Towards Stable and Efficient Adversarial Training against *l*₁ Bounded Adversarial Attacks

Yulun Jiang*1, Chen Liu*2, Zhichao Huang3, Mathieu Salzmann1, Sabine Süsstrunk1

¹ EPFL, ² City University of Hong Kong, ³ ByteDance

ICML 2023

^{*} Equal Contribution

Network parameterized by $\theta \in \mathbb{R}^n$, the training set $\{\mathbf{x}_i\}_{i=1}^N$, the loss function \mathcal{L} , the adversarial budget $\mathcal{S}_{\epsilon}^{(p)} := \{\Delta | \|\Delta\|_p \leq \epsilon\}$, we solve the robust learning problem.

$$\min_{\theta} \sum_{i=1}^{N} \max_{\Delta \in \mathcal{S}_{\epsilon}^{(p)}} \mathcal{L}(\theta, \mathbf{x}_{i} + \Delta)$$
(1)

Network parameterized by $\theta \in \mathbb{R}^n$, the training set $\{\mathbf{x}_i\}_{i=1}^N$, the loss function \mathcal{L} , the adversarial budget $\mathcal{S}_{\epsilon}^{(p)} := \{\Delta | \|\Delta\|_p \le \epsilon\}$, we solve the robust learning problem.

$$\min_{\theta} \sum_{i=1}^{N} \max_{\Delta \in \mathcal{S}_{\epsilon}^{(\rho)}} \mathcal{L}(\theta, \mathbf{x}_{i} + \Delta)$$
(1)

To generate adversarial examples, we maximize $\mathcal{L}(\theta, \mathbf{x}_i + \Delta) \simeq \mathcal{L}(\theta, \mathbf{x}_i) + \langle \Delta, \nabla \mathcal{L} \rangle$

Network parameterized by $\theta \in \mathbb{R}^n$, the training set $\{\mathbf{x}_i\}_{i=1}^N$, the loss function \mathcal{L} , the adversarial budget $\mathcal{S}_{\epsilon}^{(p)} := \{\Delta | \|\Delta\|_p \le \epsilon\}$, we solve the robust learning problem.

$$\min_{\theta} \sum_{i=1}^{N} \max_{\Delta \in \mathcal{S}_{\epsilon}^{(p)}} \mathcal{L}(\theta, \mathbf{x}_{i} + \Delta)$$
(1)

To generate adversarial examples, we maximize $\mathcal{L}(\theta, \mathbf{x}_i + \Delta) \simeq \mathcal{L}(\theta, \mathbf{x}_i) + \langle \Delta, \nabla \mathcal{L} \rangle$ $\blacktriangleright p = \infty$

$$\Delta \leftarrow \mathsf{\Pi}_{\mathcal{S}_{\epsilon}^{(\infty)}} \left(\Delta + \alpha \operatorname{sign}(\nabla_{\Delta} \mathcal{L}) \right)$$

▶ *p* = 2

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(2)}} \left(\Delta + \alpha \, \nabla_{\Delta} \mathcal{L} / \| \nabla_{\Delta} \mathcal{L} \|_2 \right)$$

Things get more difficult in the case of l_1 adversarial budget.

Things get more difficult in the case of l_1 adversarial budget.

Theoretically, one-hot coordinate descent

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(1)}}\left(\Delta + \alpha \ \mathbf{1}(i = j_{max})\right), \ j_{max} = \arg\max_{i} | \triangledown_{\Delta} \mathcal{L} |_{i}$$

Things get more difficult in the case of l_1 adversarial budget.

Theoretically, one-hot coordinate descent

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(1)}} \left(\Delta + \alpha \ \mathbf{1}(i = j_{max}) \right), \ j_{max} = \arg \max_{i} | \triangledown_{\Delta} \mathcal{L} |_{i}$$

Empirically, K-hot coordinate descent

$$\Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(1)}} \left(\Delta + \alpha / \mathcal{K} \ \mathbf{1} (i \in \mathcal{S}_{max}) \right)$$

 $S_{max} = \{i | i \text{ is among the top K coordinates of } \nabla_{\Delta} \mathcal{L} \text{ in absolute magnitude} \}$

Motivation & Challenges

Motivation:

We aims to design stable and efficient adversarial training against l₁ bounded adversarial attacks.

Motivation & Challenges

Motivation:

We aims to design stable and efficient adversarial training against l₁ bounded adversarial attacks.

Challenges:

- **Stability**: Catastrophic overfitting happens more frequently in the *l*₁ cases.
- Efficiency: The complexity of the SOTA method in the l_1 cases is much higher than those in the l_2 and l_{∞} cases.
- Existing efficient robust learning methods are proposed for the l_2 or l_{∞} adversarial budgets, naively extending them to the l_1 cases yields suboptimal performance.

Analysis

Key take away: coordinate descent contributes to catastrophic overfitting.

0.25 0.25 0.20 0.10 0.05 0.00

0.30

Figure: An example of coordinate descent trapped in suboptimality with non-smooth functions: at the point (-2, -2) of the function $2 \times |x - y| + |x + y|$.

Figure: Distributions of the l_0 norm of the perturbations generated by AutoAttack (AA) before and after catastrophic overfitting (CO).

Method

Generate l_1 bounded perturbations by Euclidean geometry, i.e., no coordinate descent.

$$\blacktriangleright \Delta \leftarrow \Pi_{\mathcal{S}_{\epsilon}^{(1)}} (\Delta + \alpha \nabla_{\Delta} \mathcal{L} / \| \nabla_{\Delta} \mathcal{L} \|_{2}).$$

- Perturbations updated by Euclidean geometry but projected to l₁ budgets.
- One step attack with random initialization to improve efficiency.
- α is chosen that one step update by Euclidean geometry can cover the area of what coordinate descent can explore, i.e., $\alpha = \sqrt{\epsilon}$.
- Multi- ϵ trick to encourage adversarial example exploration during training.

Advantages:

- Efficient and stable, free of catastrophic overfitting.
- No memory overhead, scalable to large dataset.
- No more hyper-parameters, no need for finetuning.

Results

Method	CIFAR10 ($\epsilon = 12$)		$CIFAR100\ (\epsilon=6)$		ImageNet100 (ϵ = 72)	
	AA (%)	Time	AA (%)	Time	AA (%)	Time
		(h)		(h)		(h)
AutoPGD	55.77	2.58	42.18	2.58	-	-
FGSM-RS	36.29	0.76	33.23	0.71	36.64	22.12
ATTA	46.57	0.67	33.74	0.68	-	-
AdaAT	31.84	0.88	28.64	0.84	28.62	26.96
Grad-Align	36.38	1.52	33.19	1.52	-	-
N-FGSM	44.21	0.65	35.79	0.66	30.28	23.53
NuAT	48.35	1.01	36.46	1.05	45.82	29.18
$Fast-EG-I_1$	50.27	0.67	38.03	0.67	46.74	22.11

Table: Robust accuracy (in %) evaluated by AutoAttack (AA) and training time in hours when we run different methods on CIFAR10, CIFAR100, and ImageNet100. Hyper-parameters of baselines are finetuned. The results of AutoPGD, ATTA and Grad-Align on ImageNet100 are not reported because of prohibitively-high computational or memory overhead.

Thank You!

Full Paper

Code