
On Certifying Non-uniform Bounds against Adversarial Attacks

Chen Liu 1 Ryota Tomioka 2 Volkan Cevher 1

Abstract
This work studies the robustness certification
problem of neural network models, which aims
to find certified adversary-free regions as large
as possible around data points. In contrast to the
existing approaches that seek regions bounded
uniformly along all input features, we consider
non-uniform bounds and use it to study the de-
cision boundary of neural network models. We
formulate our target as an optimization problem
with nonlinear constraints. Then, a framework ap-
plicable for general feedforward neural networks
is proposed to bound the output logits so that the
relaxed problem can be solved by the augmented
Lagrangian method. Our experiments show the
non-uniform bounds have larger volumes than
uniform ones and the geometric similarity of the
non-uniform bounds gives a quantitative, data-
agnostic metric of input features’ robustness. Fur-
ther, compared with normal models, the robust
models have even larger non-uniform bounds and
better interpretability.

1. Introduction
Although deep neural networks have achieved great suc-
cess and state-of-the-art performances in many tasks, they
are vulnerable to some adversarial attacks of the input
data (Szegedy et al., 2013; Goodfellow et al., 2015; Moosavi-
Dezfooli et al., 2017). This issue can be contextualized as a
game between the attackers who try to adversarially manip-
ulate the input data and the defenders who try to obtain the
robust model parameters.

Numerous methods have been proposed to attack or defend
deep neural network models. Popular attack methods in-
clude fast gradient method (FGM) (Goodfellow et al., 2015),
iterative fast gradient method (IFGM) (Kurakin et al., 2016),
projected gradient descent (PGD) (Madry et al., 2017) and

1EPFL, Lausanne, Switzerland 2Microsoft Research, Cam-
bridge, UK. Correspondence to: Chen Liu <chen.liu@epfl.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

CW attack (Carlini & Wagner, 2017). Most attack methods
search for the adversarial example by utilizing the gradient
of loss objective w.r.t. the input data. On the defenders’ side,
adversarial training (Szegedy et al., 2013), which augments
the training data with adversarial examples, is a simple and
popular method. It achieves the best empirical performance
over other recent methods (Buckman et al., 2018; Ma et al.,
2018; Guo et al., 2017; Dhillon et al., 2018; Xie et al., 2017;
Song et al., 2017; Samangouei et al., 2018) under adversarial
settings in Athalye et al. (2018).

However, recent work (Athalye et al., 2018) shows that
these uncertified defense methods might fail when a stronger
attack is applied. Therefore, finding a provable defense
algorithm and certifying the level of robustness of an input
data point have become active research topics. We need to
guarantee that the models output consistent results in the
worst cases under some conditions.

Following this line of works, we focus on the certification
problem in this paper:

Given the label set C, a classification model f : Rn → C
and an input data point x ∈ Rn, we would like to find
the largest neighborhood S around x such that f(x) =
f(x′) ∀x′ ∈ S.

Many methods have been proposed for certifying a region
bounded around a data point. Early studies use Satisfiabil-
ity Modulo Theories (SMT) solvers (Huang et al., 2017b)
or integer programming approaches (Lomuscio & Maga-
nti, 2017). Despite some recent progress, these combina-
torial methods still tend to suffer from superpolynomial
time complexity (Katz et al., 2017; ?) or requires solving
a semi-definite programming problem (Raghunathan et al.,
2018a;b).

More recently, Kolter & Wong (2017) and Wong et al. (2018)
use a convex polytope relaxation to construct the bounds
of the model’s output logits. The gap between the logits
of true and false labels is then minimized by primal-dual
methods and can be trained by a dual network. Zhang et al.
(2018) generalizes the method of Kolter & Wong (2017) to
non-ReLU networks. Singh et al. (2018) further proposes a
method of higher speed and precision based on the abstract
interpretation of neural networks. These methods generally
have quadratic complexity for strict bound.

On Certifying Non-uniform Bounds against Adversarial Attacks

All the studies mentioned above concentrate on certifying
a uniform bound around a data point against adversarial
perturbations. That is say, the certified regions S of all
these algorithms are uniform across all input features. For
example, when the input has two dimensions, the certified
region is a square under l∞ norm and a perfect round circle
under l2 norm.

In this paper, we explore the possibility of finding a non-
uniform bounded data neighborhood without adversaries. In
two-dimensional case above, the certified region would be
a rectangle under l∞ norm and an elliptical under l2 norm.
Such different level of robustness among input features
has already found interest in the literature, such as Tsipras
et al. (2018). Indeed, robust features should have larger
perturbation tolerance than non-robust ones. Under non-
uniform settings, we can have larger certified regions and a
quantitative robustness metric for different input features.

Perhaps more importantly, we can use non-uniform bound as
a tool to study the decision boundaries of different models.
This is fundamental regarding understanding the robustness
property of neural network models. Our work is an impor-
tant step towards that.

We summarize the contributions of our work below:

• We provide a framwork to estimate the bounds of out-
put logits in general feedforward neural network given
non-uniform adversarial budget ε. Any existing bound-
ing estimation algorithm can fit this framework as long
as its bound is diferentiable w.r.t. ε

• In order to find the certified non-uniform bounds of the
largest volumes, we formulate the goal as a constrained
optimization problem, make relaxations and solve
the relaxed problem by the augmented Langrangian
method.

• Our method can find non-uniform bounds of larger vol-
umes than uniform ones, revealing at least three ben-
efits of robust models: certified non-uniform bounds
of larger volumes, better interpretability and higher
geometric similarity.

We formalize our non-uniform bound certification problem
in Section 2 and propose solution algorithms in Section 3.
We provide experimental evidence in Section 4, followed up
by extensions and future works in Section 5. Conclusions
can be found in Section 6.

