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Abstract—Training certifiable neural networks enables us to
obtain models with robustness guarantees against adversarial
attacks. In this work, we introduce a framework to obtain
a provable adversarial-free region in the neighborhood of the
input data by a polyhedral envelope, which yields more fine-
grained certified robustness than existing methods. We further
introduce polyhedral envelope regularization (PER) to encourage
larger adversarial-free regions and thus improve the provable
robustness of the models. We demonstrate the flexibility and
effectiveness of our framework on standard benchmarks; it
applies to networks of different architectures and with general
activation functions. Compared with state of the art, PER has
negligible computational overhead; it achieves better robustness
guarantees and accuracy on the clean data in various settings.

Index Terms—Adversarial Training. Provable Robustness.

I. INTRODUCTION

Despite their great success in many applications, modern
deep learning models are vulnerable to adversarial attacks:
small but well-designed perturbations can make the state-of-
the-art models predict wrong labels with very high confidence
[16], [30], [42]. The existence of such adversarial examples
indicates unsatisfactory properties of the deep learning models’
decision boundary [20], and poses a threat to the reliability of
safety-critical machine learning systems.

As a consequence, studying the robustness of deep learning
has attracted growing attention, from the perspective of both
attack and defense strategies. Popular attack algorithms, such
as the Fast Gradient Sign Method (FGSM) [16], the CW attack
[6] and the Projected Gradient Descent (PGD) [28], typically
exploit the gradient of the loss w.r.t. the input to generate
adversarial examples. Recently, the state-of-the-art success
rates have been attained with adaptive methods, such as Auto
Attack[12]. All these methods assume that the attackers have
access to the model parameters and thus belong to the “white-
box attacks”. On the contrary, “black-box attacks” tackle the
cases where the attackers have limited access to the model,
such as limited access to the output logits [2]), hard-label
predictions ([8] and task settings [14].

To counteract such attacks, robust learning aims to learn a
model which optimizes the worst-case loss over the allowable
perturbations. Formally, given a model fθ parameterized by θ,
the loss function ` and a dataset D, robust learning solves the
following min-max problem:

min
θ

E(x,y)∼D max
x′∈Sε(x)

`(fθ(x
′), y) (1)
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Here, Sε(x) denotes the adversarial budget, which is the
allowable perturbed input of the clean input x. To solve (1),
many defense algorithms have been proposed [5], [13], [27],
[33], [34], [38], [51]. However, it was shown by [3], [12], [44]
that most of them depend on obfuscated gradients for perceived
robustness. In other words, these methods train models to fool
gradient-based attacks but do not achieve true robustness. As
a consequence, they become ineffective when subjected to
stronger attacks. The remaining effective defense is adversarial
training [28] and its extensions [1], [7], [19], [21], [29], [41],
[50], [53], which augments the training data with adversarial
examples. Nevertheless, while adversarial training yields good
empirical performance under adaptive attacks, it still provides
no guarantees of a model’s robustness.

In this work, we focus on constructing certifiers to find
certified regions of the input neighborhood where the model
is guaranteed to give the correct prediction, and on using
such certifiers to train a model to be provably robust against
adversarial attacks. To obtain such robustness guarantee,
there are two categories of methods: complete certifiers and
incomplete certifiers. Complete certifiers can either guarantee
the absence of an adversary or find an adversarial example
given an adversarial budget. They are typically built on either
Satisfiability Modulo Theories (SMT) [22] or Mixed Integer
Programming (MIP) [43], [52]. The major disadvantages of
complete certifiers are their super-polynomial complexity and
applicability to only piecewise linear activation functions, such
as ReLU. By contrast, incomplete certifiers are faster, more
widely applicable but more conservative in terms of certified
regions because they rely on approximations. In this context,
techniques such as linear approximation [4], [48], [47], [49],
[55], symbolic interval analysis [46], abstract transformers
[15], [39], [40] and semidefinite programming [35], [36] have
been exploited to offer better certified robustness. In addition,
recent works use randomized smoothing [9], [37] to construct
probabilistic certifiers, which provides robustness guarantees
with high probability by Monte Carlo sampling. Some of
these methods enable training provably robust models [9],
[48], [35], [37], [49] by optimizing the model parameters so
as to maximize the area of the certified regions.

While effective, all the above-mentioned certification meth-
ods, except for randomized smoothing, which gives proba-
bilistic guarantees, only provide binary results given a fixed
adversarial budget in their vanilla version. That is, if a data
point is certified, it is guaranteed to be robust in the entire
given adversarial budget; otherwise no guaranteed adversary-
free region is estimated. To overcome this and search for the
optimal size of the adversarial budget that can be certified, [48],
[47], [55] use either Newton’s method or binary search.
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By contrast, [10] takes advantage of the geometric property
of ReLU networks and gives more fine-grained robustness
guarantees. Based on the piecewise linear nature of the ReLU
function, any input is located in a polytope where the network
can be considered a linear function. Based on geometry,
robustness guarantees can thus be calculated using the input
data’s distance to the polytope boundary and the decision
boundary constraints. Unfortunately, in practice, the resulting
certified bounds are trivial because such polytopes are very
small even for robust models. Nevertheless, [10] introduces a
regularization scheme based on these bounds, models trained
using this regularizer are provably robust by other certifiers.

In this paper, we construct a stronger certifier, as well as a
regularization scheme to train provably robust models. Instead
of relying on the linear regions of the ReLU networks, we
estimate a linear bound on the model’s output given a predefined
adversarial budget. Then, the condition to guarantee robustness
inside this budget is also linear and forms a polyhedral envelope
of the model’s decision boundary. The intersection of the
polyhedral envelope and the predefined adversarial budget is
then guaranteed to be adversary-free. In contrast to [10], our
method can be based on any model linearization method and is
thus applicable to general network architectures and activation
functions. To train provably robust neural network models,
we further introduce a hinge-loss-like regularization term to
encourage larger certified bounds. Furthermore, we boost the
performance of our method with adversarial training. We also
use a stochastic robust approximation [45] to accelerate our
method and reduce its memory consumption.

Based on the geometry of the decision boundary, our
proposed certification method significantly improves the one
in [10] and yields a more accurate estimation of the decision
boundary. Furthermore, it is more generally applicable to
different activation functions. In contrast to Fast-Lin [47] and
CROWN [55], our certification method can prove that a subset
of the adversarial budget is adversary-free. We show that such
partial credit can accelerate the search for the optimal size of
the adversarial budget. On the training side, in contrast to KW
[48], [49], which, as pointed out by [54], over-regularizes the
model, our proposed method achieves better certified robustness
without sacrificing too much clean accuracy. In the remainder
of the paper, we refer to our certification method as Polyhedral
Envelope Certifier (PEC) and to our regularization scheme as
Polyhedral Envelope Regularizer (PER).

II. PRELIMINARIES

A. Notation and Terminology

For simplicity, we discuss our approach using a standard
N -layer fully-connected network. We will discuss how this for-
mulation can be extended to other architectures in Section II-B.
A fully-connected network parameterized by {W(i),b(i)}N−1

i=1

can be expressed as the following equations:

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ..., N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ..., N − 1
(2)

where z(i) and ẑ(i) are the pre- & post-activations of the i-th
layer, respectively, and ẑ(1) def

== x is the input of the network.

An lp norm-based adversarial budget S(p)
ε (x) is defined as

the set {x′|‖x′ − x‖p ≤ ε}. x′, z′(i) and ẑ′(i) represent the
adversarial input and the corresponding pre- & post-activations.
For layer i having ni neurons, we have W(i) ∈ Rni+1×ni

and b(i) ∈ Rni+1 . We use K def
== nN to represent the output

dimension.
Throughout this paper, underlines and bars are used to rep-

resent lower and upper bounds of the corresponding variables,
respectively, i.e., z(i) ≤ z′(i) ≤ z̄(i). A “+” or “−” subscript
indicates the positive or negative elements of a tensor, with all
other elements replacing with 0. We use [K] as the abbreviation
for the set {1, 2, ...,K}.

