤ k ≤ L,mj < mk − 1. Based on this, we then construct a new sequence {m̂i}Li=1 as follows:

m̂j = mj + 1; m̂k = mk − 1;∀i ̸= j, i ̸= k, m̂i = mi. (16)

We then calculate the ratio of ΠL
i=1m̂i and ΠL

i=1mi:
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ΠL
i=1m̂i

ΠL
i=1mi

=
(mj + 1)(mk − 1)

mjmk
= 1 +

mk −mj − 1

mjmk
> 1 (17)

The last inequality is based on the assumption mj < mk − 1. (17) indicates ΠL
i=1m̂i > ΠL

i=1mi,
which contradicts the optimality of {mi}Li=1.

C Algorithm

We provide the pseudo-code of the edge pop-up algorithm for adversarial robustness as Algorithm 1.
We use PGD to generate adversarial attacks. ΠSϵ

mean projection into the set Sϵ.

Algorithm 1 Edge pop-up algorithm for adversarial robustness.
Input: training set D, batch size B, PGD step size α and iteration number n, adversarial budget
Sϵ, pruning rate r, mask function M , the optimizer.
Random initialize the model parameters w and the scores s.
for Sample a mini-batch {xi, yi}Bi=1 ∼ D do

for i = 1, 2, ..., B do
Sample a random noise δ within the adversarial budget Sϵ.
x
(0)
i = xi + δ

for j = 1, 2, ..., n do
x
(j)
i = x

(j−1)
i + α▽

x
(j−1)
i
L(f(w ⊙M(s, r),x

(j−1)
i ), yi)

x
(j)
i = xi +ΠSϵ

(
x
(j)
i − xi

)
end for

end for
Calculate the gradient g = 1

B

∑B
i=1 ▽sL(f(w ⊙M(s, r),x

(n)
i ), yi)

Update the score s using the optimizer.
end for
Output: the pruning mask M(s, r).

We provide the pseudo-code of our algorithm on the ImageNet100 as Algorithm 2. It incorporates
FGSM [57] with ATTA [7]. In addition, due to the high resolution and large size of the ImageNet100
dataset, we need to compress the initial perturbation directory to reduce the overhead of memory
consumption. Here, we choose to downsample the original perturbation to reduce its resolution for
storage, and then upsample it back to the original resolution when using it as the initial perturbation.

D Experiments

D.1 Experimental Settings

General The RN34 architecture we use in this paper is the same as the one in [51, 54], and it has
21265088 trainable parameters. The bias terms of all linear layers are initialized 0, and are thus
disabled. We also disable the learnable affine parameters in batch normalization layers, following the
setup of [51]. Unless specified, the number of training epochs for CIFAR10 and CIFAR100 is 400,
and for ImageNet100 there are 100 training epochs. The adversarial budget in this paper is based on
l∞ norm and the perturbation strength ϵ is 8/255 for CIFAR10, 4/255 for CIFAR100 and 2/255 for
ImageNet100. The resolution of CIFAR10 and CIFAR100 is 32× 32; the resolution of ImageNet100
is 224 × 224. ImageNet100 is a subset of ImageNet which consists of 100 classes. The selection
of these classes follows the settings of a python library called Continuum [20]. The PGD attacks
used in our experiments have 10 iterations and the step size is one-quarter of the ϵ, respectively. The
AutoAttack (AA) consists of the following four attacks: 1) the untargeted 100-iteration AutoPGD
based on cross-entropy loss; 2) the targeted 100-iteration AutoPGD based on difference of logits
ratio (DLR) loss; 3) the targeted 100-iteration FAB attack [14]; 4) the black-box 5000-query Square
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Algorithm 2 Accelerated training for ImageNet100.
Input: training set D, batch size B, FGSM step size α, adversarial budget Sϵ, pruning rate r, mask
function M , the optimizer.
Random initialize the model parameters w and the scores s.
Initialize the instance-to-perturbation dictionaryM = {}
for Sample a mini-batch {xi, yi}Bi=1 ∼ D do

for i = 1, 2, ..., n do
Data augmentation xi ← A(xi)
if xi inM then

Get the downsampled perturbation: δ′i = A(M(xi))
Upsample δ′ to the original resolution and get δi.