2. Problem Formulation
We start with a N -layer fully connected neural network,
parameterized by {W(i),b(i)}N−1i=1 :

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ..., N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ..., N − 1
(1)

where {z(i), ẑ(i)}N−1i=1 are pre- and post- activation values in
each layer. The input data and the output logits of the neural
network are ẑ(1) and z(N) respectively. σ is a nonlinear
function which can be ReLU, sigmoid, tanh, etc. We use
n1, n2, ..., nN to denote the number of neurons in each layer,
so W(i) ∈ Rni+1×ni and b(i) ∈ Rni+1

In this work, the adversarial budget for an input data point
x ∈ Rn1 is represented by a non-uniform bounded region
S(p)ε (x), parameterized by ε ∈ Rn1 . We define set S(p)ε (x)
as {ẑ(1) = x+ ε�v|‖v‖p ≤ 1} based on lp norm. In most
parts of this work, we focus on the l∞ case and discuss the
potential extension to other norms later. For simplicity, we
use Sε(x) to represent S(∞)

ε (x).

Now, we would like to find the certified region Sε(x) of the
largest volume, measured by Πn1−1

j=0 εj , in which the model
outputs consistent label. Formally, for a data point labeled
as the category c ∈ {0, 1, ..., nN−1}, the problem we focus
on is formulated below:

min
ε

−
n1−1∑
j=0

log εj

ẑ(1) ∈ Sε(x)

z(i+1) = W(i)ẑ(i) + b(i) i = 1, 2, ..., N − 1

ẑ(i) = σ(z(i)) i = 2, 3, ..., N − 1

z(N)
c − z(N)

j ≥ δ j = 0, 1,..., nN − 1; j 6= c
(2)

As a common practice, we minimize the negative logarithm
of Πn1−1

j=0 εj because it is convex and more stable numeri-
cally. δ is a small positive constant to make sure the logits
of the true label is strictly higher than others. We can see
that if we constrain ε by a scalar γ: ε = γ1, the problem
can be reduced to uniform bound certification problem, the
one solved by Kolter & Wong (2017); Wong et al. (2018);
Raghunathan et al. (2018a); Zhang et al. (2018); Singh et al.
(2018).

Before going into the details of the algorithm, we also intro-
duce the notation used in the sequel. We use l(i) and u(i)

to represent the lower and upper bound of pre-activation
values in the i-th layer respectively i.e. l(i) ≤ z(i) ≤ u(i).
For a tensor T, T− means all its negative elements i.e.
T− = min(T, 0). Similarity, we can define T+. � is
elementwise product operation between two tensors. Brack-
eted superscripts are used to index tensors while subscripts
mean the elements in a tensor. Scalars are broadcast when

On Certifying Non-uniform Bounds against Adversarial Attacks

it is added or subtracted from tensors. The equality and
inequality relations in this paper are all elementwise.

3. Algorithm
In this section, following the work of Kolter & Wong (2017);
Singh et al. (2018); Zhang et al. (2018), we derive a linear
approximation to bound the nonlinear activation function
σ. This allows us to relax problem (2) into an optimization
problem with bounds parameterized as a (nonlinear) func-
tion of ε. Then we show that we can compute the gradient of
this bound with respect to ε efficiently and solve the relaxed
problem using the augmented Lagrangian method.

3.1. Linear Approximation of Activation Functions

For an activation function σ(x), which is nonlinear and
monotonic, and x bounded by l ≤ x ≤ u, we can linearize
it by two linear functions with the same slope: kx+m1 ≤
σ(x) ≤ kx+m2. k, m1 and m2 all depend on the bounds l
and u. They are chosen in a way such that the gap m2−m1

between bias terms shall be as small as possible.

For example, if σ is ReLU function: σ(x) = max(0, x), we
have:

k =

0 l ≤ u ≤ 0
u

u− l
l < 0 < u

1 0 ≤ l ≤ u

,m2 =

0 l ≤ u ≤ 0

− ul

u− l
l < 0 < u

0 0 ≤ l ≤ u
m1 = 0

(3)

Here, we find m1 = m2 when l ≤ u ≤ 0 or 0 ≤ l ≤ u.
Therefore, the linear approximation error arises for ReLU
only when l < 0 < u.

For a general activation function σ(x), we can consider
functions m̃1(k) ≤ σ(x)− kx and m̃2 ≥ σ(x)− kx when
x ∈ [l, u]. Then k is chosen by minimizing the margin
m̃2 − m̃1. Zhang et al. (2018) extends Kolter & Wong
(2017)’s methods in a similar way but they use numerical
methods to obtain k. Here k needs to have analytical form,
because we need the gradients of bounds w.r.t. ε.

Consider a vector x bounded by l ≤ x ≤ u, we can bound
σ(x) by Dx + m1 ≤ σ(x) ≤ Dx + m2 where D is a
diagonal matrix and m1, m2 are bias vectors. Equivalently,
we can say ∀x : l ≤ x ≤ u, ∃m : m1 ≤ m ≤ m2 such
that σ(x) = Dx + m.

For a fully connected neural network defined in equation
(1), we linearize ẑ(i) by ẑ(i) = σ(z(i)) = D(i)z(i) + m(i)

under constraint m(i)
1 ≤ m(i) ≤ m

(i)
2 given the bound

l(i) ≤ z(i) ≤ u(i). For the input layer, the matrix D(1) is

identity and the bias term is bounded by ε: −ε ≤m(1) ≤ ε.
If we unfold the linear approximations, the output of each
layer z(i) can be expressed in the following way:

z(i) = W(i−1)(σ(W(i−2)(...

(W(1)(x + m(1)) + b(1))...) + bi−2)) + b(i−1)

= W(i−1)(D(i−1)(W(i−2)(...

(W(1)(x + m(1)) + b(1))...) + b(i−2)) + m(i−1)) + b(i−1)

=
(

Πi−1
j=2W

(j)D(j)
)
W(1)x +

i−1∑
h=1

(
Πi−1

j=h+1W
(j)D(j)

)
b(h)

+

i−1∑
h=1

(
Πi−1

j=h+1W
(j)D(j)

)
W(h)m(h)

(4)

3.2. Lower and Upper Bound Estimation

According to equation (4), for the output layer or any inter-
mediate layer z(i) of a model, the only variables on the right
hand side are {m(h)}i−1h=1. The bound of z(i) can be obtained
immediately from the bounds of {m(h)}i−1h=1. Once we have
the bound of z(i), we can then obtain D(i), m(i)

1 and m
(i)
2

to bound z(i+1). Such process can be done iteratively until
we obtain the lower bound l(N) and upper bound u(N) of
the output logits z(N). The computational complexity of
FLOP operations in this algorithm is O(N2n3) where n is
the maximum number of neurons in a hidden layer. We call
this algorithm quadratic algorithm and provide pseudo code
in Algorithm 3 in Appendix A. This algorithm is the same
as CROWN in Zhang et al. (2018) except that we use the
same slope for upper and lower bound of the nonlinearity.
Algorithm 3 only maintains one list of matrices i.e. M(j)

in each iteration while CROWN needs 4 such matrices and
thus consumes much more memory.