B. Model Linearization

Given an adversarial budget S(p)
ε (x), we study the linear

bound of the output logits z′(N), given by

U(N)x′ + p(N) ≤ z′(N) ≤ V(N)x′ + q(N) . (3)

The linear coefficients introduced above can be calculated
by iteratively estimating the bounds of intermediate layers
and linearizing the activation functions. In Appendix A-A, we
discuss this for several activation functions, including ReLU,
sigmoid and tanh. Note that our method differs from [55] as we
need the analytical form of the linear coefficients for training.
For example [55] uses some numerical methods such as binary
search, while our method does not. The bounding algorithm
trades off computational complexity and bound tightness. In
this work, we study two such algorithms. One, which we call
CROWN-based bounds, is based on Fast-Lin / CROWN [47],
[55]. It yields tighter bounds but has higher computational
complexity. The other, which we call IBP-inspired bounds, is
inspired by the Interval Bound Propagation (IBP) [18]. It is
faster but leads to looser bounds. The details of both algorithms
are provided in Appendices A-B and A-C, respectively. We
discuss the complexity of both algorithms in detail in Section V.

Although the formulation above is based on the fully-
connected network, it can be straightforwardly extend to any
network whose corresponding computational graph can be
represented by a Directed Acyclic Graph. All the factors in
our bounds, including U(N), V(N), p(N) and q(N) in (3),
can be propagated along the computational graph. This has
been shown in detail in Appendix D of [26]. Therefore, our
method is also applicable to other network architectures, such
as convolutional neural networks (CNN), residual networks
(ResNet) and recurrent neural networks (RNN).

III. ALGORITHMS

A. Robustness Guarantees by Polyhedral Envelope

For an input point x with label y ∈ [K], a sufficient condition
to guarantee robustness is that the lower bounds of z′(N)

y −z′(N)
i

are positive for all i ∈ [K]. Here, we use the elision of the last
layer introduced in [18] to merge the subtraction of z′(N)

y and
z
′(N)
i with the last linear layer. Therefore, we obtain the lower

bound of z′(N)
y −z′(N)

i as a whole: z′(N)
y − z

′(N)
i

def
== Uix

′+pi.



3

Then, the sufficient condition to ensure robustness within a
budget S(p)

ε (x) can be written as the following inequality:

z′(N)
y − z

′(N)
i = Uix

′ + pi ≥ 0 ∀i ∈ [K] . (4)

The constraint is trivial when i = y, so there are (K−1) such
linear constraints, corresponding to K − 1 hyperplanes in the
input space. Within the adversarial budget, these hyperplanes
provide a polyhedral envelope of the true decision boundary.
In the remainder of the paper, we use the term diy to represent
the distance between the input and the hyperplane defined in
(4) and define dy = mini∈[K],i6=y diy as the distance between
the input and the polyhedral envelope’s boundary. The distance
can be based on different lp norms, and diy = 0 when the
input itself does not satisfy the inequality (4). Since (4) is a
sufficient condition for robustness given the adversarial budget
S(p)
ε (x), it is guaranteed there is no adversarial example in the

intersection of S(p)
ε (x) and the polytope defined in (4).

The lemma below formalizes the vanilla case of our
robustness certification, when there are no additional constraints
on the input. We defer its proof to Appendix C-A and call our
method Polyhedral Envelope Certification (PEC).

Lemma 1 (PEC in Unconstrained Cases). Given a model
f : Rn1 → [K] and an input point x with label y, let U and
p in (4) be calculated using a predefined adversarial budget
S(p)
ε (x). Then, there is no adversarial example inside an lp

norm ball of radius d centered around x, with d = min {ε, dy},
where diy = max

{
0, Uix+pi
‖Ui‖q

}
. lq is the dual norm of the lp

norm, i.e., 1
p + 1

q = 1.

Based on Lemma 1, when ε < dy , PEC has the same robust-
ness guarantees as KW [48], Fast-Lin [47] and CROWN [55]
using the same model linearization method. When 0 < dy < ε,
KW / Fast-Lin / CROWN cannot certify the data point at all,
while PEC still gives non-trivial robustness guarantees thanks
to the geometric interpretability of the polyhedral envelope.
Figure 1 compares the certified bounds of KW / Fast-Lin1 and
PEC on a randomly picked input for different values of ε in the
predefined adversarial budget. We can clearly see the two-phase
behavior of both methods. In the second phase, unlike KW /
Fast-Lin, PEC still provides a non-trivial certification bound.

Figure 2 shows a 2D sketch of the two phases mentioned
above. When ε is smaller than a threshold, as in the left half
of the figure, the linear bounds in (4) are tight but only valid
in a small region S(p)

ε (x). Therefore, the certified robustness
is ε at most. When ε is bigger than this threshold, the linear
bounds are valid in a larger region but becomes inevitably
loose. This is because the value of dic monotonically decreases
with the increase of ε for all model linearization methods.
This is depicted in the right half of the figure, where the
distances between the input and the hyperplanes are smaller.
The certified robustness is then dc. The hyperplane segments
inside the adversarial budget (green bold lines) never exceed
the decision boundary (dark blue bold lines), by definition of
the polyhedral envelope. The threshold here is the maximum

1In the case of ReLU networks, Fast-Lin and KW are algorithmically the
same and yield the same robustness certification.
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Fig. 1: Certified l∞-based bound of a randomly picked input by PEC
and KW / Fast-Lin for different values of ε. The model is the ‘FC1’
model on MNIST trained by ‘MMR+at’ in [10]

Fig. 2: 2D sketch of decision boundary (dark blue bold lines),
hyperplane defined by (4) (light blue lines), adversarial budget (red
dotted circle), polyhedral envelope (green bold lines) in PEC. The
distance between the input data and the hyperplanes is depicted by a
yellow dashed circle. The left and right half correspond to the cases
when dc is bigger and smaller than ε, respectively.

certified bound, corresponding to the ’peak’ of both curves in
Figure 1. We call this threshold the optimal value of ε.

To search for the optimal value of ε, [48] uses Newton’s
method, which is an expensive second-order method. [47], [55]
use binary search to improve efficiency. Thanks to the non-
trivial certified bounds in the second phase, our proposed PEC
can further accelerate their strategy. During the search, when
the value guess ε̂ is in the second phase, the vanilla binary
search in Fast-Lin / CROWN can only conclude that the optimal
value is smaller than ε̂. In addition to this upper bound of the
optimal value, PEC can output a non-trivial certified bound dc,
in which case we can also conclude that the optimal value is
larger than dc. The tighter lower bound on the optimal value
makes PEC need fewer steps to reach the required optimal
value precision and thus accelerates the search. We provide
more detailed discussion and the pseudo code in Appendix B-A.

In many applications, the input is constrained in a hypercube
[r(min), r(max)]n1 . For example, for images with normalized
pixel intensities, an attacker will not perturb the image outside
the hypercube [0, 1]n1 . Such constraint on the attacker allows
us to ignore the regions outside the allowable input space, even
if they are inside the adversarial budget S(p)

ε (x).

To obtain robustness guarantees in this scenario, we need to
recalculate dic, which is now the distance between the input
and the hyperplanes in (4) within the hypercube. The value of



4

dic is then the minimum of the following optimization problem

min
∆
‖∆‖p

s.t. a∆ + b ≤ 0, ∆(min) ≤ ∆ ≤ ∆(max)
(5)

where, to simplify the notation, we define a = Ui, b = Uix+p,
∆(min) = r(min)−x and ∆(max) = r(max)−x. When b ≤ 0,
the minimum is obviously 0 as the optimal ∆ is an all-zero
vector. In this case, either we cannot certify the input at all, or
even the clean input is misclassified. When b > 0, by Hölder’s
inequality, a∆ + b ≥ −‖∆‖p‖a‖q + b, with equality reached
when ∆p and aq are collinear. Based on this, the optimal ∆
of minimum lp norm to satisfy a∆ + b ≤ 0 is

∆̂i = − b

‖a‖qq
sign(ai) |ai|

q
p , (6)

where sign(·) returns +1 for positive numbers and −1 for
negative numbers.

To satisfy the constraint ∆(min) ≤ ∆ ≤ ∆(max), we use a
greedy algorithm that approaches this goal progressively. That
is, we first calculate the optimal ∆̂ based on Equation (6) and
check if the constraint ∆(min) ≤ ∆ ≤ ∆(max) is satisfied.
For the elements where it is not, we clip their values within
[∆(min),∆(max)] and keep them fixed. We then optimize the
remaining elements of ∆ in the next iteration and repeat
this process until the constraint is satisfied for all elements.
The pseudo-code is provided as Algorithm 1 below and its
optimality is guaranteed.

Theorem 1. If the maximum number of iterations I(max) in
Algorithm 1 is large enough to satisfy ∆(min) ≤ ∆̂ ≤ ∆(max)

in Problem (5), then the output ‖∆̂‖p is the optimum of Problem
(5), i.e., dic.