else
Sample a random noise δi within the adversarial budget Sϵ

end if
δi ← δi + α▽δiL(f(w ⊙M(s, r),xi + δi), yi)
δi ← ΠSϵδi
Update the dictionary by the downsampled perturbation δ′i:M(xi) = A−1(δ′i)

end for
end for
Calculate the gradient g = 1

B

∑B
i=1 ▽sL(f(w ⊙M(s, r),xi + δi), yi)

Update the score s using the optimizer.
Output: the pruning mask M(s, r).

attack [2]. We use the same hyper parameters in all these component attacks as in the original
AutoAttack implementation.6

We train the model using an SGD optimizer, with the momentum factor being 0.9 and the weight
decay factor being 5 × 10−4. The learning rate is initially 0.1 and decays following the cosine
annealing scheduler. Finally, since adversarial training suffers from severe overfitting [53], we use a
validation set consisting of 2% of the training data to select the best model during training.

Adversarial Training We apply the same settings as above to adversarial training, except the choice
of optimizer and learning rate. For full precision networks, we use an SGD optimizer with an initial
learning rate of 0.1 and decreases by a factor of 10 in the 200th and 300th epoch for CIFAR10 and
CIFAR100 models. For ImageNet100, the learning rate decreases by a factor of 10 in the 50th and
75th epoch. For binary networks, we use Adam optimizer [35] suggested in [10] and have a cosine
annealing learning rate schedule with an initial learning rate of 1× 10−4.

Baselines (FlyingBird(+), BCS, RST, HYDRA, ATMC) Our results on the baselines are based
on their original public implementation except that we use the validation set to pick the best model
during training. FlyingBird(+), BCS, and HYDRA do not inherently support binary networks, so we
plug in the BinaryConnect algorithm [10] with the same settings as the ones in adversarial training.
We also plug in Algorithm 2 for fast training on ImageNet100. We scale down the number of training
epochs of FlyingBird(+), BCS, RST to 100 epochs, and HYDRA to 110 epochs (50 pretrain + 10
prune + 50 finetune). For ATMC, we use 50 epochs for each of the four training phases, adding up to
200 epochs in total. In all baselines except RST, the batch normalization layers in the model have
affine operations and are learnable. This introduces additional trainable parameters and is different
from the network used in our method.

Smaller RN34 Variants Based on the adaptive pruning strategy, we designed several smaller RN34
variants with approximately the same number of parameters as the pruned networks. These variants
have the same topology as RN34 but have fewer channels in each layer. In Table 7, we provide
architecture details based on different values of p when the pruning rate r is 0.99. The Small RN34
model in Table 4 represents the small model with p = 0.1 (Small RN34-p0.1 in Table 7), since it has
better performance than the other small networks.

6AutoAttack: https://github.com/fra31/auto-attack.
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layer name Small RN34-p0.1 Small RN34-p1.0
conv1 3× 3, 23 3× 3, 6

Block1
[

3 × 3, 23
3 × 3, 23

]
× 3

[
3 × 3, 6
3 × 3, 6

]
× 3

Block2
[

3 × 3, 25
3 × 3, 25

]
× 4

[
3 × 3, 13
3 × 3, 13

]
× 4

Block3
[

3 × 3, 27
3 × 3, 27

]
× 6

[
3 × 3, 26
3 × 3, 26

]
× 6

Block4
[

3 × 3, 29
3 × 3, 29

]
× 3

[
3 × 3, 51
3 × 3, 51

]
× 3

average pool, 10d-fc, softmax
#params 201078 216360

Table 7: RN34 variants that have similar layer sizes as the pruned RN34 obtained by different p
values. 3× 3× 23 means the kernel size is 3× 3 and there are 23 output channels.

D.2 Additional Experimental Results

D.2.1 Ablation Study in the Non-Adversarial Case

In the non-adversarial case, we train the models using clean inputs and report the clean accuracy
in Table 8. Other hyper-parameters here are the same as in Table 3. Our conclusions from Table 3
also hold true here: the binary initialization can achieves comparable performance as the Signed
Kaiming Constant; the last batch normalization layer helps improve performance for both initialization
schemes.