Theoretically, any convex hull of the nonlinear function σ
in [l, u] leads to a valid bound of the output logits (Salman
et al., 2019), therefore, the smallest convex hull corresponds
to the tightest bound. However, in practice we can hardly
find an analytical form of the smallest convex hull for ar-
bitrary σ. It is a trade-off between the tightness and the
complexity. In this work, we use two parallel line to bound
the nonlinear function within a given range, so our convex
hull here is a parallelogram.

On the other hand, we can obtain a naive layerwise bound
by iteratively calculating the bound of a layer based on the
bound of the immediate previous layer. Compared with
quadratic algorithm, the complexity of FLOP operations in
this algorithm is O(Nn2) 1 and we call it simple algorithm
The pseudo code is in Algorithm 4 in Appendix A. Because

1In simple algorithm, there are only matrix-vector multiplica-
tions, whose complexity are O(n2) each.

On Certifying Non-uniform Bounds against Adversarial Attacks

of its efficiency, Simple algorithm has been incorporated
into the algorithms in Gowal et al. (2018) to train robust
models.

Although Kolter & Wong (2017) has empirically showed
that quadratic algorithm typically obtains better bounds than
simple algorithm, we find that they are actually complemen-
tary. On one hand, quadratic algorithm linearizes the activa-
tion functions and the gap between upper and lower bounds
come from the flexibility of {m(h)}i−1h=1, which grows mod-
erately with the number of layers. Simple algorithm calcu-
lates the bounds layerwisely and the error can propagate
much faster. However, simple algorithm calculates the acti-
vation function exactly without any approximation. There-
fore, neither algorithm is guaranteed to be better than the
other. Roughly speaking, simple algorithm works better for
networks of few layers (‘shallow’ networks) or networks
containing layers of very few neurons (‘thin’ networks),
while quadratic algorithm is better in other cases. Detailed
discussion and examples for comparison are deferred in
Appendix B.

In this work, we incorporate simple algorithm into quadratic
algorithm for a better bound in each layer. The pseudo code
is given as Algorithm 1 below. The maximum and mini-
mum operators in line 15 and 16 are applied elementwisely.

Algorithm 1 Bound Estimation
1: Input: Parameters {W(i),b(i)}N−1

i=1 , perturbation set Sε(x).
2: l(2) = W(1)x−W

(1)
+ ε + W

(1)
− ε + b(1)

3: u(2) = W(1)x−W
(1)
− ε + W

(1)
+ ε + b(1)

4: M(1) = W(1)

5: φ(2) = W(1)x + b(1)

6: for i = 2, ..., N − 1 do
7: Calculate D(i), m(i)

1 , m(i)
2 based on l(i) and u(i)

8: l
(i+1)
simp = W

(i)
+ σ(l(i)) + W

(i)
− σ(u(i))

9: u
(i+1)
simp = W

(i)
− σ(l(i)) + W

(i)
+ σ(u(i))

10: M(j) = W(i)D(i)M(j) for j = 1, ..., i− 1
11: M(i) = W(i)

12: φ(i+1) = W(i)D(i)φ(i) + b(i)

13: l
(i+1)
quad = φ(i+1) +

∑i
j=1

(
M

(j)
− m

(j)
2 + M

(j)
+ m

(j)
1

)
14: u

(i+1)
quad = φ(i+1) +

∑i
j=1

(
M

(j)
− m

(j)
1 + M

(j)
+ m

(j)
2

)
15: l(i+1) = max(l

(i+1)
simp , l

(i+1)
quad)

16: u(i+1) = min(u
(i+1)
simp ,u

(i+1)
quad)

17: end for
18: Output: Bounds {l(i),u(i)}Ni=2

3.3. Gradient of Perturbation Budget ε

Algorithm 1 provides the algorithm to estimate the bound
of output logits for any input perturbation Sε(x). In uni-
form bound certification problem, we constrain ε = γ1 and
have one dimensional variable γ ∈ R to optimize. In this
case, the optimality can be found by binary search or line

search (Zhang et al., 2018). However, in non-uniform bound
certification problem, we have n1 dimensional variable ε to
optimize. It becomes necessary to estimate a good direction
to update ε. This is why we consider gradient methods, and
fortunately the (sub)gradient ∂l

(N)

∂ε and ∂u(N)

∂ε can obtained
according to Algorithm 1.

Based on the linear approximation as discussed in Section
3.1, standard back-propagation can be applied to calculate
the (sub)gradients of the final bounds w.r.t. ε. Alternatively,
similar to Algorithm 1, the gradient can be calculated re-
cursively using chain rule. Unlike back-propagation, this
method does not need to wait for the termination of Algo-
rithm 1 and can be calculated on the fly, which is beneficial
in the distributed settings. The pseudo code is provided in
Appendix A.

3.4. Optimization by the Augmented Lagrangian
Method

Now, we have done all the preparation to solve the relax-
ation of problem (2). By bound estimation, we rewrite the
problem below:

min
ε,y≥0

−
n1−1∑
j=0

log εj

s.t. l(N)

c − u
(N)
j 6=c − δ = y

(5)

Here l(N) and u(N) are functions of ε given by Algorithm
1. u(N)

j 6=c ∈ RnN−1 is the concatenation of all output logits
except true label c. y(≥ 0) ∈ RnN−1 is a slack variable
that ensures the nonnegativity of the term on the left hand
side. For simplicity, we define v := l

(N)
c − u

(N)
j 6=c − δ as a

function of ε.

Note that we have replaced constraint z(N)
c − z

(N)
j ≥ δ

in problem (2) by a stronger version l
(N)
c − u

(N)
j 6=c ≥ δ.

Therefore, the optimality of problem (5) provides the upper
bound of the original minimization problem (2).