We can use the primal-dual method to prove Theorem 1,
which we defer to Appendix C-B. Once we have the value of
dic and thus dc, the certified bound in this constrained case is
then min{ε, dc}, similar to Lemma 1.

Algorithm 1: Greedy algorithm to solve Problem (5).

1: Input: x, a, b, ∆(min), ∆(max) in (5) and maximum number
of iterations allowed I(max)

2: Set of fixed elements S(f) = ∅
3: Iteration number i = 0
4: Calculate ∆̂ according to (6)
5: while ∆(min) ≤ ∆̂ ≤ ∆(max) not satisfied and i < I(max) do
6: Violated entries S(v) = {i|∆̂i < ∆

(min)
i or ∆̂i > ∆

(max)
i }

7: ∆̂i = clip(∆̂i,min = ∆
(min)
i ,max = ∆

(max)
i ), i ∈ S(v)

8: S(f) = S(f) ∪ S(v)

9: Update ∆̂ according to (6) with elements in S(f) fixed
10: Update i = i+ 1
11: end while
12: Output: ‖∆̂‖p

If I(max) is set so small that the while-loop breaks with
∆(min) ≤ ∆̂ ≤ ∆(max) unsatisfied, then the output of
Algorithm 1 is the upper bound of Problem (5), and thus we
eventually get a suboptimal but still valid robustness guarantee.
[11] solves the same problem when designing an attack and
points out Algorithm 1 will converge in O(n1 log n1) time. We

observed I(max) = 20 to be sufficient to satisfy the condition
in Theorem 1. In practice, the while-loop breaks within 5
iterations in most cases, which means Algorithm 1 introduces
very little overhead.

B. Geometry-Inspired Regularization

As in [10], we can incorporate our certified bounds in
Theorem 1 in the training process so as to obtain provably
robust models. To this end, we design a regularization term
that encourages larger values of dc. We first introduce the
signed distance d̃ic: when dic > 0, the clean input satisfies
(4) and d̃ic = dic; when dic = 0, the clean input does not
satisfy (4) and there is no certified region; d̃ic in this case
is a negative number whose absolute value is the distance
between the input and the hyperplane defined in (4). If the
input is unconstrained, we have d̃ic = Uix+pi

‖Ui‖q . Otherwise,

following the notation of (5), d̃ic = sign(b)‖∆̂‖p, where ∆̂ =
arg min∆ ‖∆‖p, s.t. a∆ + b = 0,∆(min) ≤ ∆ ≤ ∆(max).
This problem can be solved by a greedy algorithm similar to
the one in Section III-A.

Now, we sort {d̃ic}K−1
i=0,i6=c as d̃j0c ≤ d̃j1c ≤ ... ≤ d̃jK−3c ≤

d̃jK−2c and then define the Polyhedral Envelope Regularization
(PER) term, based on the smallest T distances, as

PER(x, α, γ, T ) = γ

T−1∑
i=0

max

(
0, 1− d̃jic

α

)
. (7)

Note that, following [10], to accelerate training, we take
into account the smallest T distances. When d̃jic ≥ α, the
distance is considered large enough, so the corresponding term
is zero and will not contribute to the gradient of the model
parameters. This avoids over-regularization and allows us to
maintain accuracy on clean inputs. In practice, we do not
activate PER in the early training stages, when the model is
not well trained and the corresponding polyhedral envelope
is meaningless. Such a ‘warm up’ trick is commonly used in
deep learning practice [17].

We can further incorporate PER with adversarial training in a
similar way to [10]. Here, the distance d̃jic in (7) is calculated
between the polyhedral envelope and the adversarial example
generated by PGD [28] instead of the clean input. Note that,
the polyhedral envelope is the same in both cases because it
only depends on the adversarial budget S(p)

ε (x). We call this
method PER+at.

Calculating the polyhedral envelope is expensive in terms of
both computation and memory because of the need to obtain
linear bounds of the output logits. We conduct a comprehensive
complexity analysis in Section V. To prevent such a prohibitive
computational and memory overhead, we use the stochastic
robust approximation in [45]. For a mini-batch of size B,
we only calculate the PER or PER+at regularization term for
B′ < B instances randomly sub-sampled from this mini-batch.
Each instances in the mini-batch has the same probability
to be sampled. [30] empirically observed the geometric
correlation of high-dimensional decision boundaries near the
data manifold. Although this finding is based on regularly
trained models, we find it also holds for models trained by
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PER / PER+at: in practice, a B′ much smaller than B provides
a good approximation of the full-batch regularization.

The full pipeline of PER+at method is demonstrated as
Algorithm 2. D and ` represent the dataset and the loss function,
respectively.

Algorithm 2: Full pipeline of PER+at method
1: Input: D, γ, α, T , B, B′

2: Sample (X,y) ∈ (RB×m, [K]B) from the dataset D.
3: Subsample (Xs,ys) ∈ (RB′×m, [K]B

′
) from the minibatch.

4: Using model linearization to calculate U and p in Equation (3)
for each instance in (Xs,ys).

5: Using PGD attack to generate adversarial examples (X′,y′) of
the whole mini-batch, including the subsamples.

6: Calculate PER regularization term based on linearization U, p
and input (X′s,y

′
s) using Algorithm 1.

7: The final loss is 1
2
(`(X,y) + `(X′,y′)) + PER(X′s, α, γ, T ).

8: Back-propagation and update model parameters.

IV. EXPERIMENTS

To validate the theorem and algorithms above, we con-
ducted several experiments on two popular image classifi-
cation benchmarks: MNIST and CIFAR10. Each of these
experiments can be completed on a single NVIDIA TI-
TAN XP GPU machine of 12GB memory within several
hours. Our code and checkpoints are publicly available at
https://github.com/liuchen11/PolyEnvelope.

A. Training and Certifying ReLU Networks

We first demonstrate the benefits of our approach over
existing training and certification methods under the same
computational complexity. To this end, we use the same model
architectures as in [10], [48]: FC1, which is a fully-connected
network with one hidden layer of 1024 neurons; and CNN,
which has two convolutional layers followed by two fully-
connected layers. For this set of experiments, all activation
functions are ReLU.

When it comes to training, we consider 7 baselines, including
plain training (plain), adversarial training (at) [28], KW [48],
IBP [18], CROWN-IBP [54], MMR and MMR plus adversarial
training (MMR + at) [10]. We denote our method as C-PER,
C-PER+at when we use CROWN-style model linearization
for PER and PER+at, respectively, and as I-PER and I-
PER+at when using IBP-inspired model linearization. We do
not compare randomized smoothing [9], [37] or layerwise
training [4]. This is because the certified bounds of randomized
smoothing are not exact but probabilistic, and layerwise training
has significant computational overhead.2 For fair comparison,
we use the same adversarial budget in both the training and
the test phases.

To evaluate the models’ performance on the test set, we first
report the clean test error (CTE) and the empirical robust error
against PGD (PGD). Based on the discussions in Section III-A,

2 For CNN models, [4] trains 200 epochs for each layer and 800 epochs in
total, while the other baselines use only 100 epochs. If we reduce the training
epochs of each layer to 25 epochs, the model does not converge well. For
FC1 models, [4] is the same as KW, because there is only one hidden layer.
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Fig. 3: Parameter value distributions of CIFAR10 models trained
against l∞ attacks. The Euclidean norms of KW, MMR+at, PER+at
models against l∞ attack are 18.08, 38.36 and 94.63 respectively,
which evidences that the KW model is over-regularized while our
PER model best preserves the model capacity.

KW, Fast-Lin and PEC have the same certified robust error,
which is the proportion of the input data whose certified regions
are smaller than the adversarial budget. Therefore, for these
three methods, we report the certified robust error as CRE Lin.
We also report the certified robust error by IBP [18]. For l∞
robustness, we use a complete certifier called MIPVerify [43]
to calculate the exact robust error, denoted by CRE MIP. 3 In
addition, we calculate the average certified bound obtained by
Fast-Lin / KW (ACB Lin)4, IBP (ACB IBP) and PEC (ACB
PEC). Note that the average certified bound here is from the one-
shot certifier, i.e., without searching for the optimal adversarial
budget. We do not report the certified bound obtained by MMR
[10], because, in practice, it only gives trivial results. As a
matter of fact, [10] emphasize their training method and report
certification results using only KW and MIP.

