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Abstract
Generative adversarial networks (GANs) are
known to achieve the state-of-the-art performance
on various generative tasks, but these results come
at the expense of a notoriously difficult training
phase. Current training strategies typically draw
a connection to optimization theory, whose scope
is restricted to local convergence due to the pres-
ence of non-convexity. In this work, we tackle
the training of GANs by rethinking the prob-
lem formulation from the mixed Nash Equilibria
(NE) perspective. Via a classical lifting trick, we
show that essentially all existing GAN objectives
can be relaxed into their mixed strategy forms,
whose global optima can be solved via sampling,
in contrast to the exclusive use of optimization
framework in previous work. We further propose
a mean-approximation sampling scheme, which
allows to systematically exploit methods for bi-
affine games to delineate novel, practical training
algorithms of GANs. Finally, we provide experi-
mental evidence that our approach yields compa-
rable or superior results to contemporary training
algorithms, and outperforms classical methods
such as SGD, Adam, and RMSProp.

1. Introduction
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014) achieve the state-of-the-art for learning real-world
images (Brock et al., 2018; Karras et al., 2018), as well
as a number of applications including image translation
(Isola et al., 2017; Kim et al., 2017; Zhu et al., 2017), super-
resolution imaging (Wang et al., 2015; Ledig et al., 2017),
pose editing (Pumarola et al., 2018b), and facial animation
(Pumarola et al., 2018a).

A major obstacle blocking their full impact in machine learn-
ing is its notoriously difficult training phase (Goodfellow,
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2016). Indeed, the stochastic gradient descent (SGD), along
with its variants, remain the method of choice for training
GANs. In order to understand the training dynamics of
gradient-based algorithms, a popular approach is to cast the
training into a min-max program, and then invoke results
in the mathematical programming or algorithmic game the-
ory literature, with the caveat that the theory applies almost
exclusively to convex-concave objectives.

Despite having inspired many novel algorithms, the major
deviations from theory met several limitations. On one hand,
in the absence of convexity, the theory is bound to focus
only on the local convergence. Even under such a strong
restriction, it is recently shown by Adolphs et al. (2018) that
there exist stable stationary points that attract gradient-based
algorithms, but that are not locally min-max, suggesting that
even the local theory can break down if one blindly applies
intuitions from convex optimization.

On the other hand, current approaches tend to tackle differ-
ent issues on a case-by-case basis, rendering the solution
of one incompatible to another, and therefore restricting
their applicability in new problems. Furthermore, to our
knowledge, these theoretical insights do not translate into
rigorous convergence of the proposed algorithms, even un-
der as strong of an assumption as that SGD can globally
optimize a single neural net.

The aim of this paper is to resolve the above issues by
making the following contributions:

1. We propose to study the mixed Nash Equilibria (NE) of
GANs, which are global optima of infinite-dimensional
bi-affine games. We show that, in principle, any ex-
isting GAN objective can be lifted into its mixed NE
formulation, thereby admitting the search for a globally
optimizing algorithm.

2. We demonstrate how one can consistently derive novel
algorithms for finding mixed NE of GANs, via tap-
ping into the abundant literature for solving finite-
dimensional bi-affine games. We showcase this by
proving rigorous convergence results for simple ex-
tensions of two prox methods, namely the Mirror De-
scent (Nemirovsky & Yudin, 1983) and Mirror-Prox
(Nemirovski, 2004), under the empirically-supported
assumption that sampling succeeds for a single neural
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net (Chaudhari et al., 2017; 2018; Dziugaite & Roy,
2018).

3. Although our framework can motivate new convergent
algorithms, they require impractical computational re-
sources. To this end, we construct a principled pro-
cedure to reduce our novel prox methods to certain
simple iterative methods for approximating the mean,
whose per-iteration complexity is as cheap as SGD.

4. We experimentally show that our algorithms consis-
tently achieve better or comparable performance than
popular baselines such as SGD, Adam, and RMSProp,
as well as the recently proposed algorithms (Gidel et al.,
2018) that are inspired by the same prox methods, but
which are from the pure (local) NE perspective.

An important feature of our framework is its flexibility, in
that we can essentially take any GAN objective, any method
for solving finite-dimensional bi-affine games, and return a
novel algorithm that is as scalable as SGD. See Section 6
for concrete examples.

Related Work: While the literature on training GANs is
vast, to our knowledge, there exist only few papers on the
mixed NE perspective. The notion of mixed NE is already
present in (Goodfellow et al., 2014), but is stated only as
an existential result. The authors of (Arora et al., 2017)
advocate the mixed strategies, but do not provide a provably
convergent algorithm. Oliehoek et al. (2018) also consider
mixed NE, but only with countably many parameters, and is
under the unconventional assumption of finite floating point
numbers to represent GANs. The work (Grnarova et al.,
2018) proposes a provably convergent algorithm for finding
the mixed NE of GANs under the unrealistic assumption
that the discriminator is a single-layered neural network. In
contrast, our results are applicable to arbitrary architectures,
including popular ones (Arjovsky et al., 2017; Gulrajani
et al., 2017).

There exists many novel algorithms that are inspired by opti-
mization or algorithmic game theory (Balduzzi et al., 2018;
Daskalakis et al., 2018; Gidel et al., 2018; Mertikopoulos
et al., 2018), and each of them tackles different problems of
classical gradient methods. However, these works focus on
the classical pure strategy equilibria, and are hence distinct
from our problem formulation. In particular, they give rise
to drastically different algorithms.

In terms of analysis techniques, our framework is related to
learning games in Banach spaces (Sridharan & Tewari, 2010;
Srebro et al., 2011), and is closest to that of (Balandat et al.,
2016), but with several important distinctions. First, the
analysis of (Balandat et al., 2016) is based on dual averaging
(Nesterov, 2009), while we consider Mirror Descent and
also the more sophisticated Mirror-Prox (see Section 3).

Second, unlike our work, (Balandat et al., 2016) do not
provide any convergence rate for learning mixed NE of two-
player games. Finally, (Balandat et al., 2016) is only of
theoretical interest with no practical algorithm.

Notation: Throughout the paper, we use z to denote a
generic variable and Z ⊆ Rd its domain. We denote the set
of all (sufficiently regular) Borel probability measures on Z
byM(Z), and the set of all (sufficiently regular)1 functions
onZ byF(Z). We write dµ = ρdz to mean that the density
function of µ ∈ M(Z) with respect to the Lebesgue mea-
sure is ρ. All integrals without specifying the measure are
understood to be with respect to Lebesgue. For any objec-
tive of the form minxmaxy F (x,y), we say that (xT ,yT )
is an O

(
T−1/2

)
-NE if maxx,y{F (xT ,y)− F (x,yT )} =

O
(
T−1/2

)
. Similarly we can defineO

(
T−1

)
-NE. The sym-

bol ‖·‖L∞ denotes the L∞-norm of functions, and ‖·‖TV
denotes the total variation norm of probability measures.

2. Mixed Nash Equilibria and
Infinite-Dimensional Bi-Affine Games

We review standard results in game theory in Section 2.1,
whose proof can be found in (Bubeck, 2013a;b;c). Sec-
tion 2.2 performs a lifting trick to transform GAN objec-
tives into the mixed NE form, and then relates the training
of GANs to the two-player game in Section 2.1, thereby
suggesting to generalize the prox methods to infinite dimen-
sion.

2.1. Preliminary: Finite Bi-Affine Games

Consider the classical formulation of a two-player game
with finitely many strategies:

min
p∈∆m

max
q∈∆n

〈q,a〉 − 〈q, Ap〉 , (1)

where A is a payoff matrix, a is a vector, and ∆d :={
z ∈ Rd |

∑d
i=1 zi = 1

}
is the probability simplex, rep-

resenting the mixed strategies (i.e., probability distributions)
over d pure strategies. A pair (pNE, qNE) achieving the min-
max value in (1) is called a mixed NE.

Assume that the matrix A is too expensive to evaluate
whereas the (stochastic) gradients of (1) are easy to ob-
tain. Under such settings, a celebrated algorithm, the so-
called entropic Mirror Descent (entropic MD), learns an
O
(
T−1/2

)
-NE: Let φ(z) :=

∑d
i=1 zi log zi be the entropy

function and φ?(y) := log
∑d
i=1 e

yi = supz∈∆d
{〈z,y〉 −

φ(z)} be its Fenchel dual. For a learning rate η and an

1See (A.1) and (A.2) for precise definitions.
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arbitrary vector b ∈ Rd, define the MD iterates as

z′ = MDη (z, b) ≡ z′ = ∇φ? (∇φ(z)− ηb)

≡ z′i =
zie
−ηbi∑d

i=1 zie
−ηbi

, ∀1 ≤ i ≤ d.

(2)

The update rule takes linear time in dimension, which is
highly scalable.

Denote by p̄T := 1
T

∑T
t=1 pt and q̄T := 1

T

∑T
t=1 qt the

ergodic average of two sequences {pt}Tt=1 and {qt}Tt=1.
Then, with a properly chosen step-size η, the iterates{

pt+1 = MDη
(
pt,−A>qt

)
qt+1 = MDη (qt,−a+Apt)

come with the guarantee that (p̄T , q̄T ) is an O
(
T−1/2

)
-NE.