We can further rewrite the problem (5) into a min-max prob-
lem using augmented Lagragian method (Hestenes, 1969;
Powell, 1969) by introducing the dual variable λ ∈ RnN−1

and the coefficient ρ ∈ R+. The dual problem to solve is
below:

max
λ

min
ε,y≥0

−

n1−1∑
j=0

log εj

+ 〈λ,v − y〉+
ρ

2
‖v − y‖22

(6)

The inner minimization problem is a quadratic form of y, so
the optimal y has the analytical solution: y = max(0,v +

On Certifying Non-uniform Bounds against Adversarial Attacks

1
ρλ). Plug the solution in the problem and we can optimize
ε by gradient descent. The pseudo code is in Algorithm 2.

Algorithm 2 Optimization for ε
1: Input: Parameters {W(i),b(i)}N−1

i=1 , original bounds ε0, iter-
ations M , augmented coefficient {ρ(i)}Mi=1, decaying factor η.

2: ε = ε0, λ = 0
3: for i = 1, 2, ...,M do
4: Update ε by minimizing (6) with optimal y plugged in.
5: λ = λ + ρ(i)(v − y)
6: end for
7: while v ≥ 0 is not satisfied do
8: ε = ηε
9: end while

10: Output: ε

Similar to penalty method, the coefficient {ρ(i)}Mi=1 in Al-
gorithm 2 is a non-decreasing sequence to enforce the con-
straint. However, the Lagrange multiplier term makes it
unnecessary to increase ρ(i) to +∞. Actually, ρ(i) can stay
much smaller here to solve the problem, which avoids nu-
merical instability caused by ill-conditioning.

The minimization in line 4 is solved by gradient methods. In
practice, gradient explosion might happen when ε is small
or ρ(i) is big. To avoid overshooting, we apply gradient
rescaling to constrain the l2 norm of the gradient. The
term log εj implicitly constrains εj to be positive, so we
reparametrize εj = ζ2j and optimize vector ζ.

The last while-loop in line 7 is to ensure the output ε meets
the hard constraints. The decaying factor η is close to 1 and
is set 0.99 in practice. When ρ(i) is large, the while-loop
would break after very few iterations.

4. Experiments
In this Section, we compare our certified non-uniform
bounds with uniform bounds. We also use our algorithm as
a tool to explore the decision boundaries of different models.
All the experiments here are implemented in the framework
of PyTorch and can be finished within several hours on a
single NVIDIA Tesla GPU machine.

Because any algorithm of estimating the output logits can be
incorporated into our framework of computing non-uniform
bounds, our main focus in this section is the comparison
between uniform and non-uniform bounds based on the
same estimation algorithm of output logits.

4.1. Synthetic Data

We first validate our algorithm using 2-D synthetic data so
that we can visualize the certified bounds.

We generate 10 random 2D data points in the space of
[−1, 1]2 labeled {0, 1, ..., 9} as seeds. Another 10000 ran-

1 0 1
1

0

1

1

2

3

4

5

6

7
8

9

10

11

12
13

14

15

1617

18

19

20

1

2

3

4

5

6

7
8

9

10

11

12
13

14

15

1617

18

19

20

Figure 1. A simple example on the synthetic data. 20 points with
their certified uniform (yellow) and non-uniform (blue) bounds are
shown above. The real decision boundary is shown as black lines.

dom points in [−1, 1]2 are then generated and assigned the
same label as the closest seeds. 90% of the data points are
in the training set and the rest are reserved for testing.

The model here is a ReLU fully-connected neural network
with two hidden layers of 10 neurons. Since the boundary
between different categories are piecewise linear in this case,
the model is shown to have enough capacity and achieve an
accuracy of more than 99.9% in the test set.

Figure 1 demonstrates the results of uniform (yellow) and
non-uniform (blue) bounds with two random points in each
category. We can clearly see the bounds calculated by our
algorithm are reasonably tight and areas covered by non-
uniform bounds are larger than those of uniform bounds.
Although the larger volumes do not necessarily mean the
bounds are larger for both features, bounds of some feature
are extended in compensation for the other. We can say the
features are more robust when their bounds are larger.

In some cases, the non-uniform bounds can be significantly
larger than uniform bounds (e.g. point 12, 14 in Figure 1).
This typically means considerable difference in robustness
between two input features.

4.2. Real Datasets

In this part, we run our algorithm on real datasets, including
MNIST, Fashion-MNIST and SVHN (Netzer et al., 2011).
All of them are popular benchmarks for image classification
and contain tens of thousand images. MNIST and Fashion-
MNIST are 28 × 28 gray-scale images, while SVHN are
32× 32 colored images. Unless specified, all pixel values
of images are normalized in the range of [−1, 1].

Besides a metric of feature robustness, the non-uniform
bounds also can be used as a tool to explore the decision

On Certifying Non-uniform Bounds against Adversarial Attacks

Dataset Architecture Adversary Accuracy (%) Uniform Bound Non-uniform Bound Ratio

MNIST

100-100-100 - 99.2 0.0295 0.0349 1.183
PGD, τ = 0.1 98.1 0.0692 0.1678 2.425

300-300-300 - 98.0 0.0309 0.0350 1.133
PGD, τ = 0.1 98.9 0.0507 0.1404 2.769

500-500-500 - 98.5 0.0319 0.0360 1.129
PGD, τ = 0.1 98.8 0.0436 0.1167 2.677

Fashion
MNIST 1024-1024-1024 - 90.4 0.0134 0.0141 1.052

PGD, τ = 0.1 88.4 0.0208 0.0306 1.468

SVHN 1024-1024-1024 - 84.3 0.0022 0.0072 3.273
PGD, τ = 0.1 78.2 0.0054 0.0281 5.204

Table 1. Average of uniform and non-uniform bounds in the test sets. The architecture column means the number of neurons in hidden
layers. The accuracy column means the value of clean accuracy. The ratio is the values of non-uniform bounds over uniform bounds.

boundaries of models. In the following subsections, we
investigate the difference between the decision boundaries
of robust and non-robust models.