We use the same adversarial budgets and model architectures
as [10] and thus directly download the KW, MMR and MMR+at
models from the checkpoints provided online.5 For IBP and
CROWN-IBP (C-IBP), we use the same hyper-parameter
settings as [54] except that we align the training duration to
other methods and the use stochastic robustness approximation
of Section III-B to reduce the computational and memory
consumption. For CNN models, we use the warm up trick
consisting of performing adversarial training before adding
our PER or PER+at regularization term. The running time
overhead of pre-training is negligible compared with computing
the regularization term. We train all models for 100 epochs and
provide the detailed hyper-parameter settings in Appendix D-A.

We constrain the attacker to perturb the images within
[0, 1]n1 , and the full results for l∞ attacks are summarized in
Table I. The results of l2 attacks are demonstrated in Table VIII
of Appendix D-B1. For l∞ attacks, our (C/I)-PER or (C/I)-
PER+at achieve the best certified accuracy, calculated by the

3MIPVerify is available on https://github.com/vtjeng/MIPVerify.jl
4Fast-Lin and KW is algorithmically the same in ReLU networks
5https://github.com/max-andr/provable-robustness-max-linear-regions.

https://github.com/liuchen11/PolyEnvelope
https://github.com/vtjeng/MIPVerify.jl
https://github.com/max-andr/provable-robustness-max-linear-regions
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Methods CTE
(%)

PGD
(%)

CRE Lin
(%)

CRE IBP
(%)

CRE MIP
(%)

ACB Lin ACB IBP ACB PEC

MNIST - FC1, ReLU, l∞, ε = 0.1

plain 1.99 98.37 100.00 100.00 100.00 0.0000 0.0000 0.0000
at 1.42 9.00 97.94 100.00 100.00 0.0021 0.0000 0.0099
KW 2.26 8.59 12.91 69.20 10.90 0.0871 0.0308 0.0928
IBP 1.65 9.67 87.27 15.20 12.36 0.0127 0.0848 0.0705
C-IBP 1.98 9.50 67.39 14.45 11.39 0.0326 0.0855 0.0800
MMR 2.11 17.82 33.75 99.88 24.90 0.0663 0.0001 0.0832
MMR+at 2.04 10.39 17.64 95.09 14.10 0.0824 0.0049 0.0905
C-PER 1.60 7.45 11.71 92.89 7.69 0.0883 0.0071 0.0935
C-PER+at 1.81 7.73 12.90 99.90 8.22 0.0871 0.0001 0.0925
I-PER 1.60 6.28 11.96 93.33 8.10 0.0880 0.0067 0.0934
I-PER+at 1.54 7.15 13.96 98.55 8.48 0.0868 0.0014 0.0927

MNIST - CNN, ReLU, l∞, ε = 0.1

plain 1.28 85.75 100.00 100.00 100.00 0.0000 0.0000 0.0000
at 1.02 4.75 91.91 100.00 100.00 0.0081 0.0000 0.0189
KW 1.21 3.03 4.44 100.00 4.40 0.0956 0.0000 0.0971
IBP 1.51 4.43 23.89 8.13 5.23 0.0761 0.0919 0.0872
C-IBP 1.85 4.28 10.72 6.91 4.83 0.0893 0.0931 0.0928
MMR 1.65 6.07 11.56 100.00 6.10 0.0884 0.0000 0.0928
MMR+at 1.19 3.35 9.49 100.00 3.60 0.0905 0.0000 0.0939
C-PER 1.44 3.44 5.13 100.00 3.62 0.0949 0.0000 0.0965
C-PER+at 0.50 2.02 4.85 100.00 2.21 0.0952 0.0000 0.0969
I-PER 1.03 2.40 4.64 99.55 2.52 0.0954 0.0004 0.0967
I-PER+at 0.48 1.29 4.61 99.94 1.47 0.0954 0.0001 0.0971

CIFAR10 - CNN, ReLU, l∞, ε = 2/255

plain 24.62 86.29 100.00 100.00 100.00 0.0000 0.0000 0.0000
at 27.04 48.53 85.36 100.00 88.50 0.0011 0.0000 0.0015
KW 39.27 46.60 53.81 99.98 48.00 0.0036 0.0000 0.0040
IBP 46.74 56.38 61.81 67.58 58.80 0.0030 0.0025 0.0034
C-IBP 58.32 63.56 66.28 69.10 65.44 0.0026 0.0024 0.0029
MMR 34.59 57.17 69.28 100.00 61.00 0.0024 0.0000 0.0032
MMR+at 35.36 49.27 59.91 100.00 54.20 0.0031 0.0000 0.0037
C-PER 39.21 50.98 57.45 99.98 52.70 0.0033 0.0000 0.0038
C-PER+at 28.87 43.55 56.59 100.00 48.43 0.0034 0.0000 0.0040
I-PER 29.34 51.54 64.34 99.98 54.87 0.0028 0.0000 0.0036
I-PER+at 26.66 43.35 57.72 100.00 47.87 0.0033 0.0000 0.0040

TABLE I: Full results of 11 training schemes and 8 evaluation schemes for ReLU networks under l∞ attacks. The best and the second best
results among provably robust training methods (plain and at excluded) are bold. In addition, the best results are underlined.

complete certifier (CRE MIP), in all cases. For l2 attacks, they
also achieve the best estimated certified accuracy, calculated
by the Fast-Lin / KW / PEC certifier (CRE Lin), in all cases.
In addition, the performance of I-PER and I-PER+at is on par
with that of C-PER and C-PER+at, which illustrates that our
framework is not sensitive to the tightness of the underlying
model linearization method and thus generally applicable.

As observed in previous work [35], different incomplete
certifiers are complementary; IBP is only able to certify IBP-
trained models and has worse certification results on other
models. For the training methods other than IBP and C-IBP,
we notice big gaps between the true robustness (CRE MIP)
and the IBP certified robustness (CRE IBP). This is because
IBP and C-IBP solve a different optimization problem from the
other methods. Specifically, IBP and C-IBP do not make any
approximation of the activation function, they only utilize the
monotonicity of the activation function to propagate the bounds.
However, all the other methods use linear approximations
to bound the outputs of the activation functions. We also
note that the stochastic robustness approximation greatly hurts
the performance of IBP and C-IBP on CIFAR10. However,

the result reported in [55] without stochastic robustness
approximation on the same architecture is still worse than
our method.6 Consistently with Section III-A, our geometry-
inspired PEC has better average certified bounds than Fast-Lin
/ KW given the same adversarial budget. For example, on the
CIFAR10 model against l∞ attack, 10% − 20% of the test
points are not certified by Fast-Lin / KW but have non-trivial
bounds with PEC.

When compared with KW, our methods, especially PER+at,
have much better clean test accuracy. In other words, a model
trained by (C/I)-PER+at is not as over-regularized as other
training methods for provable robustness. Figure 3 shows
the distribution of parameter values of KW, MMR+at, C-
PER+at models on CIFAR10 against l∞ attacks. The results of
CIFAR10 models against the l2 attack are shown in Figure 8 of
Appendix D-B3. As we can see, the parameters of C-PER+at
models have much larger norms than KW and MMR+at, whose
parameters are more sparse. The norms of the model parameters

6The DM-small model in [55] yields a certified robust error of 52.57% on
CIFAR10 when ε = 2/255.
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indicate the model capacity [32], [31], so C-PER+at models
better preserve the model capacity.
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Fig. 4: CTE and CRE for different values of γ in C-PER+at to show
their trade-off. The results of KW, for reference, are the horizontal
dashed lines. The optimal value of γ for C-PER+at is 1.0, with both
CTE and CRE better than KW.

The better performance of (C/I)-PER+at over (C/I)-PER, and
of MMR+at over MMR, evidences the benefits of augmenting
the training data with the adversarial examples. However, this
strategy is only compatible with methods that rely on estimating
the distance between the data point and the decision boundary,
and thus cannot be combined with methods such as KW. Adding
a loss term on the adversarial examples to the loss objective
of KW yields a performance between adversarial training and
KW. For example, if we optimize the sum of loss objectives
of KW and PGD in MNIST - CNN l∞ cases, the robust error
against PGD of the resulting model is 3.64%, the provably
robust error by Fast-Lin (CRE Lin) is 8.12%. In other words,
such combinations only lead to mixed performance and are
weaker than KW in terms of provable robustness.