Moreover, a slightly more complicated algorithm, called the
entropic Mirror-Prox (entropy MP) (Nemirovski, 2004),
achieves faster rate than the entropic MD:

pt = MDη
(
p̃t,−A>q̃t

)
qt = MDη (q̃t,−a+Ap̃t)
p̃t+1 = MDη

(
p̃t,−A>qt

)
q̃t+1 = MDη (q̃t,−a+Apt)

implies that (p̄T , q̄T ) is an O
(
T−1

)
-NE. If, instead of de-

terministic gradients, one uses unbiased stochastic gradi-
ents for entropic MD and MP, then both algorithms achieve
O
(
T−1/2

)
-NE in expectation.

2.2. Mixed Strategy Formulation for Generative
Adversarial Networks

For illustration, let us focus on the Wasserstein GAN (Ar-
jovsky et al., 2017), whereas the derivation in this section
applies to any min-max objective. We perform a common
bilinearization trick that dates back at least to the early
game theory literature (Glicksberg, 1952), which is also
well-known in optimal transport theory (Villani, 2003).

The training objective of Wasserstein GAN is

min
θ∈Θ

max
w∈W

EX∼Preal [fw(X)]− EX∼Pθ
[fw(X)], (3)

where Θ is the set of parameters for the generator andW
the set of parameters for the discriminator f , typically both
taken to be neural nets.

The high-level idea of our approach is, instead of solving
(3) directly, we focus on the mixed strategy formulation of
(3). In other words, we consider the set of all probability
distributions over Θ andW , and we search for the optimal
distribution that solves the following program:

min
ν∈M(Θ)

max
µ∈M(W)

Ew∼µEX∼Preal [fw(X)]

− Ew∼µEθ∼νEX∼Pθ
[fw(X)]. (4)

Define the function g : W → R by g(w) :=
EX∼Preal [fw(X)] and the operator G : M(Θ) → F(W)
as (Gν)(w) := Eθ∼ν,X∼Pθ

[fw(X)]. Denoting 〈µ, h〉 :=
Eµh for any probability measure µ and function h, we may
rewrite (4) as

min
ν∈M(Θ)

max
µ∈M(W)

〈µ, g〉 − 〈µ,Gν〉 . (5)

Furthermore, the derivative (the analogue of gradient in
infinite dimension) of (5) with respect to µ is simply g−Gν,
and the derivative of (5) with respect to ν is −G†µ, where
G† :M(W)→ F(Θ) is the adjoint operator of G defined
via the relation

∀µ ∈M(W), ν ∈M(Θ), 〈µ,Gν〉 =
〈
ν,G†µ

〉
. (6)

One can easily check that (G†µ)(θ) :=
EX∼Pθ,w∼µ[fw(X)] achieves the equality in (6).

To summarize, the mixed strategy formulation of Wasser-
stein GAN is (5), whose derivatives can be expressed in
terms of g and G.

Now, observe that (5) is exactly the infinite-dimensional
analogue of (1): The distributions over finite strategies are
replaced with probability measures over a continuous pa-
rameter set, the vector a is replaced with a function g, the
matrix A is replaced with a linear operator2 G, and the gra-
dients are replaced with derivatives. Based on Section 2.1,
it is then natural to ask:

Can the entropic Mirror Descent and Mirror-Prox
be extended to infinite dimension to solve (5)?
Are there scalable implementations of these algo-
rithms, at least approximately?

We provide an affirmative answer to the first question in Sec-
tion 3. The so obtained algorithms, nonetheless, are infinite-
dimensional and requires infinite computational power to
implement. For practical interest, in Section 4 we pro-
pose a sampling framework to approximate the infinite-
dimensional prox methods in Section 3.

3. Infinite-Dimensional Prox Methods
This section builds a rigorous infinite-dimensional formal-
ism in parallel to the finite-dimensional prox methods and
proves their convergence rates. We remark that these results
are folklore among optimization experts and hence we adopt
an informal presentation here, deferring all the technical de-
tails to the appendix. However, to our knowledge, they are
not published.

We first recall the notion of derivative in infinite-dimensional
spaces. A (nonlinear) functional Φ :M(Z)→ R is said to

2The linearity of G trivially follows from the linearity of ex-
pectation.
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Algorithm 1 INFINITE-DIMENSIONAL ENTROPIC MD
Input: Initial distributions µ1, ν1, learning rate η
for t = 1, 2, . . . , T − 1 do

νt+1 = MDη
(
νt,−G†µt

)
µt+1 = MDη (µt,−g +Gνt)

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

possess a derivative at µ ∈M(Z) if there exists a function
dΦ(µ) ∈ F(Z) such that, for all µ′ ∈M(Z), we have

Φ(µ+ εµ′) = Φ(µ) + ε 〈µ′,dΦ(µ)〉+ o(ε).

Similarly, a (nonlinear) functional Φ? : F(Z)→ R is said
to possess a derivative at h ∈ F(Z) if there exists a measure
dΦ?(h) ∈M(Z) such that, for all h′ ∈ F(Z), we have

Φ?(h+ εh′) = Φ?(h) + ε 〈dΦ?(h), h′〉+ o(ε).

The most important functionals in this paper are the (nega-
tive) Shannon entropy

µ ∈M(Z), Φ(µ) :=

∫
dµ log

dµ

dz

and its Fenchel dual

h ∈ F(Z), Φ?(h) := log

∫
ehdz.

The first result of our paper is to show that, in direct analogy
to (2), the infinite-dimensional MD iterates can be expressed
as:

Theorem 1 (Infinite-Dimensional Mirror Descent, infor-
mal). For a learning rate η and an arbitrary function h, we
can equivalently define

µ+ = MDη (µ, h) ≡ µ+ = dΦ? (dΦ(µ)− ηh)

≡ dµ+ =
e−ηhdµ∫
e−ηhdµ

. (7)

Moreover, most of the essential ingredients in the analysis
of finite-dimensional prox methods can be generalized to
infinite dimension.

See Theorem 4 of Appendix A for precise statements and a
long list of “essential ingredients of prox methods” general-
izable to infinite dimension.

We are now ready introduce two “conceptual” algorithms for
solving the mixed NE of Wasserstein GANs: The infinite-
dimensional entropic MD in Algorithm 1 and MP in Algo-
rithm 2.

Theorem 2 (Convergence Rates, informal). Let Φ(µ) =∫
dµ log dµ

dz , and let D(·, ·) be the relative entropy. Then,
with a properly chosen step-size η, we have

Algorithm 2 INFINITE-DIMENSIONAL ENTROPIC MP
Input: Initial distributions µ̃1, ν̃1, learning rate η
for t = 1, 2, . . . , T do

νt = MDη
(
ν̃t,−G†µ̃t

)
µt = MDη (µ̃t,−g +Gν̃t)
ν̃t+1 = MDη

(
ν̃t,−G†µt

)
µ̃t+1 = MDη (µ̃t,−g +Gνt)

return ν̄T = 1
T

∑T
t=1 νt and µ̄T = 1

T

∑T
t=1 µt.

1. Assume that we have access to the deterministic deriva-
tives. Then Algorithm 1 achieves O

(
T−1/2

)
-NE, and

Algorithm 2 achieves O
(
T−1

)
-NE.

2. Assume that we have access to stochastic deriva-
tives such that the bias and the variance are small.
Then Algorithm 1 with stochastic derivatives achieves
O
(
T−1/2

)
-NE in expectation, and Algorithm 2 with

stochastic derivatives achieves O
(
T−1/2

)
-NE in ex-

pectation.

The precise statements of Theorem 2 and their proofs can
be found in Appendix B.

4. A Sampling Framework for Approximate
Infinite-Dimensional Prox Methods

Section 4.1 reduces Algorithm 1 and Algorithm 2 to a
sampling routine (Welling & Teh, 2011) that has widely
been used in machine learning. Section 4.2 proposes to
further simplify the algorithms by summarizing a batch of
samples by their mean.

For simplicity, we will only derive the algorithm for en-
tropic MD; the case for entropic MP is similar but requires
more computation. To ease the notation, we assume η = 1
throughout this section as η does not play an important role
in the derivation below.

4.1. Implementable Entropic MD: From Probability
Measure to Samples

We demonstrate how Algorithm 1 with stochastic deriva-
tives can be reduced to simple sampling tasks. Consider
Algorithm 1. The reduction consists of three steps.

Step 1: Reformulating Entropic Mirror Descent Iter-
ates

The definition of the MD iterate (7) relates the updated
probability measure µt+1 to the current probability measure
µt, but it tells us nothing about the density function of µt+1,
from which we want to sample. Our first step is to express
(7) in a more tractable form. By recursively applying (7)
and using Theorem 4.10 in Appendix A, we have, for some
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constants C1, ..., CT−1,

dΦ(µT ) = dΦ(µT−1)− (−g +GνT−1) + CT−1

= dΦ(µT−2)− (−g +GνT−2)

− (−g +GνT−1) + CT−1 + Ct−2

= · · ·

= dΦ(µ1)−

(
−(T − 1)g +G

T−1∑
s=1

νs

)
+

T−1∑
s=1

Cs.