4.2.1. ROBUSTNESS AND VOLUME OF BOUNDS

As Table 1 shows, we train different models for different
datasets in different ways. To obtain robust models, we
do adversarial training based on PGD (Madry et al., 2017)
attacks. To the best of our knowledge, this is the way to
obtain the most robust model empirically studied in Athalye
et al. (2018). We set the perturbation budget τ of PGD to
be 0.1 and search for adversarial examples for 20 iterations.
We call models adversarially trained by PGD robust models
to distinguish from normal models.

We report results based on data in the test sets here. To make
the results of non-uniform bound comparable with uniform

bound, we take the geometric average values
(
Πn1−1
j=0 εj

) 1
n1 .

Table 1 shows the average bounds in different settings, it is
clear that non-uniform bounds consistently certify areas of
larger volumes.

We notice that the ratio of non-uniform bound over uniform
bound is significantly larger in the cases of robust mod-
els. Figure 2 shows the histogram of bound per feature for
normal and robust models on a randomly picked image in
MNIST. Compared with the normal model, the bounds of
some features for the robust model can be as large as 0.4,
much larger than the value of τ . This observation means
the decision boundary of the robust model is almost aligned
in some dimensions corresponding to some features, which
makes it possible for our algorithm to extend the bounds of
those features without sacrificing the bounds of the others
much. It also implies robust models tend to drop irrelevant
features and rely on fewer features when making predictions.
We put more results from other MNIST models as well as
models on Fashion-MNIST and SVHN dataset to support
our claim in Appendix C.1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bound

0

20

40

60

80

100

120

140

pi
xe

ls

normal
robust

Figure 2. The distributions of bounds per feature for normal and
robust models in a randomly picked image. Both models have three
hidden layers of 300 neurons. The uniform bounds for normal
and robust models are 0.0402 and 0.0568 respectively, while the
corresponding geometric average values of non-uniform bounds
are 0.0450 and 0.1462 respectively.

4.2.2. ROBUSTNESS AND MODEL INTERPRETABILITY

Given an image and a neural network model, our algorithm
can obtain a non-uniform bound parameterized by ε ∈ Rn1 .
For high dimensional images, we can not plot the rectangu-
lar bounds. However, we can visualize ε just like images.
We call them bounding maps and use the same rescaling
factor 2 to visualize them in this paper.

To study the property of bounding maps, we take a sim-
ple example of binary classification: to distinguish digit
‘1’ from ‘7’ in MNIST dataset. We use model with three

2All bounding map figures in this paper are plot based on 1−5ε,
so darker pixels in bounding maps mean larger bounds.

On Certifying Non-uniform Bounds against Adversarial Attacks

Figure 3. An example of bounding maps of images of digit ‘1’
and ‘7’. (Left) The original images, (Middle) Bounding map of a
normal model. (Right) Bounding map of a robust model.

hidden layers of 100 neurons and train it both in normal and
adversarial way. We visualize the bounding maps of both
models for two example images in Figure 3.

For the normal model, the bounding maps are noisy and
can hardly reveal the patterns of the input data. However,
for the robust model, the bounding maps can capture some
intrinsic characteristics of the input data. In the case of
digit ‘1’ and ‘7’, people typically distinguish them by the
horizontal stroke which digit ‘7’ has and ‘1’ does not. This
corresponds to the relatively smaller bounds of features in
the middle above of the images. It indicates the decision
boundaries are closer to the data points in the directions
of these features and the model puts more weight on these
features to make predictions. On the contrary, both digit ‘1’
and ‘7’ have a vertical stroke, we can correspondingly see a
dark clear vertical stroke in the bounding maps of the robust
model. Such phenomenon can be reproduced in many other
examples, more are available in Appendix C.2.

We need to mention similar property of robust models is
found in Tsipras et al. (2018) but from a more microscopic
perspective. Tsipras et al. (2018) visualizes the gradients
of the model’s loss function w.r.t the input data and finds
that the gradients for robust models are significantly more
interpretable, while the gradients for normal models are
generally noise. Our investigations are more on a macro-
scopic level, our non-uniform bounds explore the shape of
model’s decision boundary but we have the same claim:
robust models are more interpretable.

4.2.3. ROBUSTNESS AND DECISION BOUNDARY

In Figure 3, similar patterns of bounding maps are found
for the same model but different input images. Thus, we
calculate the cosine similarity of ε for two images, since the

Mean Cosine Minimum Cosine
Normal Model 0.9774 0.5038
Robust Model 0.9964 0.9104

Table 2. The mean and minimum of cosine similarity between all
pairs of ε in the test set. We use MNIST classification model with
300 neurons in each hidden layer.

direction of ε indicates the shape of non-uniform bounds.
For examples of normal and robust models, we report the
average and minimum values in all image pairs of the test
set in Table 2. The full results are available in Table 3 in
Appendix C.3. It is clear that the values of ε for different
images but the same model are highly correlated, which
indicates the geometric similarity of non-uniform bounds. 3

What’s more, such correlation is even stronger in the cases
of robust models.

The high correlation means some features are consistently
more robust than the other features in different input data
points. Since most ε are almost collinear, the direction of
them can be regarded as a quantitative and data-agnostic
metric measuring the robustness of input features. It is also
beneficial to use this direction as a prior when we estimate
the non-uniform bound for a new data point.

Since the shape of the non-uniform bound reveals the deci-
sion boundary, high correlation of ε also indicates the uni-
formity of the direction of the decision boundary. Formally,
in a n1 dimensional input space, there exists a subspace X
of dimensionality n′1 � n1 that contains most directions
of decision boundary around the data manifold. This is
consistent with what Moosavi-Dezfooli et al. (2017) points
out.

An extreme example is the classifier whose decision bound-
ary is linear, the non-uniform bound of the largest volume
for any input data has exactly the same shape. That is to say,
the values of ε for any input data point are exactly collinear
and n′1 = 1 in this case. Our experimental results show
the stronger correlation of ε in the cases of robust models.
This implies the most directions of a robust model’s deci-
sion boundary can be obtained in a subspace of even lower
dimensionality than a normal model. The decision boundary
of a robust model should be simpler in some sense.

5. Discussion
In this section, two straightforward extensions are shown to
make our algorithms adapt to other settings. We also discuss
the potential future works to polish the algorithms.

3For two random vectors uniformly distributed in [0, 1]784, the
expectation of cosine similarity between them is around 0.75. The
expectation decreases for random vectors in higher dimensions.