To demonstrate the trade-off between clean test error and
certified robust error, we evaluate our approach with different
regularizer strength γ in Equation (7). Figure 4 shows the
example of C-PER+at in the l2 case for CIFAR10. When γ
is small, the PER term has little influence on training, and C-
PER+at becomes similar to adversarial training (at). It has low
clean test error but very high certified robust error. As γ grows,
the model is increasingly regularized towards large polyhedral
envelopes, which inevitably hurts the performance on the clean
input. By contrast, the certified robust error first decreases and
then increases. This is because training is numerically more
difficult when γ is too large and the model is over-regularized.
The results of KW are shown as horizontal dashed lines for
comparison. We can see that C-PER+at is in general less over-
regularized than KW, with much lower clean test error for the
same certified robust error.

To more comprehensively study the performance of our pro-
posed methods, we conduct experiments on larger adversarial
budgets. We compare our proposed C-PER+at and I-PER+at
with C-IBP [54]. Here, we use the model architecture E
from [54], consisting of 3 convolutional layers and 2 fully
connected layers.7 We focus on MNIST, where the model

7Models available on https://github.com/huanzhang12/CROWN-IBP

can achieve a decent certified robust accuracy under large
adversarial budgets, and set ε to be 0.1, 0.2, 0.3 and 0.4.
For C-IBP, we directly use the publicly available checkpoints
from [54]. For (C/I)-PER+at, we use the same settings as the
ones in Table I except for the change of adversarial budget.
Table III compares the exact certified robust error by MIP
(CRE MIP) among the different training methods. The results
show that our proposed (C/I)-PER+at yields better results than
C-IBP when ε is 0.1 and 0.2 but underperforms it when ε is
0.3 and 0.4. This phenomenon indicates that our method is
more suitable when the adversarial budget is relatively small.
This arises from the trade-off between model linearization and
interval bound propagation. When the adversarial budget is
small, the lower and upper bounds of most ReLU neurons
have smaller gaps and are either both negative or both positive.
Such neurons can be considered linear and make the model
linearization methods, which (C/I)-PER+at is based on, more
accurate. With a more accurate bound in the loss function, (C/I)-
PER+at outperforms C-IBP, which accumulates the estimation
error faster layerwisely [55]. By contrast, a recent study [24]
shows that the loss landscape of training methods based on
model linearization is less smooth than the ones of IBP and
C-IBP. In addition, [25] demonstrates that with the increase of
the adversarial budget the loss landscape becomes even more
challenging. As a result, when using (C/I)-PER+at with a large
adversarial budget, the optimizers cannot find a good minimum.
This makes (C/I)-PER+at underperform C-IBP.

B. Training and Certifying Non-ReLU Networks

To validate our method’s applicability to non-ReLU networks,
we replace the ReLU function in FC1 models with either
sigmoid or tanh functions. MMR and MMR+at are no longer
applicable here, because they only support piece-wise linear
activation functions. MIPVerify does not support sigmoid or
tanh functions neither, since it works only on ReLU networks.
While [49] claims that their methods apply to non-ReLU
networks, their main contribution is rather the extension of KW
to a broader set of network architectures, and their public code8

does not support non-ReLU activations. For evaluation, we
replace Fast-Lin and KW with CROWN [55] and thus report
its certified robust error (CRE CRO) and average certified
bound (ACB CRO). We use the model linearization method in
Appendix A-A for (C/I)-PER and (C/I)-PER+at during training,
which is slightly different from CROWN. This is because
we need an analytical form of the linearization in order to
calculate the model parameters’ gradients. When we certify
models using CROWN, the model linearization method in [55]
is used because it is tighter.

The results on l∞ cases are shown in Table II and the ones
on l2 cases are demonstrated in Table IX of Appendix D-B2.
Similar to the ReLU networks in Section IV-A, our (C/I)-
PER and (C/I)-PER+at methods have the best performance in
all cases, in terms of both certified robust error and average
certified bound. IBP can only certify IBP-trained models well
and has significantly worse results on other models.

8Repository: https://github.com/locuslab/convex adversarial

https://github.com/huanzhang12/CROWN-IBP
https://github.com/locuslab/convex_adversarial
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Methods CTE
(%)

PGD
(%)

CRE CRO
(%)

CRE IBP
(%)

ACB CRO ACB IBP ACB PEC

MNIST - FC1, Sigmoid, l∞, ε = 0.1

plain 2.04 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 1.78 10.05 98.52 100.00 0.0015 0.0000 0.0055
IBP 2.06 10.58 44.14 13.65 0.0559 0.0863 0.0846
C-IBP 2.88 9.83 26.04 12.51 0.0740 0.0875 0.0886
C-PER 1.97 7.55 12.15 84.76 0.0879 0.0152 0.0930
C-PER+at 2.16 7.12 11.87 88.06 0.0881 0.0119 0.0927
I-PER 2.15 8.35 12.79 86.99 0.0872 0.0130 0.0926
I-PER+at 2.45 8.05 12.36 88.94 0.0876 0.0111 0.0923

MNIST - FC1, Tanh, l∞, ε = 0.1

plain 2.00 97.80 100.00 100.00 0.0000 0.0000 0.0000
at 1.28 8.89 99.98 100.00 0.0000 0.0000 0.0001
IBP 2.04 9.84 31.81 13.02 0.0682 0.0870 0.0864
C-IBP 2.75 9.57 20.10 11.80 0.0799 0.0882 0.0894
C-PER 2.19 7.71 11.55 57.81 0.0885 0.0422 0.0934
C-PER+at 2.30 7.45 11.39 56.74 0.0886 0.0433 0.0930
I-PER 2.21 8.51 12.23 55.53 0.0878 0.0445 0.0929
I-PER+at 2.46 7.87 12.04 66.04 0.0880 0.0340 0.0929

TABLE II: Full results of 8 training schemes and 7 evaluation schemes for sigmoid and tanh networks under l∞ attacks. The best results
among provably robust training methods (plain and at excluded) are bold and underlined.

Value of ε 0.1 0.2 0.3 0.4

C-IBP 3.90 7.25 11.28 18.58
C-PER+at 3.52 7.09 11.34 20.12
I-PER+at 3.58 7.05 11.42 21.02

TABLE III: Exact certified robust error by MIP (CRE MIP) of
different methods under different sizes of the l∞ adversarial budget
on MNIST. The best results are bold and underlined.

C. Optimal Adversarial Budget

To obtain the biggest certified bound based on the current
model linearization method, we need to search for the optimal
value of ε, i.e., the peak in Figure 1. KW [48] uses Newton’s
method to solve a constrained optimization problem, which
is expensive. Fast-Lin and CROWN [47], [55] apply a binary
search strategy to find the optimal ε. Based on the discussion
in Section III-A, the optimal adversarial budget for a data point
is also its optimal certified bound.

To validate the claim in Section III-A that PEC can find
the optimal adversarial budget faster than Fast-Lin / CROWN,
we compare the average number of iterations needed to find
the optimal value given a predefined precision requirement ε∆.
Using ε and ε̄ to define the initial lower and upper estimates
of the optimal value, we then need dlog2

ε̄−ε
ε∆
e steps of bound

calculations to obtain the optimal value by binary search in Fast-
Lin / CROWN. By contrast, the number of bound calculations
needed by PEC is smaller and depends on the model to certify,
because the partial certified bounds obtained by PEC indicate
tighter lower bounds of the optimal adversarial budget. Our
experimental results are based on Algorithm 3 presented in
Appendix B-A.

We show the results on l∞ in Table IV and defer the l2
results in Table X of Appendix D-B5. For l∞ cases, the original
interval [ε, ε̄] is [0, 0.4] for MNIST and [0, 0.1] for CIFAR10.
Note that, because PEC has almost no computational overhead
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Fig. 5: Distribution of optimal certified bounds of CIFAR10 models
trained against l∞ attacks. The target bound (2/255) is indicated by
a red vertical line.

compared with Fast-Lin and CROWN,9 the number of iterations
reflects the running time to obtain the optimal certified bounds.
Altogether, our results show that PEC can save approximately
25% of the running time for FC1 models and 10% of the
running time for CNN models.