Prune Scheme Signed KC Binary
no LBN LBN no LBN LBN

p = 0.0 93.25 93.99 93.64 94.05
p = 0.1 92.12 93.98 93.84 93.99
p = 0.2 92.96 94.35 89.27 93.87
p = 0.5 93.44 94.29 90.85 94.00
p = 0.8 90.93 92.57 90.37 92.42
p = 0.9 91.31 92.26 90.51 90.12
p = 1.0 89.27 89.12 87.58 89.03

Table 8: The accuracy (in %) of vanilla trained models on the CIFAR10 test set under various settings,
including Signed Kaiming Constant (Signed KC) and the binary initialization. We include models
both with and without the last batch normalization layer (LBN). The best results are marked in bold.

D.2.2 More results of Baselines

We show in Table 9 the complete set of experiments of baseline algorithms on CIFAR10 and
CIFAR100 as a complementary of Table 4. Specifically, we compare baselines with different
architectures and with different pruning strategies. First, the last batch normalization layer (LBN)
does not improve the baselines that update model parameters in the full-precision setting, because the
magnitude of the output logits can be automatically adjusted in these cases. There is no need to insert
another normalization layer. For FlyingBird(+), BCS and HYDRA, adding LBN to a binary network
will most likely be beneficial to a better performance. This observation is consistent with our claim
in Appendix A.3. As for ATMC, it is actually not pruning a truly binary network since the value of
model parameters are trainable and not necessarily +1 or −1, so adding LBN might not be useful
in this case. For the pruning strategy, adaptive pruning strategy with p = 0.1 always has better
performance than the fixed pruning rate strategy, i.e., p = 1.0. This is because the pruning rate here is
very high r = 0.99, and we need a small value of p based on the analysis in Section 3.2. Furthermore,
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we provide the performance of TRADES [64], which trades clean accuracy for adversarial accuracy.
Compared with adversarial training (AT), TRADES achieves competitive performance in the full
precision cases, but it performance degrades significantly in the binary cases.

Method Architecture Pruning CIFAR10 CIFAR100
Strategy FP Binary FP Binary

AT RN34 Not Pruned 43.26 40.34 36.63 26.49
AT RN34-LBN Not Pruned 42.39 39.58 35.15 32.98
TRADES RN34 Not Pruned 49.07 30.18 35.28 29.64
TRADES RN34-LBN Not Pruned 48.27 37.91 31.23 31.26
FlyingBird RN34 Dynamic 45.86 34.37 35.91 22.49
FlyingBird+ RN34 Dynamic 44.57 33.33 34.30 22.64
FlyingBird RN34-LBN Dynamic 45.58 37.18 35.06 24.94
FlyingBird+ RN34-LBN Dynamic 44.44 37.48 34.03 24.50
BCS RN34 Dynamic 43.51 22.61 31.85 11.96
BCS RN34-LBN Dynamic 42.02 30.67 31.16 17.97
RST RN34 p = 1.0 34.95 - 21.96 -
RST RN34-LBN p = 1.0 37.23 - 23.14 -
HYDRA RN34 p = 0.1 42.73 29.28 33.00 23.60
HYDRA RN34 p = 1.0 40.51 26.40 31.09 18.24
HYDRA RN34-LBN p = 0.1 40.55 33.99 13.63 25.53
HYDRA RN34-LBN p = 1.0 32.93 26.23 29.96 18.91
ATMC RN34 Global 34.14 25.62 25.10 11.09
ATMC RN34 p = 0.1 34.58 24.65 25.37 11.04
ATMC RN34 p = 1.0 30.50 20.21 22.28 2.53
ATMC RN34-LBN Global 33.55 19.01 23.16 15.73
ATMC RN34-LBN p = 0.1 31.61 22.88 25.16 17.33
ATMC RN34-LBN p = 1.0 27.88 13.22 22.12 9.55
AT Small RN34-p0.1 Not Pruned 42.01 32.54 28.46 16.18
AT Small RN34-p1.0 Not Pruned 38.81 26.03 27.68 15.85
TRADES Small RN34-p0.1 Not Pruned 42.60 29.92 28.44 15.25
TRADES Small RN34-p1.0 Not Pruned 38.53 24.83 27.63 13.16
Ours RN34-LBN p = 0.1 - 45.06 - 34.83
Ours RN34-LBN p = 1.0 - 34.57 - 26.32
Ours (fast) RN34-LBN p = 0.1 - 40.77 - 34.45
Ours (fast) RN34-LBN p = 1.0 - 29.68 - 24.97