On Certifying Non-uniform Bounds against Adversarial Attacks

5.1. Extensions

5.1.1. OTHER NETWORK ARCHITECTURES

Some previous works have some assumptions on the ar-
chitecture of the neural network. For example, Kolter &
Wong (2017) and Weng et al. (2018) assume ReLU net-
work; Raghunathan et al. (2018a) only works for network
with only one hidden layer. Wong et al. (2018) and Zhang
et al. (2018) generalize the method of Kolter & Wong (2017)
and Weng et al. (2018) respectively to general feedforward
networks.

Although our previous analysis in Section 3 is based on the
fully-connected network, our framework is modularized and
can generalize naturally to general feedforward networks in
the same way as Wong et al. (2018). Our method is from
the primal perspective while Wong et al. (2018) focuses on
the dual problem.

For example, the convolutional layers can be reparameter-
ized as feedforward layers of sparse weight matrices and
shared variables. The max-pooling layers can be considered
as non-linear functions and be linearized by methods in Sec-
tion 3.1. Our framework can also be applied to network with
shortcut connections, including popular Residual Network
(ResNet) (He et al., 2016) and Densely Connected Network
(DenseNet) (Huang et al., 2017a). More details about this
are available in Appendix D.

5.1.2. OTHER NORMS

Much attention of previous works is focused on bounds
based on l∞ norm (Zhang et al., 2018; Singh et al., 2018;
Kolter & Wong, 2017), although some of them such as
Kolter & Wong (2017) can be easily extended to attacks
based on other norms. We claim that our methods can be
extended to other norms in the same way. However, we also
point out both previous works and this work implicitly favor
l∞ norm when estimating the bounds of output logits. This
is because the neurons in intermediate layers are bounded
in an elementwise manner, the bound for a specific neuron
does not depend on the bound of any other neuron. This
bound would be loose if the output z(i), as a vector, can be
better bounded by a norm other than l∞ norm. It would be
interesting to consider the bound of neurons in one layer
jointly and derive a tighter bound for non-l∞ norms.

5.2. Potential Future Works

Solving problem (2) exactly is difficult, because the exact
range of output logits z(N) when ẑ(1) ∈ Sε(x) is generally
intractable. Therefore, we introduce a tractable bound of
z(N) and build our algorithms based on that. From the geo-
metric perspective, the bound of z(N) given by Algorithm
1 provides a tractable envelope of the intractable decision
boundary of the neural network. The algorithm to bound

z(N) is important, because an algorithm of a tighter bound
reveals the decision boundary better and then leads to certi-
fied regions of larger volumes.

One possible direction to explore is to design faster and
better algorithms than Algorithm 1, which still has looser
bounds for larger ε or deeper networks. In addition, as
Algorithm 1 is called in every iteration when we optimize
ε in Algorithm 2, the complexity of the algorithm is also
an issue. All algorithms discussed in this paper calculate
the ‘strict bounds’ i.e. l(N) ≤ z(N) ≤ u(N), it would
be beneficial to design an algorithm for ‘soft bounds’ i.e.
l̃(N) / z(N) / ũ(N) but with much faster speed. We run
‘soft bounds’ algorithm first to accelerate the optimization
and run ‘strict bounds’ algorithm at last to guarantee the
hard constraints are satisfied.

Another direction towards certified regions of larger vol-
umes and studying the decision boundary is to consider
oblique bounds instead of standard bounds. The only dif-
ference is to introduce an additional orthogonal matrix A

to parameterize the adversarial budget S(p)A,ε(x) := {ẑ(1) =
x + A(ε� v)|‖v‖p = 1}. More importantly, the elements
in matrix A represents the correlation between different
input features, which will give us more information about
the shape of the decision boundary.

6. Conclusion
In this paper, we study the certified non-uniform bounds
around input data points. We propose a general framework
to estimate the output logits of different neural networks.
The goal of finding the bounds of the largest volumes is then
formulated as a constrained optimization problem and we
solve it by the augmented Langragian method. Our experi-
ments on synthetic data and real data show the non-uniform
bounds have the larger volumes than uniform bounds. In ad-
dition, we use our algorithm as a tool to explore the decision
boundaries of different models. Our results demonstrate at
least three advantages of robust models: 1) the model relies
on fewer features and has much larger certified non-uniform
bounds; 2) the non-uniform bounds are significantly more
interpretable; 3) the stronger geometric similarity of the non-
uniform bounds gives a quantitative, data-agnostic metric
of input features’ robustness and implies a simpler decision
boundary.

Acknowledgement
We thank Po-An Wang for beneficial discussions. We also
thank Qi Dou and Ya-Ping Hsieh for their feedback on the
initial manuscripts. This work is supported by Microsoft
Research and Chen Liu is funded by Microsoft Research
PhD Scholarship Program.

On Certifying Non-uniform Bounds against Adversarial Attacks

References
Athalye, A., Carlini, N., and Wagner, D. Obfuscated

gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420, 2018.

Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. Ther-
mometer encoding: One hot way to resist adversarial
examples. 2018.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bern-
stein, J., Kossaifi, J., Khanna, A., and Anandkumar, A.
Stochastic activation pruning for robust adversarial de-
fense. arXiv preprint arXiv:1803.01442, 2018.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2015.

Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C.,
Uesato, J., Mann, T., and Kohli, P. On the effectiveness of
interval bound propagation for training verifiably robust
models. arXiv preprint arXiv:1810.12715, 2018.

Guo, C., Rana, M., Cisse, M., and van der Maaten, L. Coun-
tering adversarial images using input transformations.
arXiv preprint arXiv:1711.00117, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hestenes, M. R. Multiplier and gradient methods. Journal
of optimization theory and applications, 4(5):303–320,
1969.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
CVPR, volume 1, pp. 3, 2017a.

Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety
verification of deep neural networks. In International
Conference on Computer Aided Verification, pp. 3–29.
Springer, 2017b.

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochender-
fer, M. J. Reluplex: An efficient smt solver for verifying
deep neural networks. In International Conference on
Computer Aided Verification, pp. 97–117. Springer, 2017.

Kolter, J. Z. and Wong, E. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
arXiv preprint arXiv:1711.00851, 1(2):3, 2017.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial ma-
chine learning at scale. arXiv preprint arXiv:1611.01236,
2016.