Figure 5 shows the distribution of the optimal certified
bounds for CIFAR10 models against l∞ attacks obtained by
KW, MMR+at and C-PER+at on the test set. The results on
l2 attacks are shown in Figure 9 of Appendix D-B4. We use
vertical red lines to represent the target bounds (2/255 in the
l∞ case and 0.1 in the l2 case), so the area on the right of
this line represents the certified robust accuracy. Compared
with KW, the mass of C-PER+at is more concentrated on a

9We run one-iteration PEC and CROWN to certify CIFAR10-CNN models by
C-PER+at for 10 times. To process the entire test set on a single GPU machine,
in l∞ cases, the mean and standard deviation of run time is 217.51 ± 1.95
seconds for CROWN and 219.16 ± 3.23 seconds for PEC; in l2 cases, it
is 236.95 ± 1.64 for CROWN and 239.41 ± 1.92 for PEC. Therefore the
difference can be ignored.
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Methods MNIST-FC1, ReLU, l∞ MNIST-CNN, ReLU, l∞ CIFAR10-CNN, ReLU, l∞
TLin TPEC

TPEC
TLin

TLin TPEC
TPEC
TLin

TLin TPEC
TPEC
TLin

plain

12

9.85 0.8207

12

10.56 0.8804

10

9.33 0.9331
at 10.77 0.8972 11.39 0.9489 9.12 0.9128
KW 8.48 0.7066 11.61 0.9674 8.43 0.8432
MMR 8.04 0.6703 10.68 0.8897 8.05 0.8053
MMR+at 7.68 0.6402 11.22 0.9351 8.45 0.8450
C-PER 9.34 0.7780 11.17 0.9305 8.61 0.8606
C-PER+at 9.38 0.7816 11.74 0.9784 8.68 0.8681

TABLE IV: Number of steps of bound calculation for the optimal ε in Fast-Lin (TLin) and PEC (TPEC) for ReLU networks under l∞ attacks.
Note that TLin is a constant for different models given the original interval [ε, ε̄].

narrower range on the right of the red line. This evidences
that there are significantly fewer points that have unnecessarily
large certified bounds for the C-PER+at model than for the
KW one. This is because PER+at encourages robustness via
a hinge-loss term. When d̃ic ≥ α, the regularizer in Equation
(7) is a constant zero and does not contribute to the parameter
gradient. However, KW first estimates the bound of the worst
case output logits and calculates the softmax cross-entropy
loss on that. Under this training objective function, each data
point is encouraged to make the lower bound of the true label’s
output logit bigger and the upper bound of false ones smaller,
even if the current model is sufficiently robust at this point.
This phenomenon also helps to explain why KW tends to
over-regulate the model while our methods do not.

We have also tried to replace the cross-entropy loss with the
hinge loss in the objective of KW, but observed this not to lead
to any improvement over the original KW. This is because KW
directly minimizes the gap between the logits of the true and
false label, but the logits’ magnitude for different instances
differs, which makes it difficult or even impossible to set a
unified threshold in the hinge loss. By contrast, in PER, we
apply the hinge loss to the certified bound directly, which is
normalized, easier to interpret and thus makes it much easier
to set the threshold in the hinge loss. In practice, the value of
α in Equation 7 is set 1.5 times the target adversarial budget.

V. DISCUSSION

Methods Complexity
PGD O(Nn2)
Fast-Lin / CROWN O(N2n3)
KW O(N2n3)
MMR / MMR+at O(Nn2m)
IBP O(Nn2)
C-IBP O(Nn3)
I-PER / I-PER+at O(Nn2m)
C-PER / C-PER+at O(N2n3)

TABLE V: Complexity of different methods on an N -layer neural
network model with k-dimensional output and m-dimensional input.
Each hidden layer has n neurons.

Let us consider an N -layer neural network model with k-
dimensional output and m-dimensional input. For simplicity, let
each hidden layer have n neurons and usually n� max{k,m}
is satisfied. In this context, the FLOP complexity of PGD

with h iterations is O(Nn2h) ∼ O(Nn2), because typically
h � min{m,n}. Among the methods that train provably
robust networks, the linearization algorithm based on Fast-
Lin / CROWN needs O(N2n3) FLOPS to obtain the linear
bounds of the output logits. However, the complexity can be
reduced to O(Nn2m) at the cost of bound tightness when we
use the IBP-inspired algorithm in Appendix A-C. Note that
the IBP-inspired algorithm also calculates the linear bound
of the output logits and is thus different from IBP [18],
whose complexity is O(Nn2), i.e., the same as a forward
propagation. MIP is a complete certifier based on mixed integer
programming. It solves an NP-hard problem and its complexity
is super-polynomial in general. To update the model parameters,
KW needs a back-propagation which costs O(Nn2) FLOPs.
Therefore the complexity of KW is also O(N2n3), with the
model linearization dominating the complexity. In CROWN-
IBP, the bounds of all intermediate layers are estimated by
IBP, which costs O(Nn2) FLOPs. The last layer’s bound is
then estimated in the same way as CROWN, which costs
O(Nn3) FLOPs, dominating the complexity of CROWN-IBP.
For MMR, the complexity to calculate the expression of the
input’s linear region is O(Nn2m). MMR then calculates the
distances between the input and O(Nn) hyper-planes, costing
O(Nnm). Altogether, the complexity of MMR is O(Nn2m).
MMR+at has the same complexity as MMR, because the
overhead of adversarial training can be ignored.

Among our methods, the complexity of the CROWN-style
model linearization in C-PER is O(N2n3). Like MMR and
KW, the overhead of distance calculation and back-propagation
can be ignored. Similarly, the complexity of I-PER is dominated
by the IBP-inspired model linearization, which is O(Nn2m).
Note that C-PER has the same complexity as Fast-Lin, CROWN
and KW, and the complexity of I-PER is smaller than that
of CROWN-IBP because m < n. C-PER+at and I-PER+at
have the same complexity as C-PER and I-PER, respectively,
since the overhead of adversarial training is negligible. Table V
summarizes the complexity of all methods.

No matter which linearization method we use, the bounds of
the output logits inevitably become looser for deeper networks,
which can be a problem for large models. Furthermore, the
linear approximation implicitly favors the l∞ norm over other
lp norms because the intermediate bounds are calculated in an
elementwise manner [26]. As a result, our method performs
better in l∞ cases than in l2 cases. Designing a training
algorithm with scalable and tight certified robustness is highly
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non-trivial and worth further exploration.

VI. CONCLUSION

In this paper, we have studied the robustness of neural
networks from a geometric perspective. In our framework,
linear bounds are estimated for the model’s output under an
adversarial budget. Then, the polyhedral envelope resulting
from the linear bounds allows us to obtain quantitative robust-
ness guarantees. Our certification method can give non-trivial
robustness guarantees to more data points than existing methods
and thus speed up the search for the optimal adversarial budget’s
size. Furthermore, we have shown that our certified bounds
can be turned into a geometry-inspired regularization scheme
that enables training provably robust models. Compared with
existing methods, our framework can be applied to neural
networks with general activation functions. In addition to better
performance, it can achieve provable robustness at very little
loss in clean accuracy.
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APPENDIX A
MODEL LINEARIZATION

A. Linearization of Activation Functions

In this section, we discuss the choice of d, l and h in the
linear approximation dx + l ≤ σ(x) ≤ dx + h for activation
function σ when x ∈ [x, x̄]. The method used here is slightly
different from that of [55]. First, the slope of the linear upper
and lower bound is the same, because this can save up to 3/4
memory when calculating the slope of the linear bound. Second,
all coefficients need to have an analytical form because we
need to calculate the gradient based on them during training.
Note that [55] use binary search to obtain the optimal d, l, h
for general activation functions.

1) ReLU: As Figure 6 shows, the linear approximation for
ReLU σ(x) = max(0, x), which is convex, is:

d =


0 x ≤ x̄ ≤ 0
x̄

x̄− x x < 0 < x̄

1 0 ≤ x ≤ x̄

,

l = 0 ∀x ∈ R,

h =


0 x ≤ x̄ ≤ 0

− xx̄

x̄− x x < 0 < x̄

0 0 ≤ x ≤ x̄

.

(8)

2) Sigmoid, Tanh: Unlike the ReLU function, the sigmoid
function σ(x) = 1

1+e−x and tanh function σ(x) = e2x−1
e2x+1 are

not convex. However, these two functions are convex when
x < 0 and concave when x > 0 (left and right sub-figures of
Figure 7). Therefore, when x ≤ x̄ ≤ 0 or 0 ≤ x ≤ x̄, we can
easily obtain a tight linear approximation. When x ≤ 0 ≤ x̄,
we do not use the binary research to obtain a tight linear
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Fig. 6: Linearization of the ReLU function in all scenarios.
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Fig. 7: Linearization of the sigmoid function in all scenarios.

approximation as in [55], because the results would not have
an analytical form in this way. Instead, we first calculate the
slope between the two ends, i.e., d = σ(x̄)−σ(x)

x̄−x . Then, we
bound the function by two tangent lines of the same slope as
d (middle sub-figure of Figure 7).