Table 9: Robust accuracy (in %) on the CIFAR10 and CIFAR100 test sets for AT, TRADES,
FlyingBird(+), BCS, RST, HYDRA, ATMC and our proposed method. “RN34-LBN” represents
RN34 with the last batch normalization layer. “Small RN34” here refers to Small RN34-p0.1 in
Table 7 of Appendix D.1. Among the compressed models, the best results for full precision (FP)
models are underlined; the best results for binary models are marked in bold.

D.2.3 Clean accuracy of Models in Table 4

Table 10 shows the accuracy on the clean test set of the models in Table 4. In the CIFAR10 dataset,
our pruned networks with both normal and fast pruning achieve the highest vanilla accuracy among
all binary networks. Although the accuracy is lower than full-precision networks by ATMC, our
model performs notably better (> 10%) under AutoAttack. In the CIFAR100 dataset, our model
using FGSM with ATTA has the best vanilla accuracy among both full-precision networks and binary
networks, and also achieves comparable robust accuracy to them, as shown in Table 4. Our model
using PGD also achieves competitive performance, better than all other binary networks. In the
ImageNet100 dataset, our model still outperforms all other pruned binary models, although it is worse
than some full precision models. These results indicate that our models can achieve competitive
robust accuracy without losing too much vanilla accuracy, hence more powerful in real applications
where both robust and vanilla accuracy are important.

D.2.4 Our Method in the Non-adversarial Cases

Vanilla training can be considered as a special case of adversarial training: the case when ϵ = 0.
Therefore, our methods, as well as baselines, are applicable to vanilla training. The results of the cases
when ϵ = 0 are demonstrated in Table 11. Since there are no adversarial attacks in vanilla training,
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Method Architecture Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 80.99 74.37 61.48 47.87 78.98 63.76
AT RN34-LBN Not Pruned 80.96 74.17 57.73 60.08 77.66 64.60
AT Small RN34 Not Pruned 74.76 58.69 52.77 28.81 49.64 21.12
FlyingBird RN34 Dynamic 79.29 62.28 62.12 43.66 66.66 19.74
FlyingBird+ RN34 Dynamic 77.01 62.69 59.09 41.69 66.66 19.74
BCS RN34 Dynamic 74.75 - 53.82 - - -
RST RN34 p = 1.0 65.93 - 38.87 - 42.70 -
RST RN34-LBN p = 1.0 67.45 - 42.95 - 46.22 -
HYDRA RN34 p = 0.1 75.31 62.09 55.92 45.96 67.76 33.18
ATMC RN34 Global 81.85 72.97 57.15 36.39 60.68 26.80
ATMC RN34 p = 0.1 81.37 73.34 59.99 32.68 61.88 16.34
Ours RN34-LBN p = 0.1 - 76.59 - 60.16 - 58.94Ours(fast) RN34-LBN p = 0.1 - 81.63 - 63.73

Table 10: The accuracy (in %) on the clean inputs of the methods studied in Section 4.2. “RN34-LBN”
represents RN34 with the last batch normalization layer. Among the pruned models, the best results
in the full precision (FP) cases are underlined and the best results in the binary cases are marked in
bold.

the acceleration used in “Ours (fast)” is not applicable here. The results in Table 11 demonstrate the
consistent observations with Table 4: our proposed methods achieve the best performance among
binary networks.