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward relu neural networks. arXiv
preprint arXiv:1706.07351, 2017.

Ma, X., Li, B., Wang, Y., Erfani, S. M., Wijewickrema, S.,
Schoenebeck, G., Song, D., Houle, M. E., and Bailey, J.
Characterizing adversarial subspaces using local intrinsic
dimensionality. arXiv preprint arXiv:1801.02613, 2018.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and
Frossard, P. Universal adversarial perturbations. In 2017
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 86–94. Ieee, 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning, volume
2011, pp. 5, 2011.

Powell, M. J. A method for nonlinear constraints in mini-
mization problems. Optimization, pp. 283–298, 1969.

Raghunathan, A., Steinhardt, J., and Liang, P. Certified
defenses against adversarial examples. arXiv preprint
arXiv:1801.09344, 2018a.

Raghunathan, A., Steinhardt, J., and Liang, P. Semidefi-
nite relaxations for certifying robustness to adversarial
examples. arXiv preprint arXiv:1811.01057, 2018b.

Salman, H., Yang, G., Zhang, H., Hsieh, C.-J., and Zhang, P.
A convex relaxation barrier to tight robust verification of
neural networks. arXiv preprint arXiv:1902.08722, 2019.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-
gan: Protecting classifiers against adversarial attacks us-
ing generative models. arXiv preprint arXiv:1805.06605,
2018.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. Fast and effective robustness certification. In Ad-
vances in Neural Information Processing Systems, pp.
10824–10835, 2018.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman, N.
Pixeldefend: Leveraging generative models to understand
and defend against adversarial examples. arXiv preprint
arXiv:1710.10766, 2017.

On Certifying Non-uniform Bounds against Adversarial Attacks

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. There is no free lunch in adversarial robust-
ness (but there are unexpected benefits). arXiv preprint
arXiv:1805.12152, 2018.

Weng, T.-W., Zhang, H., Chen, H., Song, Z., Hsieh, C.-
J., Boning, D., Dhillon, I. S., and Daniel, L. Towards
fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699, 2018.

Wong, E., Schmidt, F., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. arXiv preprint
arXiv:1805.12514, 2018.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. Miti-
gating adversarial effects through randomization. arXiv
preprint arXiv:1711.01991, 2017.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. In Advances in
Neural Information Processing Systems, pp. 4939–4948,
2018.

On Certifying Non-uniform Bounds against Adversarial Attacks

A. Missing Algorithms
A.1. Bound Estimation Algorithms

Here we list the detailed pseudo code of quadratic and simple algorithms mentioned in Section 3.2. The complexity in
matrix multiplications for Algorithm 3 and 4 and are O(N2) and O(N) respectively.

Algorithm 3 Quadratic Bound Estimation
1: Input: Parameters {W(i),b(i)}N−1

i=1 , perturbation set Sε(x).
2: l(2) = W(1)x−W

(1)
+ ε + W

(1)
− ε + b(1)

3: u(2) = W(1)x−W
(1)
− ε + W

(1)
+ ε + b(1)

4: M(1) = W(1)

5: φ(2) = W(1)x + b(1)

6: for i = 2, ..., N − 1 do
7: Calculate D(i), m(i)

1 , m(i)
2 based on l(i) and u(i)

8: M(j) = W(i)D(i)M(j) for j = 1, ..., i− 1
9: M(i) = W(i)

10: φ(i+1) = W(i)D(i)φ(i) + b(i)

11: l(i+1) = φ(i+1) +
∑i

j=1

(
M

(j)
− m

(j)
2 + M

(j)
+ m

(j)
1

)
12: u(i+1) = φ(i+1) +

∑i
j=1

(
M

(j)
− m

(j)
1 + M

(j)
+ m

(j)
2

)
13: end for
14: Output: Bounds {l(i),u(i)}Ni=2

Algorithm 4 Simple Bound Estimation
1: Input: Parameters {W(i),b(i)}N−1

i=1 , perturbation set Sε(x).
2: l(2) = W(1)x−W

(1)
+ ε + W

(1)
− ε + b(1)

3: u(2) = W(1)x−W
(1)
− ε + W

(1)
+ ε + b(1)

4: for i = 2, ..., N − 1 do
5: l(i) = σ(l(i))

6: u(i) = σ(u(i))

7: l(i+1) = W
(i+1)
+ l(i) + W

(i+1)
− u(i) + b(i)

8: u(i+1) = W
(i+1)
− l(i) + W

(i+1)
+ u(i) + b(i)

9: end for
10: Output: Bound {l(i),u(i)}Ni=2

A.2. Gradient Calculation

Below is the missing algorithm to calculate the gradient of bounds {l(i),u(i)}Ni=2 w.r.t. ε. We put g in front of a variable to
represent its gradient w.r.t. ε. Terms like g[M]+ or g[M]− are a bit abused here. It means we put the elements of gM where
the corresponding elements in M are positive or negative and set the other elements to be 0. In addition, f1 is the indicator
function which returns 1 if input is true and 0 otherwise. When the input is a tensor, the function is applied elementwisely
and return a tensor of the same shape.

In Algorithm 5, gD(i), gm(i)
1 and gm(i)

2 can be obtained immediately after the calculation of D(i), m(i)
1 and m

(i)
2 . We

can run the for-loop in Algorithm 5 immediately after the corresponding iteration in Algorithm 1. That is to say, we do
not need to wait for Algorithm 1 to terminate before calculating the gradients like what back-propagation does. This can
improve the computational efficiency.

B. Different Bound Estimation Algorithms
It is a bit counterintuitive to find that Algorithm 3 and 4 are actually complementary. There is no guarantee which one is
better in all cases and combining them together in Algorithm 1 is a necessary. We use the following two toy examples in
Figure 4 to demonstrate the pros and cons of both algorithms.

+a -a

+b

(a) Example Network 1

+a +a

-a -a

+b +b

(b) Example Network 2

Figure 4. Two toy networks.