For sigmoid and tanh, we can calculate the coefficients of
the linear approximation as

d =
σ(x̄)− σ(x)

x̄− x .,

l =


σ(t1)− t1d x < 0

x̄σ(x)− xσ(x̄)

x̄− x 0 ≤ x ≤ x̄ ,

h =


x̄σ(x)− xσ(x̄)

x̄− x x ≤ x̄ ≤ 0

σ(t2)− t2d 0 < x̄

.

(9)

The coefficients t1 < 0 < t2 are the position of tangent
points on both sides of the origin. The definitions of t1 and t2
for different activation functions are provided in Table VI.

σ Sigmoid Tanh

t1 − log −(2d−1)+
√
1−4d

2d
1
2

log −(d−2)−2
√
1−d

d

t2 − log −(2d−1)−
√
1−4d

2d
1
2

log −(d−2)+2
√
1−d

d

TABLE VI: Definition of t1 and t2 for different activation functions.

B. CROWN-style Bounds

Based on the linear approximation of activation functions in
Section A-A, we have D(i)z′(i) + l(i) ≤ σ(z′(i)) ≤ D(i)z′(i) +
u(i) where D(i) is a diagonal matrix and l(i), u(i) are vectors.
We can rewrite this formulation as follows:

∃D(i), l(i),u(i) : ∀z′(i) ∈ [z(i), z̄(i)],

then ∃m(i) ∈ [l(i),u(i)] s.t.σ(z′(i)) = D(i)z′(i) + m(i) .
(10)

We plug (10) into (2), and the expression of z′(i) can be
rewritten as
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z
′(i)

= W
(i−1)

(σ(W
(i−2)

(...σ(W
(1)

ẑ
′(1)

+ b
(1)

)...) + b
(i−2)

)) + b
(i−1)

= W
(i−1)

(D
(i−1)

(W
(i−2)

(...D
(2)

(W
(1)

x
′
+ b

(1)
) + m

(2)
...)

+ b
(i−2)

) + m
(i−1)

) + b
(i−1)

=

(
i−1∏
k=1

W
(k)

D
(k)

)
W

(1)
x
′
+

i−1∑
j=1

 i−1∏
k=j+1

W
(k)

D
(k)

b
(j)

+

i−1∑
j=2

 i−1∏
k=j+1

W
(k)

D
(k)

W
(j)

m
(j)

.

(11)

This is a linear function w.r.t. x′ and {m(j)}i−1
j=2. Once given

the perturbation budget S(p)
ε (x) and the bounds of {m(j)}i−1

j=2,
we can calculate the slope and the bias term in the linear bound
of z′(i) in Equation (11). This process can be repeated until
we obtain the bound of the output logits in Equation (3). The
derivation here is the same as in [26], [47], we encourage
interested readers to check these works for details.

C. IBP-inspired Bounds

Interval Bound Propagation (IBP), introduced in [18], is
a simple and scalable method to estimate the bounds of
each layer in neural networks. IBP is much faster than the
algorithm introduced in Appendix A-B because the bounds
of any intermediate layer are calculated only based on the
information of its immediate previous layer. Therefore, the
bounds are propagated just like inference in network models,
which costs only O(N) matrix-vector multiplications for an
N -layer network defined in (2).

In our work, we need linear bounds of the output logits
in addition to general numeric bounds, so the linearization
of activation functions defined in (10) is necessary. We
define linear bounds U(i)x′ + p(i) ≤ z′(i) ≤ U(i)x′ + q(i),
Û(i)x′ + p̂(i) ≤ ẑ′(i) ≤ Û(i)x′ + q̂(i). We use the same slope
as in Section A-A to linearize the activation functions, so the
slopes of both bounds are the same. Plugging (10) into this
formulation, we have

Û(i) = D(i)U(i),

p̂(i) = D(i)p(i) + l(i),

q̂(i) = D(i)q(i) + u(i) .

(12)

Here, we assume that the activation functions are mono-
tonically increasing, so the elements in D(i) are non-negative.
Similarly, by comparing the linear bounds of ẑ′(i) and z′(i+1),
we have

U(i+1) = W(i)Û(i),

p(i+1) = W
(i)
+ p̂(i) + W

(i)
− q̂(i) + b(i),

q(i+1) = W
(i)
+ q̂(i) + W

(i)
− p̂(i) + b(i) .

(13)

By definition, we have Û(1) = I and p̂(1) = q̂(1) = 0.
Applying Equation (12) and (13) iteratively allows us to obtain
the values of the coefficients U(N), V(N), p(N) and q(N) in
Equation (3).

APPENDIX B
ALGORITHMS

A. Algorithms for Searching the Optimal Value of ε

The pseudo code for finding the optimal ε is provided as
Algorithm 3 below. M, x, ε∆, ε, ε̄ represent the classification
model, the input point, the precision requirement, the prede-
fined estimate of the lower bound and of the upper bound,
respectively. Typically, ε is set to 0 and ε̄ is set to a large value
corresponding to a perceptible the image perturbation. f is a
function mapping a model, an input point and a value of ε
to a certified bound. f is a generalized form of the Fast-Lin,
CROWN and PEC algorithms.

During the search for the optimal ε, the lower bound is
updated by the current certified bound, while the upper bound
is updated when the current certified bound is smaller than the
choice of ε. In Fast-Lin and CROWN, we update either the
lower or the upper bound in one iteration since the certified
bound is either 0 or the current choice of ε. However, it is
possible for PEC to update both the lower and the upper bounds
in one iteration, and this leads to a faster convergence of ε.

Algorithm 3: Search for optimal value of ε
Input: x, ε, ε̄, ε∆, f , M
Set the bounds of ε: εup = ε̄, εlow = ε
while εup − εlow > ε∆ do
εtry = 1

2 (εlow + εup)
εcert = f(M,x, εtry)
Update lower bound: εlow = max{εlow, εcert}
if εtry > εcert then

Update upper bound: εup = εtry
end if

end while
Output: 1

2 (εlow + εup)

APPENDIX C
PROOFS

A. Proof of Lemma 1

Proof. Let x′ = x + ∆ be a point that breaks condition (4).
Then,

Ui(x + ∆) + pi < 0

⇐⇒ Ui∆ < −Uix− pi

=⇒ − ‖Ui‖q‖∆‖p < −Uix− pi

⇐⇒ ‖∆‖p >
Uix + pi
‖Ui‖q

(14)

The =⇒ comes from Hölder’s inequality. (14) indicates that
a perturbation of lp norm over dic = max

{
0, Uix+pi
‖Ui‖q

}
is

needed to break the sufficient condition of z′(N)
c − z

′(N)
i ≥ 0.

Based on the assumption of adversarial budget S(p)
ε (x) when

linearizing the model, the lp norm of a perturbation to produce
an adversarial example is at least min {ε, dc}.
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B. Proof of Theorem 1

Proof. We use the primal-dual method to solve the optimization
problem (5), which is a convex optimization problem with linear
constraints.

It is clear that there exists an image inside the allowable
pixel space for which the model predicts the wrong label. That
is, the constrained problem (5) is strictly feasible:

∃∆ s.t. a∆ + b < 0,∆(min) < ∆ < ∆(max) . (15)

Thus, this convex optimization problem satisfies Slater’s
Condition, i.e., strong duality holds. We then rewrite the primal
problem as

min
∆(min)≤∆≤∆(max)

‖∆‖pp
s.t. a∆ + b ≤ 0

(16)

We minimize ‖∆‖pp instead of directly ‖∆‖p in order to
decouple all elements in vector ∆. In addition, we consider
∆(min) ≤ ∆ ≤ ∆(max) as the domain of ∆ instead of
constraints for simplicity. We write the dual problem of (16)
by introducing a coefficient of relaxation λ ∈ R+:

max
λ≥0

min
∆(min)≤∆≤∆(max)

g(∆, λ)
def
== ‖∆‖pp + λ(a∆ + b) (17)

To solve the inner minimization problem, we set the
gradient ∂g(∆,λ)

∂∆i
= sign(∆i)p|∆i|p−1 +λai to zero and obtain

∆i = −sign(ai)
∣∣∣λaip ∣∣∣ 1

p−1

. Based on the convexity of function

g(∆, λ) w.r.t. ∆, we can obtain the optimal ∆̃i in the domain:

∆̃i = clip

(
−sign(ai)

∣∣∣∣λai

p

∣∣∣∣ 1
p−1

,min = ∆
(min)
i ,max = ∆

(max)
i

)
.