For simplicity, assume that µ1 is uniform so that dΦ(µ1) is a
constant function. Then, by (A.7) and that dΦ? (dΦ(µT )) =
dµT , we see that the density function of µT is simply

dµT =
exp{(T−1)g−G

∑T−1
s=1 νs}dw∫

exp{(T−1)g−G
∑T−1
s=1 νs}dw

. Similarly, we have

dνT =
exp{G†∑T−1

s=1 µs}dθ∫
exp{G†∑T−1

s=1 µs}dθ
.

Step 2: Empirical Approximation for Stochastic Deriva-
tives

The derivatives of (5) involve the function g and operator G.
Recall that g requires taking expectation over the real data
distribution, which we do not have access to. A common
approach is to replace the true expectation with its empirical
average:

g(w) = EX∼Preal [fw(X)] ' 1

n

n∑
i=1

fw(X real
i ) , ĝ(w)

where Xi’s are real data and n is the batch size. Clearly, ĝ
is an unbiased estimator of g.

On the other hand, Gνt and G†µt involve expectation over
νt and µt, respectively, and also over the fake data distribu-
tion Pθ. Therefore, if we are able to draw samples from µt
and νt, then we can again approximate the expectation via
the empirical average:

θ(1),θ(2), ...,θ(n′) ∼ νt,
{
X

(j)
i

}n
i=1
∼ Pθ(j) ,

Ĝνt(w) ' 1

nn′

n∑
i=1

n′∑
j=1

fw

(
X

(j)
i

)
,

and similarly,

w(1),w(2), ...,w(n′) ∼ µt, {Xi}ni=1 ∼ Pθ,

Ĝ†µt(θ) ' 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi) .

Now, assuming that we have obtained unbiased stochastic
derivatives−

∑t
s=1 Ĝ

†µs and
∑t
s=1

(
−ĝ + Ĝνs

)
, how do

we actually draw samples from µt+1 and νt+1? Provided
we can answer this question, then we can start with two

easy-to-sample distributions (µ1, ν1), and then we will be
able to draw samples from (µ2, ν2). These samples in turn
will allow us to draw samples from (µ3, ν3), and so on.
Therefore, it only remains to answer the above question.
This leads us to:

Step 3: Sampling by Stochastic Gradient Langevin Dy-
namics

For any probability distribution with density function
e−hdz, the Stochastic Gradient Langevin Dynamics
(SGLD) (Welling & Teh, 2011) iterates as

zk+1 = zk − γ∇̂h(zk) +
√

2γεξk, (8)

where γ is the step-size, ∇̂h is an unbiased estimator of
∇h, ε is the thermal noise, and ξk ∼ N (0, I) is a stan-
dard normal vector, independently drawn across different
iterations.

Suppose we start at (µ1, ν1). Plugging h ← −Ĝ†µ1 and
h ← −ĝ + Ĝν1 into (8), we obtain, for {Xi}ni=1 ∼
Pθk , {w(j)}n′j=1 ∼ µ1, standard normal ξk, ξ′k, and X real

i ∼
Preal, {θ(j)}n′j=1 ∼ ν1, {X(j)

i } ∼ Pθ(j) , the following up-
date rules:

θk+1 = θk + γ∇θ

 1

nn′

n∑
i=1

n′∑
j=1

fw(j) (Xi)

+
√

2γεξk,

wk+1 = wk + γ∇w

(
1

n

n∑
i=1

fwk(X real
i )

− 1

nn′

n∑
i=1

n′∑
j=1

fwk
(
X

(j)
i

))
+
√

2γεξ′k.

The theory of (Welling & Teh, 2011; Teh et al., 2016) states
that, for large enough k, the iterates of SGLD above (ap-
proximately) generate samples according to the probability
measures (µ2, ν2). We can then apply this process recur-
sively to obtain samples from (µ3, ν3), (µ4, ν4), ...(µT , νT ).
Finally, since the entropic MD and MP output the aver-
aged measure (µ̄T , ν̄T ), it suffices to pick a random index
t̂ ∈ {1, 2, ..., T} and then output samples from (µt̂, νt̂).

Putting Step 1-3 together, we obtain Algorithm 4 and 5 in
Appendix C.

Remark. In principle, any first-order sampling method is
valid above. In the experimental section, we also use a
RMSProp-preconditioned version of the SGLD (Li et al.,
2016).

4.2. Summarizing Samples by Averaging: A Simple yet
Effective Heuristic

Although Algorithm 4 and 5 are implementable, they are
quite complicated and resource-intensive, as the total compu-
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Algorithm 3 MIRROR-GAN: APPROXIMATE MIRROR DECENT FOR GANS

Input: w̄1, θ̄1 ← random initialization, {γt}Tt=1, {εt}Tt=1, {Kt}T−1
t=1 , β (see Appendix C for meaning of the hyperparame-

ters), standard normal noise ξk, ξ′k.
for t = 1, 2, . . . , T − 1 do

w̄t,w
(1)
t ← wt, θ̄t,θ

(1)
t ← θt

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

, θ(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtξk

Generate B = {X real
1 , . . . , X real

n } ∼ Preal Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
X real
i ∈B

f
w

(k)
t

(X real
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

w̄t ← (1− β)w̄t + βw
(k+1)
t θ̄t ← (1− β)θ̄t + βθ

(k+1)
t

wt+1 ← (1− β)wt + βw̄t θt+1 ← (1− β)θt + βθ̄t
return wT ,θT .

tational complexity is O(T 2). This high complexity comes
from the fact that, when computing the stochastic deriva-
tives, we need to store all the historical samples and evaluate
new gradients at these samples.

An intuitive approach to alleviate the above issue is to try to
summarize each distribution by only one parameter. To this
end, the mean of the distribution is the most natural candi-
date, which has also proven effective in practice. Moreover,
the mean is often easier to acquire than the actual samples.
For instance, computing the mean of distributions of the
form e−hdz, where h is a loss function defined by deep
neural networks, has been empirically proven successful
in (Chaudhari et al., 2017; 2018; Dziugaite & Roy, 2018)
via SGLD. In this paper, we adopt the same approach as in
(Chaudhari et al., 2017) where we use exponential damping
(the β term in Algorithm 4.1) to increase stability. Algo-
rithm 4.1, dubbed the Mirror-GAN, shows how to encom-
pass this idea into entropic MD; the pseudocode for the
similar Mirror-Prox-GAN can be found in Algorithm 6 of
Appendix C.

5. Experimental Evidence
The purpose of our experiments is to use established base-
lines to demonstrate that Mirror- and Mirror-Prox-GAN
consistently achieve better or comparable performance than
common algorithms. We also incorporate the comparison to
recently work (Daskalakis et al., 2018; Gidel et al., 2018),
whose algorithms are also motivated by the same prox meth-
ods as Mirror-GAN and Mirror-Prox-GAN, but is however
from the pure NE perspective.

We use visual quality of the generated images to evaluate
different algorithms. We avoid reporting numerical metrics,
as recent studies (Barratt & Sharma, 2018; Borji, 2018; Lu-
cic et al., 2018) suggest that these metrics might be flawed.

Setting of the hyperparameters and more auxiliary results
can be found in Appendix D.

5.1. Synthetic Data

We repeat the synthetic setup as in (Gulrajani et al., 2017).
The tasks include learning the distribution of 8 Gaussian
mixtures, 25 Gaussian mixtures, and the Swiss Roll. For
both the generator and discriminator, we use two MLPs
with three hidden layers of 512 neurons. We choose SGD
and Adam as baselines, and we compare them to Mirror-
and Mirror-Prox-GAN. We also incorporate two contempo-
rary algorithms, namely the Optimistic Adam (Daskalakis
et al., 2018) and (Simultaneous) Extra-Adam (Gidel et al.,
2018). The step-sizes for all algorithms are determined via
parameter sweeping.

All algorithms are run up to 105 iterations3. The results of
25 Gaussian mixtures are shown in Figure 1; An enlarged
figure of 25 Gaussian Mixtures and other cases can be found
in Appendix D.1.

As Figure 1 shows, SGD performs poorly in this task, while
the other algorithms yield reasonable results. However,
compared to Adam, Mirror- and Mirror-Prox-GAN fit the
true distribution better in two aspects. First, the modes found
by Mirror- and Mirror-Prox-GAN are more accurate than the
ones by Adam, Optimistic Adam, and Extra-Adam, which
are perceptibly biased. Second, Mirror- and Mirror-Prox-
GAN perform much better in capturing the variance (how
spread the blue dots are), while Adam-based algorithms
tend to collapse to modes. These observations are consistent
throughout the synthetic experiments; see Appendix D.1.

3One iteration here means using one mini-batch of data. It
does not correspond to the T in our algorithms, as there might be
multiple SGLD iterations within each time step t.
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Figure 1. Fitting 25 Gaussian mixtures up to 105 iterations. Blue dots represent the true distribution and red ones are from the trained
generator.

