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Background

Network parameterized by θ ∈ Rn, the training set {xi}Ni=1, the loss function L,
the adversarial budget S(p)ϵ := {∆|∥∆∥p ≤ ϵ}, we solve the robust learning problem.

min
θ

N∑
i=1

max
∆∈S(p)

ϵ

L(θ, xi +∆) (1)

To generate adversarial examples, we maximize L(θ, xi +∆) ≃ L(θ, xi ) + ⟨∆,▽L⟩
▶ p =∞

∆← ΠS(∞)
ϵ

(∆ + α sign(▽∆L))

▶ p = 2
∆← ΠS(2)

ϵ
(∆ + α ▽∆L/∥▽∆L∥2)
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Background

Things get more difficult in the case of l1 adversarial budget.

▶ Theoretically, one-hot coordinate descent

∆← ΠS(1)
ϵ

(∆ + α 1(i = jmax)) , jmax = argmax
i
|▽∆L|i

▶ Empirically, K-hot coordinate descent

∆← ΠS(1)
ϵ

(∆ + α/K 1(i ∈ Smax))

Smax = {i |i is among the top K coordinates of ▽∆L in absolute magnitude}
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Motivation & Challenges

Motivation:

▶ We aims to design stable and efficient adversarial training against l1 bounded
adversarial attacks.

Challenges:

▶ Stability: Catastrophic overfitting happens more frequently in the l1 cases.

▶ Efficiency: The complexity of the SOTA method in the l1 cases is much higher
than those in the l2 and l∞ cases.

▶ Existing efficient robust learning methods are proposed for the l2 or l∞ adversarial
budgets, naively extending them to the l1 cases yields suboptimal performance.
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Analysis

Key take away: coordinate descent contributes to catastrophic overfitting.
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Figure: An example of coordinate descent trapped in
suboptimality with non-smooth functions: at the
point (−2,−2) of the function 2× |x − y |+ |x + y |.
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Figure: Distributions of the l0 norm of the
perturbations generated by AutoAttack (AA) before
and after catastrophic overfitting (CO).



Method

Generate l1 bounded perturbations by Euclidean geometry, i.e., no coordinate descent.

▶ ∆← ΠS(1)
ϵ

(∆ + α ▽∆L/∥▽∆L∥2).
▶ Perturbations updated by Euclidean geometry but projected to l1 budgets.

▶ One step attack with random initialization to improve efficiency.

▶ α is chosen that one step update by Euclidean geometry can cover the area of
what coordinate descent can explore, i.e., α =

√
ϵ.

▶ Multi-ϵ trick to encourage adversarial example exploration during training.

Advantages:

▶ Efficient and stable, free of catastrophic overfitting.

▶ No memory overhead, scalable to large dataset.

▶ No more hyper-parameters, no need for finetuning.



Results

Method
CIFAR10 (ϵ = 12) CIFAR100 (ϵ = 6) ImageNet100 (ϵ = 72)

AA (%) Time
(h)

AA (%) Time
(h)

AA (%) Time
(h)

AutoPGD 55.77 2.58 42.18 2.58 - -

FGSM-RS 36.29 0.76 33.23 0.71 36.64 22.12
ATTA 46.57 0.67 33.74 0.68 - -
AdaAT 31.84 0.88 28.64 0.84 28.62 26.96

Grad-Align 36.38 1.52 33.19 1.52 - -
N-FGSM 44.21 0.65 35.79 0.66 30.28 23.53
NuAT 48.35 1.01 36.46 1.05 45.82 29.18

Fast-EG-l1 50.27 0.67 38.03 0.67 46.74 22.11

Table: Robust accuracy (in %) evaluated by AutoAttack (AA) and training time in hours when we run different
methods on CIFAR10, CIFAR100, and ImageNet100. Hyper-parameters of baselines are finetuned. The results
of AutoPGD, ATTA and Grad-Align on ImageNet100 are not reported because of prohibitively-high
computational or memory overhead.



Thank You!

Full Paper Code