(18)
Based on strong duality, we can say that the optimal ∆̃

is chosen by setting a proper value of λ. Fortunately, ‖∆̃‖p
increases monotonically with λ, so the smallest λ corresponds
to the optimum.

As we can see, the expression of ∆̂ in (6) is consistent
with ∆̃i in (18) if λ is set properly.10 The greedy algorithm in
Algorithm 1 describes the process of gradually increasing λ
to find the smallest value satisfying the constraint a∆ + b ≤
0. With the increase of λ, the elements in vector ∆ remain
unchanged when they reach either ∆(min) or ∆(max), so we
keep such elements fixed and optimize the others.

APPENDIX D
ADDITIONAL EXPERIMENTS

A. Details of the Experiments

1) Model Architecture: The FC1 and CNN networks used
in this paper are identical to the ones used in [10]. The FC1
network is a fully-connected network with one hidden layer of
1024 neurons. The CNN network has two convolutional layers

10The power term q
p

= 1
p−1

when 1
p

+ 1
q

= 1

and one additional hidden layer before the output layer. Both
convolutional layers have a kernel size of 4, a stride of 2 and
a padding of 1 on both sides, so the height and width of the
feature maps are halved after each convolutional layer. The
first convolutional layer has 32 channels while the second one
has 16. The hidden layer following them has 100 neurons.

2) Hyper-parameter Settings: In all experiments, we use
the Adam optimizer [23] with an initial learning rate of 10−3

and train all models for 100 epochs with a mini-batch of 100
instances. For CNN models, we decrease the learning rate
to 10−4 for the last 10 epochs. When we train CNN models
on MNIST, we only calculate the polyhedral envelope of 20
instances subsampled from each mini-batch. When we train
CNN models on CIFAR10, this subsampling number is 10.
These settings make our algorithm possible to be trained on a
GPU with 12 GB memory. For PER and PER+at, the value
of T is always 4. We search in the logarithmic scale for the
value of γ and in the linear scale for the value of α. For ε,
we ensure that its values in the end of training are close to
the ones used in the adversarial budget S(p)

ε (x). We compare
constant values with an exponential growth scheme for ε but
always use constant values for α and γ. The optimal values
we found for different settings are provided in Table VII.

Task α ε γ
MNIST

0.15
initial value 0.0064

0.1FC1, l∞ ×2 every 20 epochs

MNIST
0.15 0.1

PER: 0.3
CNN, l∞ PER+at: 0.03

CIFAR10
0.1 0.008

PER: 0.0003
CNN, l∞ PER+at: 0.001

MNIST
0.45

initial value 0.02
1.0FC1, l2 ×2 every 20 epochs

MNIST
0.45 0.3 1.0CNN, l2

CIFAR10
0.15 0.1

PER: 0.3
CNN, l2 PER+at: 1.0

TABLE VII: Values of α, ε and γ for different experiments.

B. Additional Experimental Results

1) l2 Robustness on ReLU Networks: The results of 11
training methods and 7 evaluation metrics on l2 robustness are
provided in Table VIII. In all three cases studied, our proposed
methods, either PER or PER+at, achieves the best performance.

2) l2 Robustness on non-ReLU Networks: The results of
8 training methods and 7 evaluation metrics on l2 robustness
in the case of Non-ReLU networks are provided in Table IX.
Consider the best certified robust accuracy for each model, we
can clearly see that our proposed PER and PER+at achieve
the best performance. Meanwhile, its clean accuracy is also
better than the baselines. In addition, IBP can only give good
performance on IBP-trained models. These observations are
the same as the l∞ cases.

3) Parameter Value Distribution: The parameter value
distributions of CIFAR10 models against l2 attacks are provided
in Figure 8. Same as the l∞ cases, the parameters of the PER+at
model have significantly larger norms, indicating it better utilize
the model’s capacity.
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Methods CTE
(%)

PGD
(%)

CRE Lin
(%)

CRE IBP
(%)

ACB Lin ACB IBP ACB PEC

MNIST - FC1, ReLU, l2, ε = 0.3

plain 1.99 9.81 40.97 99.30 0.1771 0.0021 0.2300
at 1.35 2.99 14.85 99.23 0.2555 0.0023 0.2684
KW 1.23 2.70 4.91 41.55 0.2853 0.1754 0.2892
IBP 1.36 2.90 6.87 9.01 0.2794 0.2730 0.2876
C-IBP 1.26 2.80 6.36 8.73 0.2809 0.2738 0.2884
MMR 2.40 5.88 7.76 99.55 0.2767 0.0013 0.2845
MMR+at 1.77 3.76 5.68 99.86 0.2830 0.0004 0.2880
C-PER 1.26 2.44 5.35 59.17 0.2840 0.1225 0.2888
C-PER+at 0.67 1.40 4.84 64.79 0.2855 0.1056 0.2910
I-PER 1.21 2.59 5.34 54.13 0.2840 0.1376 0.2888
I-PER+at 0.74 1.46 7.81 72.85 0.2766 0.0814 0.2860

MNIST - CNN, ReLU, l2, ε = 0.3

plain 1.28 4.93 100.00 100.00 0.0000 0.0000 0.0000
at 1.12 2.50 100.00 100.00 0.0000 0.0000 0.0000
KW 1.11 2.05 5.84 100.00 0.2825 0.0000 0.2861
IBP 2.37 3.85 51.12 11.73 0.1534 0.2648 0.1669
C-IBP 2.89 4.44 31.62 12.29 0.2051 0.2631 0.2178
MMR 2.57 5.49 10.03 100.00 0.2699 0.0000 0.2788
MMR+at 1.73 3.22 9.46 100.00 0.2716 0.0000 0.2780
C-PER 1.02 1.87 5.04 100.00 0.2849 0.0000 0.2882
C-PER+at 0.43 0.91 5.43 100.00 0.2837 0.0000 0.2878
I-PER 1.11 2.16 6.37 100.00 0.2809 0.0000 0.2851
I-PER+at 0.52 1.12 7.89 100.00 0.2763 0.0000 0.2812

CIFAR10 - CNN, ReLU, l2, ε = 0.1

plain 23.29 47.39 100.00 100.00 0.0000 0.0000 0.0000
at 25.84 35.81 99.96 100.00 0.0000 0.0000 0.0000
KW 40.24 43.87 48.98 100.00 0.0510 0.0000 0.0533
IBP 57.90 60.03 64.78 78.13 0.0352 0.0219 0.0366
C-IBP 71.21 72.51 76.23 80.97 0.0238 0.0190 0.0256
MMR 40.93 50.57 57.07 100.00 0.0429 0.0000 0.0480
MMR+at 37.78 43.98 53.33 100.00 0.0467 0.0000 0.0502
C-PER 34.10 52.54 63.42 100.00 0.0369 0.0000 0.0465
C-PER+at 25.76 33.47 46.74 100.00 0.0533 0.0000 0.0580
I-PER 33.94 43.06 56.80 100.00 0.0432 0.0000 0.0484
I-PER+at 24.85 31.32 47.28 100.00 0.0528 0.0000 0.0572

TABLE VIII: Full results of 11 training schemes and 7 evaluation schemes for ReLU networks under l2 attacks. The best and the second
best results among provably robust training methods (plain and at excluded) are bold. In addition, the best results are underlined.
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Fig. 8: Parameter value distributions of CIFAR10 models trained
against l2 attack. The Euclidean norms of KW, MMR+at, PER+at
model against l2 attacks are 71.34, 62.97 and 141.77, respectively.

4) Distribution of the Optimal Bounds: The distribution of
optimal certified bounds of CIFAR10 models against l2 attacks

is shown in Figure 9. Compared with KW and MMR+at, the
values of the optimal certified bounds of the PER+at model are
more concentrated in a region slightly better than the required
bounds (indicated by the red vertical line). On the contrary,
the KW model usually has unnecessarily large certified bounds
on some input instances, indicating over-regularization.

5) Searching for the Optimal Value of ε: Table X shows
the number of bound calculations in the binary search for the
optimal ε in PEC and Fast-Lin under l2 attacks. The original
interval [ε, ε̄] is [0, 1.2] for MNIST and [0, 0.4] for CIFAR10.
The bound of the number calculation does not depend on the
model in Fast-Lin and is model-dependent in PEC as discussed
in Section IV-C.
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