We also report that Mirror-GAN and Mirror-Prox-GAN are
not only better in terms of solution quality, but also in speed:
see Figure 6 in Appendix D.1.

5.2. Real Data

For real images, we use the LSUN bedroom dataset (Yu
et al., 2015). We have also conducted a similar study with
MNIST; more results can be found in Appendix D.2.

We use the same architecture (DCGAN) as in (Radford et al.,
2015) with batch normalization. As the networks become
deeper in this case, the gradient magnitudes differ signif-
icantly across different layers. As a result, non-adaptive
methods such as SGD or SGLD do not perform well in this
scenario. To alleviate such issues, we replace SGLD by the
RMSProp-preconditioned SGLD (Li et al., 2016) for our
sampling routines. For baselines, we consider two adaptive
gradient methods: RMSprop and Adam.

We also include the Extra-Adam, along with its alternated
version (Gidel et al., 2018). However, we remark that the
theory of (Gidel et al., 2018) only provides motivations for
simultaneous updates, and Alternated Extra-Adam should
be considered as a heuristics. We drop Optimistic Adam in
the this experiment since it is reported by Gidel et al. (2018)
to be outperformed by Extra-Adam.

Figure 2 shows the results at the 105th iteration, where step-
sizes for all algorithms are determined by parameter sweep-
ing. The RMSProp, Alternated Extra-Adam and Mirror-
GAN produce images with reasonable quality, while Adam
and simultaneous Extra-Adam fail to learn the distributions.

The visual quality of Alternated Extra-Adam and Mirror-
GAN are comparable, and are better than RMSProp, as
RMSProp sometimes generates blurry images (the (3, 3)-
and (1, 5)-th entry of Figure 8.(b)).

It is worth mentioning that Adam can learn the true distri-
bution at intermediate iterations, but later on suffers from
mode collapse and finally degenerates to noise; see Ap-
pendix D.2.2.

6. Discussion and Future Work
The non-convexity arising in GANs remains poorly un-
derstood to date, and necessarily restricts the scope of
optimization-based frameworks to local theory. Moreover,
recent studies (Adolphs et al., 2018) suggest that even the
local theory is surprisingly brittle, which possibly explains
the instability of existing training methods.

Our mixed NE perspective can be considered as a first af-
firmative step towards a global theory of training GANs,
under the practically-supported premise that sampling for
a single neural net succeeds. Through experiments on both
synthetic and real data, we have shown that even the very
primitive products of our framework, the Mirror-GAN and
Mirror-Prox-GAN, already achieve state-of-the-art in train-
ing GANs. Furthermore, thanks for the global guarantees,
these algorithms are stable in the sense that they perform
well in learning all the distributions we tested, while existing
methods tend to work on one while fail on the others.

Our framework suggests several immediate research di-
rections. For instance, it is evident that the deriva-
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Figure 2. Dataset LSUN bedroom, 105 iterations.

tion in Section 2.2 applies to any objective of the form
minθ maxw h(θ,w), and hence any GAN. Besides, we
have only extended two simple methods for solving bi-affine
games, while there exists a rich body of literature, includ-
ing the celebrated Chambolle-Pock algorithm (Chambolle
& Pock, 2011), that one can import to attack the training
of GANs via our framework. Finally, we have only tested
the simultaneous updates for our algorithms, while one can
apply the practically useful hack of alternation. Overall,
we expect to see a more in-depth theoretical and empirical
investigation for mixed NE of GANs.
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A. A Framework for Infinite-Dimensional Mirror Descent
A.1. A note on the regularity

It is known that the (negative) Shannon entropy is not Fréchet differentiable in general. However, below we show that the
Fréchet derive can be well-defined if we restrict the probability measures to within the set

M(Z) :={all probability measures on Z that admit densities w.r.t. the Lebesgue measure,
and the density is continuous and positive almost everywhere on Z}. (A.1)

We will also restrict the set of functions to be bounded and integrable:

F(Z) :=

{
all bounded continuous functions f on Z such that

∫
e−f <∞

}
. (A.2)

These assumptions on the probability measures and functions are sufficient for most practical applications.

It is important to notice that µ ∈M(Z) and h ∈ F(Z) implies µ′ = MDη (µ, h) ∈M(Z); this readily follows from the
formula (7).

A.2. Properties of Entropic Mirror Map

The total variation of a (possibly non-probability) measure µ ∈M(Z) is defined as (Halmos, 2013)

‖µ‖TV = sup
‖h‖L∞≤1

∫
hdµ = sup

‖h‖L∞≤1

〈µ, h〉 .

Recall the standard topology induced by ‖·‖TV and ‖·‖L∞ for measures and functions (Halmos, 2013), respectively.
Whenever we speak about continuity or differentiability below, it is understood to be w.r.t. to the standard topology. Notice
also that the G operator defined in (5) is bounded if the discriminator fw is bounded, and hence continous (Halmos, 2013).

We depart from the fundamental Gibbs Variational Principle, which dates back to the earliest work of statistical mechanics
(Gibbs, 1902). For two probability measures µ, µ′, denote their relative entropy by (the reason for this notation will become
clear in (A.8))

DΦ(µ, µ′) :=

∫
Z

dµ log
dµ

dµ′
.

By the definition ofM(Z), it is clear that the relative entropy is well-defined for any µ, µ′ ∈M(Z).

Theorem 3 (Gibbs Variation Principle). Let h ∈ F(Z) and µ′ ∈M(Z) be a reference measure. Then

log

∫
Z
ehdµ′ = sup

µ∈M(Z)

〈µ, h〉 −DΦ(µ, µ′), (A.3)

and equality is achieved by dµ? = ehdµ′∫
Z e

hdµ′
.

Part of the following theorem is folklore in the mathematics and learning community. However, to the best of our knowledge,
the relation to the entropic MD has not been systematically studied before, as we now do.

Theorem 4. For a probability measure dµ = ρdz, let Φ(µ) =
∫
ρ log ρdz be the negative Shannon entropy, and let

Φ?(h) = log
∫
Z e

hdz. Then

1. Φ? is the Fenchel conjugate of Φ:

Φ?(h) = sup
µ∈M(Z)

〈µ, h〉 − Φ(µ); (A.4)

Φ(µ) = sup
h∈F(Z)

〈µ, h〉 − Φ?(h). (A.5)
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2. The derivatives admit the expression

dΦ(µ) = 1 + log ρ = arg max
h∈F(Z)

〈µ, h〉 − Φ?(h); (A.6)

dΦ?(h) =
ehdz∫
Z e

hdz
= arg max

µ∈M(Z)

〈µ, h〉 − Φ(µ). (A.7)

3. The Bregman divergence of Φ is the relative entropy:

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 =

∫
Z

dµ log
dµ

dµ′
. (A.8)

4. Φ is 4-strongly convex with respect to the total variation norm: For all λ ∈ (0, 1),

Φ(λµ+ (1− λ)µ′) ≤ λΦ(µ) + (1− λ)Φ(µ′)− 1

2
· 4λ(1− λ)‖µ− µ′‖2TV. (A.9)

5. The following duality relation holds: For any constant C, we have

∀µ, µ′ ∈M(Z), DΦ(µ, µ′) = DΦ? (dΦ(µ′),dΦ(µ)) = DΦ? (dΦ(µ′) + C,dΦ(µ)) . (A.10)

6. Φ? is 1
4 -smooth with respect to ‖ · ‖L∞ :

∀h, h′ ∈ F(Z), ‖dΦ?(h)− dΦ?(h′)‖TV ≤
1

4
‖h− h′‖L∞ . (A.11)

7. Alternative to (A.11), we have the equivalent characterization of Φ?:

∀h, h′ ∈ F(Z), Φ?(h) ≤ Φ?(h′) + 〈dΦ?(h′), h− h′〉+
1

2
· 1

4
‖h− h′‖2L∞ . (A.12)

8. Similar to (A.10), we have
∀h, h′, DΦ?(h, h′) = DΦ(dΦ?(h′),dΦ?(h)). (A.13)

9. The following three-point identity holds for all µ, µ′, µ′′ ∈M(Z):

〈µ′′ − µ,dΦ(µ′)− dΦ(µ)〉 = DΦ(µ, µ′) +DΦ(µ′′, µ)−DΦ(µ′′, µ′). (A.14)

10. Let the Mirror Descent iterate be defined as in (7). Then the following statements are equivalent:

(a) µ+ = MDη (µ, h).
(b) There exists a constant C such that dΦ(µ+) = dΦ(µ)− ηh+ C.

In particular, for any µ′, µ′′ ∈M(Z) we have

Let 〈µ′ − µ′′, ηh〉 = 〈µ′ − µ′′,dΦ(µ)− dΦ(µ+)〉 . (A.15)

Proof.

1. Equation (A.4) is simply the Gibbs variational principle (A.3) with dµ← dz.

By (A.4), we know that

∀h ∈ F(Z), Φ(µ) ≥ 〈µ, h〉 − log

∫
Z
ehdz. (A.16)

But for dµ = ρdz, the function h := 1 + log ρ saturates the equality in (A.16).
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2. We prove a more general result on the Bregman divergence DΦ in (A.17) below.