Method Architecture Pruning CIFAR10 CIFAR100 ImageNet100
Strategy FP Binary FP Binary FP Binary

AT RN34 Not Pruned 94.80 90.11 76.39 70.02 80.26 68.26
AT RN34-LBN Not Pruned 94.79 92.46 76.85 73.49 79.84 73.88
AT Small RN34 Not Pruned 91.99 85.61 65.48 43.46 58.14 29.62
FlyingBird RN34 Dynamic 93.41 88.96 71.77 61.50 74.06 26.06
FlyingBird+ RN34 Dynamic 92.28 86.44 72.03 58.09 74.40 27.52
BCS RN34 Dynamic 90.69 - 67.39 - - -
RST RN34 p = 1.0 88.43 - 56.65 - 50.18 -
RST RN34-LBN p = 1.0 89.14 - 62.93 - 61.52 -
HYDRA RN34 p = 0.1 91.13 88.10 68.84 62.10 76.42 49.40
ATMC RN34 Global 92.01 88.40 67.45 51.96 69.36 35.30
ATMC RN34 p = 0.1 91.32 79.46 68.03 50.94 70.12 33.52
Ours RN34-LBN p = 0.1 - 93.99 - 75.37 - 72.80

Table 11: Clean accuracy (in %) on the CIFAR10, CIFAR100 and ImageNet100 test sets for the
baselines and our proposed method in the non-adversarial case, i.e., ϵ = 0. “RN34-LBN” represents
ResNet34 with the last batch normalization layer. “Small RN34” refers to Small RN34-p0.1 in Table 7
of Appendix D.1. The pruning rate is set to 0.99 except for the not-pruned methods. Among the
pruned models, the best results for the full-precision (FP) models are underlined; the best results for
the binary models are marked in bold.

D.2.5 Mask of the Pruned Network

We have demonstrated that the masks of the pruned network obtained by our method are structured to
some degree in Section 4.3. We have also analyzed the structure of a randomly pruned network in
Appendix A.4.

Figure 5 shows the one of the convolutional layers in our pruned RN34 network. We resize the layer
parameters as grids of shape (rout, rin) for visualization. Each grid represents a 3-by-3 kernel. So the
shape of parameters is (rout × 3, rin × 3). The retained parameters in each kernel are marked in blue.
The pruning rate for this layer is r = 0.99. We highlight the input channels that are totally pruned in
orange. We also use a white bar at the top of the figure to indicate these empty input channels.
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In Section 4.3, we also point out the aligned pruning pattern in the two consecutive layers, layer1 and
layer2, of the same residual block in RN34. Figure 3 shows their pruning masks. The side bars show
which channel is non-empty(colored in blue). For convenience, layer1 is resized in (rout×3, rin×3),
and layer2 is organized in (rin× 3, rout× 3). It is interesting that the pruned input channels of layer2
are well aligned with the pruned output channels of layer1.

Note that our finding also holds in the vanilla settings, i.e. pruning with clean examples. We think
this observation enables a possible way for regular pruning.

Figure 3: Distribution of weights in two consecutive layers. In layer1 (left), the masks are reshaped
into (rout × 3, rin × 3) while masks in layer2 (right) are reshaped into (rin × 3, rout × 3). The
output channels totally pruned in layer1 and the input channels totally pruned in layer2 are highlighted
as the white bars in the middle. Due to the large number of parameters in these layers, readers could
zoom in this figure to see more details.

D.2.6 Learning Curves of Adaptive Pruning with Different p Values

We plot the learning curves when we use the adaptive pruning strategy with different values of p
in Figure 4. Here, we use r = 0.99 and r = 0.5 as two examples. Based on the results of Table 1,
our method achieves the best performance under p = 0.1 when r = 0.99 and under p = 1.0 when
r = 0.5. The learning curves in Figure 4 indicate that the training process is quite unstable when
using the inappropriate pruning strategy, leading to suboptimal performance.
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(a) p = 0.1
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(b) p = 0.5
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(c) p = 0.8
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(d) p = 1.0
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(e) p = 0.1
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(f) p = 0.5
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(g) p = 0.8
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(h) p = 1.0

Figure 4: Learning curves of our proposed method under adaptive pruning strategy with different
values of p. The pruning ratio is 0.99 for figure (a) - (d) and is 0.5 for figure (e) - (h).
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Figure 5: Mask visualization of the weight of a random convolutional layer in our model. The
parameters retained is highlighted as blue dots. The dimension of the convolutional kernel is (rout,
rin, 3, 3). We reshape this kernel in rectangle of shape (rout × 3, rin × 3). Channels with no
remaining weight are colored orange. The top bar indicates whether the channel is empty (white) or
not (blue). Due to the large number of parameters in this layer, readers could zoom in this figure to
see more details.
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