Let dµ = ρdz,dµ′ = ρ′dz, and dµ′′ = ρ′′dz ∈ M(Z). Let ε > 0 be small enough such that (ρ + ερ′′)dz is
absolutely continuous with respect to dµ′; note that this is possible because µ, µ′, and µ′′ ∈M(Z). We compute

DΦ(ρ+ ερ′′, ρ′) =

∫
Z

(ρ+ ερ′′) log
ρ+ ερ′′

ρ′

=

∫
Z
ρ log

ρ

ρ′
+

∫
Z
ρ log

(
1 + ε

ρ′′

ρ

)
+ ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε

∫
Z
ρ′′ log

(
1 + ε

ρ′′

ρ

)
(i)
=

∫
Z
ρ log

ρ

ρ′
+ ε

∫
Z
ρ′′ + ε

∫
Z
ρ′′ log

ρ

ρ′
+ ε2

∫
Z

ρ′′2

ρ
+ o(ε)

= DΦ(ρ, ρ′) + ε

∫
Z
ρ′′
(

1 + log
ρ

ρ′

)
+ o(ε),

where (i) uses log(1 + t) = t+ o(t) as t→ 0. In short, for all µ′, µ′′ ∈M(Z),

dµDΦ(µ, µ′)(µ′′) =

〈
µ′′, 1 + log

ρ

ρ′

〉
(A.17)

which means dµDΦ(µ, µ′) = 1 + log ρ
ρ′ . The formula (A.6) is the special case when dµ′ ← dz.

We now turn to (A.7). For every h ∈ F(Z), we need to show that the following holds for every h′ ∈ F(Z):

Φ?(h+ εh′)− Φ?(h) = log

∫
Z
eh+εh′dz − log

∫
Z
ehdz = ε

∫
Z
h′

eh∫
Z e

h
dz + o(ε). (A.18)

Define an auxiliary function

T (ε) := log

∫
Z

eh∫
Z e

h
eεh
′
dz.

Notice that T (0) = 0 and T is smooth as a function of ε. Thus, by the Intermediate Value Theorem,

Φ?(h+ εh′)− Φ?(h) = T (ε)− T (0)

= (ε− 0) · d

dε
T (·)

∣∣∣∣
ε′

for some ε′ ∈ [0, ε]. A direct computation shows

d

dε
T (·)

∣∣∣∣
ε′

=

∫
Z
h′

eh+ε′h′∫
Z e

h+ε′h′
dz.

Hence it suffices to prove eh+ε
′h′∫

Z e
h+ε′h′ = eh∫

Z e
h + o(1) in ε. To this end, let C = sup |h′| <∞. Then

eh∫
Z e

h
e−2ε′C ≤ eh+ε′h′∫

Z e
h+ε′h′

≤ eh∫
Z e

h
e2ε′C .

It remains to use et = 1 + t+ o(t) and ε′ ≤ ε.

3. Let dµ = ρdz and dµ′ = ρ′dz. We compute

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉

=

∫
Z
ρ log ρdz −

∫
Z
ρ′ log ρ′dz − 〈µ− µ′, 1 + log ρ′〉 by (A.6)

=

∫
Z
ρ log

ρ

ρ′
dz

=

∫
Z

dµ log
dµ

dµ′
.
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4. Define µλ = λµ+ (1− λ)µ′. By (A.8) and the classical Pinsker’s inequality (Gray, 2011), we have

Φ(µ) ≥ Φ(µλ) + 〈(1− λ)(µ− µ′),dΦ(µλ)〉+ 2‖(1− λ)(µ− µ′)‖2TV, (A.19)

Φ(µ′) ≥ Φ(µλ) + 〈λ(µ′ − µ),dΦ(µλ)〉+ 2‖λ(µ− µ′)‖2TV. (A.20)

Equation (A.9) follows by multiplying with λ and 1− λ respectively and summing the two inequalities up.

5. Let µ = ρdz and µ′ = ρ′dz. Then, by the definition of Bregman divergence and (A.6), (A.7),

DΦ?(dΦ(µ′),dΦ(µ)) = Φ?(dΦ(µ′))− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ − 1− log ρ

〉
= log

∫
Z
e1+log ρ′ − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′

=

∫
Z
ρ log

ρ

ρ′
= DΦ(µ, µ′)

since
∫
Z ρdz =

∫
Z ρ
′dz = 1. This proves the first equality.

For the second equality, we write

DΦ?(dΦ(µ′) + C,dΦ(µ)) = Φ?(dΦ(µ′) + C)− Φ?(dΦ(µ))−
〈
e1+log ρdz∫
Z e

1+log ρ
, 1 + log ρ′ + C − 1− log ρ

〉
= log

∫
Z
e1+log ρ′+C − log

∫
Z
e1+log ρ +

∫
Z
ρ log

ρ

ρ′
− C

=

∫
Z
ρ log

ρ

ρ′

= DΦ(µ, µ′) = DΦ?(dΦ(µ′),dΦ(µ))

where we have used the first equality in the last step.

6. Let µh = dΦ?(h), µh′ = dΦ?(h′), and µλ = λµh + (1 − λ)µh′ for some λ ∈ (0, 1). By Pinsker’s inequality and
(A.8), we have

Φ(µλ) ≥ Φ(µh) + 〈µλ − µh,dΦ(µh)〉+ 2‖µλ − µh‖2TV, (A.21)

Φ(µλ) ≥ Φ(µh′) + 〈µλ − µh′ ,dΦ(µh′)〉+ 2‖µλ − µh′‖2TV. (A.22)

Now, notice that

〈µλ − µh,dΦ(µh)〉 = 〈µλ − µh,dΦ(dΦ?(h))〉

=

〈
µλ − µh,dΦ

(
ehdz∫
Z e

h

)〉
by (A.7)

=

〈
µλ − µh, 1 + h− log

∫
Z
eh
〉

by (A.6)

= 〈µλ − µh, h〉

and, similarly, we have 〈µλ − µh′ ,dΦ(µh′)〉 = 〈µλ − µh′ , h′〉. Multiplying (A.21) by λ and (A.22) by 1−λ, summing
the two up, and using the above equalities, we get

Φ(µλ)−
(
λΦ(µh) + (1− λ)Φ(µh′)

)
+ λ(1− λ) 〈µh − µh′ , h− h′〉 ≥ 2λ(1− λ) ‖µh − µh′‖2TV .

By (A.9), we know that

Φ(µλ)−
(
λΦ(µh) + (1− λ)F (µh′)

)
≤ −2λ(1− λ) ‖µh − µh′‖2TV .

Moreover, by definition of the total variation norm, it is clear that

〈µh − µh′ , h− h′〉 ≤ ‖µh − µh′‖TV ‖h− h
′‖L∞ . (A.23)

Combing the last three inequalities gives (A.11).
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7. Let K be a positive integer and k ∈ {0, 1, 2, . . . ,K}. Set λk = k
K and h′′ = h− h′. Then

Φ?(h)− Φ?(h′) = Φ?(h′ + λKh
′′)− Φ?(h′ + λ0h

′′)

=

K−1∑
k=0

(
Φ?(h′ + λk+1h

′′)− Φ?(h′ + λkh
′′)
)
. (A.24)

By convexity of Φ?, we have

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 〈dΦ?(h′ + λk+1h
′′), (λk+1 − λk)h′′〉

=
1

K
〈dΦ?(h′ + λk+1h

′′), h′′〉 . (A.25)

By (A.23) and (A.11), we may further upper bound (A.25) as

Φ?(h′ + λk+1h
′′)− Φ?(h′ + λkh

′′) ≤ 1

K

(
〈dΦ?(h′), h′′〉+ 〈dΦ?(h′ + λk+1h

′′)− dΦ?(h′), h′′〉
)

≤ 1

K

(
〈dΦ?(h′), h′′〉+ ‖dΦ?(h′ + λk+1h

′′)− dΦ?(h′)‖TV ‖h
′′‖L∞

)
≤ 1

K

(
〈dΦ?(h′), h′′〉+

λk+1

4
‖h′′‖2L∞

)
. (A.26)

Summing up (A.26) over k, we get, in view of (A.24),

Φ?(h)− Φ?(h′) ≤ 〈dΦ?(h′), h′′〉+
1

4
‖h′′‖2L∞

K−1∑
k=0

λk+1

= 〈dΦ?(h′), h′′〉+
1

4
· K + 1

2K
‖h′′‖2L∞ . (A.27)

Since K is arbitrary, we may take K →∞ in (A.27), which is (A.12).

8. Straightforward calculation shows

DΦ?(h, h′) = log

∫
Z
eh − log

∫
Z
eh
′
−
∫
Z

eh
′∫
eh′

(h− h′) .

On the other hand, by definition of the Bregman divergence and (A.6), (A.7), we have

DΦ(dΦ?(h′),dΦ?(h)) =

∫
Z

eh
′∫

Z e
h′
h′ − log

∫
Z
eh
′
−
∫
Z

eh∫
Z e

h
h+ log

∫
Z
eh

−
∫
Z

(
1 + h− log

∫
Z
eh
)(

eh
′∫

Z e
h′
− eh∫
Z e

h

)

=

∫
Z

eh
′∫
eh′

(h′ − h)− log

∫
Z
eh
′
+ log

∫
Z
eh

= Φ?(h)− Φ?(h′)− 〈dΦ?(h′), h− h′〉
= DΦ?(h, h′).

9. By definition of the Bregman divergence, we have

DΦ(µ, µ′) = Φ(µ)− Φ(µ′)− 〈µ− µ′,dΦ(µ′)〉 ,
DΦ(µ′′, µ) = Φ(µ′′)− Φ(µ)− 〈µ′′ − µ,dΦ(µ)〉 ,
DΦ(µ′′, µ′) = Φ(µ′′)− Φ(µ′)− 〈µ′′ − µ′,dΦ(µ′)〉 .

Equation (A.14) then follows by straightforward calculations.
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10. First, let µ+ = MDη (µ, h). Then if µ+ = ρ+dz and µ = ρdz, then (7) implies

ρ+ =
ρe−ηh∫
Z ρe

−ηh .

By (A.6), we therefore have

dΦ(µ+) = 1 + log ρ+

= 1 + log ρ− ηh− log

∫
Z
ρe−ηh

whence (A.15) holds with C = − log
∫
Z ρe

−ηh.

Conversely, assume that dΦ(µ+) = dΦ(µ)− ηh+C for some constant C, and apply dΦ? to both sides. The left-hand
side becomes

dΦ?
(

dΦ(µ+)
)

= dΦ?(1 + log ρ+)

=
ρ+dz∫
ρ+dz

= ρ+dz = dµ+,

where as the formula (A.7) implies that

dΦ? (dΦ(µ)− ηh+ C) =
e1+log ρ−ηh+C∫
Z e

1+log ρ−ηh+C
dz

=
ρe−ηhdz∫
Z ρe

−ηh

=
e−ηhdµ∫
Z e
−ηhdµ

.

Combining the two equalities gives dµ+ = e−ηhdµ∫
Z e
−ηhdµ

which exactly means µ+ = MDη (µ, h).

B. Convergence Rates for Infinite-Dimensional Prox Methods
B.1. Rigorous Statements

For Algorithm 1 and 2, we have the following guarantees:

Theorem 5 (Convergence Rates). Let Φ(µ) =
∫

dµ log dµ
dz . Let M be a constant such that

max
[
‖−g +Gν‖L∞ ,

∥∥G†µ∥∥L∞] ≤ M , and L be such that ‖G(ν − ν′)‖L∞ ≤ L ‖ν − ν′‖TV and
∥∥G†(µ− µ′)∥∥L∞ ≤

L ‖µ− µ′‖TV. Let D(·, ·) be the relative entropy, and denote by D0 := D(µNE, µ1) +D(νNE, ν1) the initial distance to the
mixed NE. Then

1. Assume that we have access to the deterministic derivatives
{
−G†µt

}T
t=1

and {g −Gν}Tt=1. Then Algorithm 1

achieves O
(
T−1/2

)
-NE with η = 2

M

√
D0

T , and Algorithm 2 achieves O
(
T−1

)
-NE with η = 4

L .

2. Assume that we have access to stochastic derivatives
{
−Ĝ†µt

}T
t=1

and
{
ĝ − Ĝν

}T
t=1

such that

max
[
E
∥∥∥−ĝ + Ĝν

∥∥∥
L∞

,E
∥∥∥Ĝ†µ∥∥∥

L∞

]
≤ M ′, and the variance is upper bounded by σ2. Assume also that the

bias of stochastic derivatives satisfies max
[∥∥∥E[−ĝ + Ĝν] + g −Gν

∥∥∥
L∞

,
∥∥∥E[Ĝ†µ]−G†µ

∥∥∥
L∞

]
≤ τ . Then Algo-

rithm 1 with stochastic derivatives achieves O
(
T−1/2

)
-NE in expectation with η =

√
D0

T(4τ+M′/4)
, and Algorithm 2

with stochastic derivatives achieves
(
O
(
T−1/2

)
+O(τ)

)
-NE in expectation with η = min

[
4√
3L
,
√

2D0

3Tσ2

]
.
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B.2. Proof of Convergence Rates for Infinite-Dimensional Mirror Descent

B.2.1. MIRROR DESCENT, DETERMINISTIC DERIVATIVES

By the definition of the algorithm, (A.15), and the three-point identity (A.14), we have, for any µ ∈M(W),

〈µt − µ,−g +Gνt〉 =
1

η
〈µt − µ,dΦ(µt)− dΦ(µt+1)〉

=
1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
. (B.1)

By item 10 of Theorem 4, there exists a constant Ct such that

dΦ(µt+1) = dΦ(µt)− η (−g +Gνt) + Ct. (B.2)

Using (A.10), we see that

DΦ(µt, µt+1) = DΦ?(dΦ(µt+1),dΦ(µt))

= DΦ?

(
dΦ(µt+1)− Ct,dΦ(µt)

)
≤ 1

8
‖dΦ(µt+1)− Ct − dΦ(µt)‖2L∞ by (A.12)

=
η2

8
‖−g +Gνt‖2L∞ by (B.2)

≤ η2M2

8
.

Consequently, we have

T∑
t=1

〈µt − µ,−g +Gνt〉 =

T∑
t=1

1

η

(
DΦ(µ, µt)−DΦ(µ, µt+1) +DΦ(µt, µt+1)

)
≤ DΦ(µ, µ1)

η
+
ηM2T

8
. (B.3)

Exactly the same argument applied to νt’s yields, for any ν ∈M(Θ),

T∑
t=1

〈
νt − ν,−G†µt

〉
≤ DΦ(ν, ν1)

η
+
ηM2T

8
. (B.4)

Summing up (B.3) and (B.4), substituting µ← µNE, ν ← νNE and dividing by T , we get

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉 )
≤ D0

ηT
+
ηM2

4
. (B.5)

The left-hand side of (B.5) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt

〉 )
=

1

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (B.6)

By definition of the Nash Equilibrium, we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (B.7)
〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,
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which implies

|〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (B.8)

Combining (B.18)-(B.21), we conclude that

η =
2

M

√
D0

T
⇒ |〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉| ≤M

√
D0

T
.

B.2.2. MIRROR DESCENT, STOCHASTIC DERIVATIVES

We first write 〈
µt − µ, η(−ĝ + Ĝνt)

〉
= 〈µt − µ, η(−g +Gνt)〉+

〈
µt − µ, η

[
− ĝ + Ĝνt + g −Gνt

]〉
.

Taking conditional expectation and using the bias estimate of stochastic derivatives, we conclude that

E
〈
µt − µ, η(−ĝ + Ĝνt)

〉
≤ 〈µt − µ, η(−g +Gνt)〉+ ‖µt − µ‖TV · ητ

≤ 〈µt − µ, η(−g +Gνt)〉+ 2ητ .

Therefore, using exactly the same argument leading to (B.3), we may obtain

E
T∑
t=1

〈
µt − µ,−ĝ + Ĝνt

〉
≤ EDΦ(µ, µ1)

η
+
ηM ′2T

8
+ 2ηTτ.

The rest is the same as with deterministic derivatives.

B.3. Proof of Convergence Rates for Infinite-Dimensional Mirror-Prox

We first need a technical lemma, which is Lemma 6.2 of (Juditsky & Nemirovski, 2011) tailored to our infinite-dimensional
setting. We give a slightly different proof.
Lemma 6. Given any µ ∈ M(Z) and h, h′ ∈ F(Z), let µ = MDη (µ̃, h) and µ̃+ = MDη (µ̃, h′). Let Φ be α-strongly
convex (recall that α = 4 when Φ is the entropy). Then, for any µ? ∈M(Z), we have

〈µ− µ?, ηh′〉 ≤ DΦ(µ?, µ̃)−DΦ(µ?, µ̃+) +
η2

2α
‖h− h′‖2L∞ −

α

2
‖µ− µ̃‖2TV . (B.9)

Proof. Recall from (A.9) that entropy is α-strongly convex with respect to ‖·‖TV. We first write

〈µ− µ?, ηh′〉 = 〈µ̃+ − µ?, ηh′〉+ 〈µ− µ̃+, ηh〉+ 〈µ− µ̃+, η(h′ − h)〉 . (B.10)

For the first term, (A.14) and (A.15) implies

〈µ̃+ − µ?, ηh′〉 = 〈µ̃+ − µ?,dΦ(µ̃)− dΦ(µ̃+)〉
= −DΦ(µ̃+, µ̃)−DΦ(µ?, µ̃+) +DΦ(µ?, µ̃). (B.11)

Similarly, the second term of the right-hand side of (B.10) can be written as

〈µ− µ̃+, ηh〉 = −DΦ(µ, µ̃)−DΦ(µ̃+, µ) +DΦ(µ̃+, µ̃). (B.12)

Hölder’s inequality for the third term gives

〈µ− µ̃+, η(h′ − h)〉 ≤ ‖µ− µ̃+‖TV ‖η(h′ − h)‖L∞

≤ α

2
‖µ− µ̃+‖2TV +

1

2α
‖η(h′ − h)‖2L∞ . (B.13)

Finally, recall that Φ is α-strongly convex, and hence we have

−DΦ(µ̃+, µ) ≤ −α
2
‖µ− µ̃+‖2TV , −DΦ(µ, µ̃) ≤ −α

2
‖µ− µ̃‖2TV . (B.14)

The lemma follows by combining inequalities (B.11)-(B.14) in (B.10).
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B.3.1. MIRROR-PROX, DETERMINISTIC DERIVATIVES

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt.

In Lemma 6, substituting µ? ← µNE, µ̃← µ̃t, h← −g +Gν̃t (so that µ = µt) and h′ ← −g +Gνt (so that µ̃+ = µ̃t+1),
we get

〈µt − µNE, η(−g +Gνt)〉 ≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +
η2

2α
‖G(νt − ν̃t)‖2L∞ −

α

2
‖µ̃t − µt‖2TV . (B.15)

Similarly, we have

〈
νt − νNE,−ηG†µt

〉
≤ DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1) +

η2

2α

∥∥G†(µt − µ̃t)∥∥2

L∞ −
α

2
‖ν̃t − νt‖2TV . (B.16)

Since ‖G(νt − ν̃t)‖L∞ ≤ L · ‖νt − ν̃t‖TV and
∥∥G†(µt − µ̃t)∥∥L∞ ≤ L · ‖µt − µ̃t‖TV, summing up (B.15) and (B.16) yields

〈µt − µNE, η(−g +Gνt)〉+
〈
νt − νNE,−ηG†µt)

〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)

+

(
η2L2

2α
− α

2

)(
‖µ̃t − µt‖2TV + ‖ν̃t − νt‖2TV

)
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +DΦ(νNE, ν̃t)−DΦ(νNE, ν̃t+1)

if η ≤ α
L = 4

L . Summing up the last inequality over t and using DΦ(·, ·) ≥ 0, we obtain

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉 )
≤ DΦ(µNE, µ̃1) +DΦ(νNE, ν̃1)

T
=
D0

T
. (B.17)

The left-hand side of (B.17) can be simplified to

1

T

T∑
t=1

(
〈µt − µNE, η(−g +Gνt)〉+

〈
νt − νNE,−ηG†µt)

〉
) =

η

T

T∑
t=1

(
〈µNE − µt, g〉 − 〈µNE, Gνt〉+ 〈µt, GνNE〉

)
= η

(
〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉

)
. (B.18)

By definition of the (µNE, νNE), we have

〈µ̄T , g −GνNE〉 ≤ 〈µNE, g −GνNE〉 ≤ 〈µNE, g −Gν̄T 〉 , (B.19)
〈µ̄T , g −GνNE〉 ≤ 〈µ̄T , g −Gν̄T 〉 ≤ 〈µNE, g −Gν̄T 〉 ,

which implies

| 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤ 〈µNE, g −Gν̄T 〉 − 〈µ̄T , g −GνNE〉 . (B.20)

Combining (B.17)-(B.20), we conclude

η ≤ 4

L
⇒ | 〈µ̄T , g −Gν̄T 〉 − 〈µNE, g −GνNE〉 | ≤

D0

Tη
.

B.3.2. MIRROR-PROX, STOCHASTIC DERIVATIVES

Let α = 4, µ̄T := 1
T

∑T
t=1 µt, and ν̄T := 1

T

∑T
t=1 νt. Set the step-size to η = min

[
α√
3L
,
√

αD0

6Tσ2

]
.

In Lemma 6, substituting µ? ← µNE, µ̃← µ̃t, h← −ĝ + Ĝν̃t (so that µ = µt), and h′ ← −ĝ + Ĝνt (so that µ̃+ = µ̃t+1),
we get〈

µt − µNE, η(−ĝ + Ĝνt)
〉
≤ DΦ(µNE, µ̃t)−DΦ(µNE, µ̃t+1) +

η2

2α

∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
− α

2
‖µ̃t − µt‖2TV . (B.21)
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Note that

E
∥∥∥Ĝνt − Ĝν̃t∥∥∥2

L∞
≤ 3

(
E
∥∥∥Ĝνt −Gνt∥∥∥2

L∞
+ E ‖Gνt −Gν̃t‖2L∞ + E

∥∥∥Gν̃t − Ĝν̃t∥∥∥2

L∞

)
≤ 6σ2 + 3L2E ‖νt − ν̃t‖2TV .

Therefore, taking expectation conditioned on the history for both sides of (B.21) and using the bias estimates of the stochastic
derivatives, we get

〈µt − µNE, η(−g +Gνt)〉 ≤ EDΦ(µNE, µ̃t)− EDΦ(µNE, µ̃t+1) +
3η2σ2

α

+
3η2L2

2α
E ‖νt − ν̃t‖2TV −

α

2
E ‖µ̃t − µt‖2TV + 2ητ.

Similarly, we have

〈
νt − νNE,−ηG†µt

〉
≤ EDΦ(νNE, ν̃t)− EDΦ(νNE, ν̃t+1) +

3η2σ2

α

+
3η2L2

2α
E ‖µt − µ̃t‖2TV −

α

2
E ‖ν̃t − νt‖2TV + 2ητ.

Summing up the last two inequalities over t with η ≤ α√
3L

then yields

1

T

T∑
t=1

(
〈µt − µNE,−g +Gνt〉+

〈
νt − νNE,−G†µt)

〉 )
≤ D0

ηT
+

6ησ2

α
+ 4τ

≤ max

[
2

√
6σ2D0

αT
,

2
√

3LD0

αT

]
+ 4τ.

by definition of η. The rest is the same as with deterministic derivatives.

Algorithm 4 APPROX INF MIRROR DECENT

Input: W [1],Θ[1] ← n′ samples from random initialization, {γt}T−1
t=1 , {εt}

T−1
t=1 , {K}

T−1
t=1 , n, n

′, standard normal noise
ξk, ξ

′
k.

for t = 1, 2, . . . , T − 1 do
C ← ∪ts=1W [s], D ← ∪ts=1Θ[s] w

(1)
t ← UNIF(W [t]), θ

(1)
t ← UNIF(Θ[t]) for k = 1, 2, . . . ,Kt, . . . ,Kt+n′

do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtξk Generate

B = {X real
1 , . . . , X real

n } ∼ Preal B
′ ← {} for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ B′ ← B′ ∪ B̃

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
X real
i ∈B

f
w

(k)
t

(X real
i )− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

W [t+ 1]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t+ 1]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
idx← UNIF(1, 2, . . . , T ) return W [idx],Θ[idx].
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Algorithm 5 APPROX INF MIRROR-PROX

Input: W̃ [1], Θ̃[1] ← n′ samples from random initialization, {γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, n, n
′, standard normal noise

ξk, ξ
′
k, ξ
′′
k , ξ
′′′
k .

for t = 1, 2, . . . , T do
C ← W̃ [t] ∪

(
∪t−1
s=1W [s]

)
, D ← Θ̃[t] ∪

(
∪t−1
s=1Θ[s]

)
w

(1)
t ← UNIF(W̃ [t]), θ

(1)
t ← UNIF(Θ̃[t]) for k =

1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ
(k)
t

θ
(k+1)
t = θ

(k)
t + γt

nn′∇θ
∑
Xi∈A

∑
w∈C fw(Xi) +

√
2γtεtξk Generate

B = {X real
1 , . . . , X real

n } ∼ Preal B
′ ← {} for each θ ∈ D do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ B′ ← B′ ∪ B̃

w
(k+1)
t = w

(k)
t +

γtt

n
∇w

∑
X real
i ∈B

f
w

(k)
t

(X real
i )− γt

nn′
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

W [t]←
{
w

(K+1)
t , . . . ,w

(K+n′)
t

}
, Θ[t]←

{
θ

(K+1)
t , . . . ,θ

(K+n′)
t

}
C ′ ← ∪ts=1W [s], D′ ← ∪ts=1Θ[s] w̃

(1)
t+1 ← UNIF(W̃ [t]), θ̃

(1)
t+1 ← UNIF(Θ̃[t]) for

k = 1, 2, . . . ,Kt, . . . ,Kt + n′ do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

nn′∇θ
∑
Xi∈A

∑
w∈C′ fw(Xi) +

√
2γtεtξ

′′
k Generate

B = {X real
1 , . . . , X real

n } ∼ Preal B
′ ← {} for each θ ∈ D′ do

Generate B̃ = {X ′1, . . . , X ′n} ∼ Pθ B′ ← B′ ∪ B̃

w̃
(k+1)
t+1 = w̃

(k)
t+1 +

γtt

n
∇w

∑
X real
i ∈B

f
w̃

(k)
t+1

(X real
i )− γt

nn′
∇w

∑
X′i∈B′

f
w̃

(k)
t+1

(X ′i) +
√

2γtεtξ
′′′
k );

W̃ [t+ 1]←
{
w̃

(K+1)
t+1 , . . . , w̃

(K+n′)
t+1

}
, Θ̃[t+ 1]←

{
θ̃

(K+1)
t+1 , . . . , θ̃

(K+n′)
t+1

}
idx← UNIF(1, 2, . . . , T ) return W [idx],Θ[idx].

C. Omitted Pseudocodes in the Main Text
We use the following notation for the hyperparameters of our algorithms:

n : number of samples in the data batch.
n′ : number of samples for each probability measure.
γt : SGLD step-size at iteration t.
εt : thermal noise of SGLD at iteration t.
Kt : warmup steps for SGLD at iteration t.
β : exponential damping factor in the weighted average.

The approximate infinite-dimensional entropic MD and MP in Section 4.1 are depicted in Algorithm 4 and 5, respectively.
Algorithm 6 gives the heuristic version of the entropic Mirror-Prox.

D. Details and More Results of Experiments
This section contains all the details regarding our experiments, as well as more results on synthetic and real datasets.

Network Architectures: For all experiments, we consider the gradient-penalized discriminator (Gulrajani et al., 2017) as
a soft constraint alternative to the original Wasserstein GANs, as it is known to achieve much better performance. The
gradient penalty parameter is denoted by λ below.

For synthetic data, we use fully connected networks for both the generator and discriminator. They consist of three layers,
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Algorithm 6 MIRROR-PROX-GAN: APPROXIMATE MIRROR-PROX FOR GANS

Input: w̃1, θ̃1 ← random initialization, w0 ← w̃1,θ0 ← θ̃1, {γt}Tt=1, {εt}Tt=1, {Kt}Tt=1, β, standard normal noise
ξk, ξ

′
k, ξ
′′
k , ξ
′′′
k .

for t = 1, 2, . . . , T do
w̄t, w̄t+1, w̃

(1)
t , w̃

(1)
t+1 ← w̃t, θ̄t, θ̄t+1, θ̃

(1)
t , θ̃

(1)
t+1 ← θ̃t for k = 1, 2, . . . ,Kt do

Generate A = {X1, . . . , Xn} ∼ P
θ
(k)
t

θ
(k+1)
t = θ

(k)
t + γt

n∇θ
∑
Xi∈A fw̃t(Xi) +

√
2γtεtξk Generate B =

{X real
1 , . . . , X real

n } ∼ Preal Generate B′ = {X ′1, . . . , X ′n} ∼ Pθ̃t

w
(k+1)
t = w

(k)
t +

γt
n
∇w

∑
X real
i ∈B

f
w

(k)
t

(X real
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t

(X ′i) +
√

2γtεtξ
′
k;

w̄t ← (1− β)w̄t + βw
(k+1)
t θ̄t ← (1− β)θ̄t + βθ

(k+1)
t

wt ← (1− β)wt−1 + βw̄t θt ← (1− β)θt−1 + βθ̄t

for k = 1, 2, . . . ,Kt do
Generate A = {X1, . . . , Xn} ∼ P

θ̃
(k)
t+1

θ̃
(k+1)
t+1 = θ̃

(k)
t+1 + γt

n∇θ
∑
Xi∈A fwt(Xi) +

√
2γtεtξ

′′
k Generate B =

{X real
1 , . . . , X real

n } ∼ Preal Generate B′ = {X ′1, . . . , X ′n} ∼ Pθt

w
(k+1)
t+1 = w

(k)
t+1 +

γt
n
∇w

∑
X real
i ∈B

f
w

(k)
t+1

(X real
i )− γt

n
∇w

∑
X′i∈B′

f
w

(k)
t+1

(X ′i) +
√

2γtεtξ
′′′
k ;

w̄t+1 ← (1− β)w̄t+1 + βw
(k+1)
t+1 θ̄t+1 ← (1− β)θ̄t+1 + βθ

(k+1)
t+1

w̃t+1 ← (1− β)w̃t + βw̄t+1 θ̃t+1 ← (1− β)θ̃t + βθ̄t+1

return wT ,θT .

each of them containing 512 neurons, with ReLU as nonlinearity.

For MNIST, we use convolutional neural networks identical to (Gulrajani et al., 2017) as the generator and discriminator.4

The generator uses a sigmoid function to map the output to range [0, 1].

For LSUN bedroom, we use DCGAN (Radford et al., 2015), except that the number of the channels in each layer is half
of the original model, and the last sigmoid function of the discriminator is removed. The output of the generator is mapped
to [0, 1] by hyperbolic tangent and a linear transformation. The architecture contains batch normalization layer to ensure the
stability of the training. For our Mirror- and Mirror-Prox-GAN, the Gaussian noise from SGLD is not added to parameters
in batch normalization layers, as the batch normalization creates strong dependence among entries of the weight matrix and
was not covered by our theory.

Hyperparameter setting: The hyperparameter setting is summarized in Table 1. For baselines (SGD, RMSProp, Adam),
we use the settings identical to (Gulrajani et al., 2017). For our proposed Mirror- and Mirror-Prox-GAN, we set the damping
factor β to be 0.9. For Kt, γt and εt, we use the simple exponential scheduling:

Kt = b(1 + 10−5)tc.
γt = γ × (1− 10−5)t, γ in Table 1.

εt = ε× (1− 5× 10−5)t, ε in Table 1.

The idea is that the initial iterations are very noisy, and hence it makes sense to take less SGLD steps. As the iteration
counts grow, the algorithms learn more meaningful parameters, and we should increase the number of SGLD steps as well
as decreasing the step-size γt and thermal noise εt to make the sampling more accurate. This is akin to the warmup steps in
the sampling literature.

4Their code is available on https://github.com/igul222/improved_wgan_training.
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Algorithm SGD RMSProp Adam Entropic MD/MP

Dataset S M L S M L S M L

Step-size γ 10−2 10−4 10−4 10−2 10−4

Gradient penalty λ 0.1 10 0.1 10 0.1 10

Noise ε 10−2 10−3 10−6

Batch Size n 1024 50 64 1024 50 64 1024 50 64

Table 1. Hyperparameter setting. “S”, “M”, “L” stands for synthetic data, MNIST and LSUN bedroom, respectively. MD for LSUN
bedroom uses a RMSProp preconditioner, so the step-size is the same as one in RMSProp.
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Figure 3. Fitting 8 Gaussian mixtures up to 105 iterations.

D.1. Synthetic Data

Figure 3, 4, and 5 show results on learning 8 Gaussian mixtures, 25 Gaussian mixtures, and the Swiss Roll. As in the case
for 25 Gaussian mixtures, we find that Mirror- and Mirror-Prox-GAN can better capture the variance of the true distribution,
as well as finding the unbiased modes.

In Figure 6, we plot the data generated after 104, 2× 104, 5× 104, 8× 104, and 105 iterations by different algorithms fro
25 Gaussian mixtures. It is clear that Mirror- and Mirror-Prox-GAN find the modes of the distribution faster. In practice,
it was observed that the noise introduced by SGLD quickly drives the iterates to non-trivial parameter regions, whereas
SGD tends to get stuck at very bad local minima. Adam, as an adaptive algorithm, is capable of escaping bad local minima,
however at a rate slower than Mirror- and Mirror-Prox-GAN. The quality of Adam-based algorithms’ final solutions are also
not as good as Mirror- and Mirror-Prox-GAN; see the discussions in Section 5.1.
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Figure 4. Fitting the ‘Swiss Roll’ up to 105 iterations.
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Figure 5. Fitting 25 Gaussian mixtures up to 105 iterations.

D.2. Real Data

D.2.1. MNSIT

Results on MNIST dataset are shown in Figure 7. The models are trained by each algorithm for 105 iterations. We can
see that all algorithms achieve comparable performance. Therefore, the dataset seems too weak to be a discriminator for
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Figure 6. Learning 25 Gaussian mixtures accross different iterations.

different algorithms.

D.2.2. LSUN BEDROOM

More results on the LSUN bedroom dataset are shown in Figure 8. We show images generated after 4× 104, 8× 104, and
105 iterations by each algorithm. We can see that the Mirror-GAN and Alternated Extra-Adam outperform vanilla RMSProp.
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(a) True Data

(b) SGD (c) Adam (d) Mirror-GAN

(e) Mirror-Prox-GAN

Figure 7. True MNIST images and samples generated by different algorithms.

Adam was able to obtain meaningful images in early stages of training. However, further iterations do not improve the
image quality of Adam. In contrast, they lead to severe mode collapse at the 8× 104th iteration, and converge to noise later
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Algorithm RMSProp Adam Entropic MD Extra-Adam

Simultaneous - - 3.0955 2.0015

Alternated 3.0555 1.3730 - 3.1620

Table 2. Inception Score of generator trained on LSUN dataset. The reported scores are based on the average of 6400 images from each
generator.

on. Simultaneous Extra-Adam completely fails in this task.

Finally, for reference, we report the Inception Score in Table 2.
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4× 104 iterations 8× 104 iterations 105 iterations

(a) RMSProp

(b) Adam

(c) Mirror-GAN, Algorithm 4.1
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(d) Simultaneous Extra-Adam

(e) Alternated Extra-Adam

Figure 8. Image generated by RMSProp, Simultaneous and Alternated Extra-Adam, Adam, and Mirror-GAN on the LSUN bedroom
dataset.