On Certifying Non-uniform Bounds against Adversarial Attacks

Algorithm 5 Gradient Calculation

1: Input: Parameters {W(i),b(i)}N−1
i=1 , perturbation set Sε(x), bounds {l(i),u(i)}Ni=2, values {D(i),m

(i)
1 ,m

(i)
2 }Ni=1

2: gl(2) = −|W(1)|
3: gu(2) = |W(1)|
4: gM(1) = 0
5: gφ(2) = 0
6: for i = 2, ..., N − 1 do
7: Run algorithm 1 to obtain D(i), m(i)

1 and m
(i)
2 .

8: l
(i+1)
naive = W

(i)
+

[
σ′(l(i))� gl(i)

]
+ W

(i)
−

[
σ′(u(i))� gu(i)

]
9: u

(i+1)
naive = W

(i)
−

[
σ′(l(i))� gl(i)

]
+ W

(i)
+

[
σ′(u(i))� gu(i)

]
10: gD(i) = gl(i) ∂D(i)

∂l(i)
+ gu(i) ∂D(i)

∂u(i)

11: gm
(i)
1 = gl(i)

∂m
(i)
1

∂l(i)
+ gu(i) ∂m

(i)
1

∂u(i)

12: gm
(i)
2 = gl(i)

∂m
(i)
2

∂l(i)
+ gu(i) ∂m

(i)
2

∂u(i)

13: gM(j) = W(i)gD(i)M(j) + W(i)D(i)gM(j) for j = 1, ..., i− 1
14: gM(i) = 0
15: gφ(i+1) = W(i)gD(i)φ(i) + W(i)D(i)gφ(i)

16: gl
(i+1)
comp =

∑i
j=1

(
g[M(j)]−m

(j)
2 + [M(j)]−gm

(j)
2 + g[M(j)]+m

(j)
1 + [M(j)]+gm

(j)
1

)
+ gφ(i+1)

17: gu
(i+1)
comp =

∑i
j=1

(
g[M(j)]−m

(j)
1 + [M(j)]−gm

(j)
1 + g[M(j)]+m

(j)
2 + [M(j)]+gm

(j)
2

)
+ gφ(i+1)

18: gl(i+1) = f1(l
(i+1)
naive > l

(i+1)
comp)� gl(i+1)

naive + f1(l
(i+1)
naive ≤ l

(i+1)
comp)� gl(i+1)

comp

19: gu(i+1) = f1(u
(i+1)
naive ≤ u

(i+1)
comp)� gu(i+1)

naive + f1(u
(i+1)
naive > u

(i+1)
comp)� gu(i+1)

comp

20: end for
21: Output: Gradients {gl(i), gu(i)}Ni=2

The activation function in the hidden layer is ReLU, the weights of each connection are shown in Figure 4 and we assume
a, b > 0. Let the input point be (x, x) and x > 0. The adversarial budgets for both features are ε > 0. We consider the
bounds of both algorithms for both networks as follows.

For network 1, the bounds of the pre-activation for the only hidden neuron are [−2aε,+2aε] in both algorithms. Simple
algorithm obtains [0,+2aε] as the bound for post-activation and [0,+2abε] for the final output. On the other hand,
quadratic algorithm obtains D(2) = [+0.5] and [0]

T ≤ m(2) ≤ [+aε]
T . Then the expression for the final output is

[+b] [+0.5]
[
+a −a

]
m(1)+[+b]m(2) =

[
+0.5ab −0.5ab

]
m(1)+[+b]m(2). As

[
−ε −ε

]T ≤m(1) ≤
[
+ε +ε

]T
given by perturbation budget, so the final output bounds of quadratic algorithm are [−abε,+2abε]. The true bound for the
output in network 1 is [0,+2abε], so simple algorithm wins in this case.

Similarly, the bounds of the pre-activation for both neurons in hidden layer in network 2 are [−2aε,+2aε]. Simple
algorithm obtains [0,+2aε] as the bound for post-activation and [0,+4abε] for the final output. On the other hand, quadratic
algorithm obtains D(2) = diag([+0.5,+0.5]) and [0, 0]T ≤ m(2) ≤ [+aε,+aε]T . The expression for the final output is[
+b +b

] [+0.5 0
0 +0.5

] [
+a −a
−a +a

]
m(1) +

[
+b +b

]
m(2) =

[
+b +b

]
m(2) and the final bound is [0,+2abε]. The

true bound for the output in network 2 is also [0,+2abε], so quadratic algorithm wins in this case.

Obviously, as the combination of both algorithms, Algorithm 1 outputs the optimal in both cases.

To summarize, quadratic algorithm can, to some extent, capture the composition of transformations in the neural network.
For example, the pre-activations of the hidden layer in network 2 are always additive inverse and this constrains the output
range of the network. Quadratic algorithm can detect this constraint when calculating the output bound, as the first term of
the final output’s expression cancels out. Simple algorithm totally ignores that as it will discard all information of previous
layers not directly connected to the current layer. However, quadratic algorithm use a linear approximation of the activation
function while simple algorithm use the exact one. Unnecessary linearization made quadratic algorithm obtain suboptimal
bound in cases like network 1.

Empirically, simple algorithm prefers larger perturbation, because the linearization of activation function invokes larger
error here. Quadratic algorithm is suitable when the layer size is large, as the composition of large matrix transformation

On Certifying Non-uniform Bounds against Adversarial Attacks

typically means more terms can be cancelled out.

1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45

1.5

1.0

0.5

0.0

0.5

(a) 2-5-5-2 network, ε = 0.1

9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7

3.6

3.5

3.4

3.3

3.2

3.1

3.0

2.9

(b) 2-10-10-2 network, ε = 0.1

8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0 10.2

4.0

3.8

3.6

3.4

3.2

3.0

2.8

2.6

(c) 2-10-10-2 network, ε = 0.2

Figure 5. Visualization of bounds from simple (red), quadratic (green) and combined (blue) algorithms with different hidden neurons and
uniform bounded perturbation budgets τ . (bounds of simple algorithm for (b) and (c) are out of scope.) The set of all possible outputs are
in yellow.

Figure 5 demonstrates the different bounds and possible outputs in different toy cases. We generate neural networks with
two hidden layers of random weights and compare the bounds obtained by different algorithms. In these cases, we can
see the bounds of simple algorithm become loose quickly with the increase of layer size while the bounds of quadratic
algorithm might be the worse when perturbation budgets are large. Of course, as Kolter & Wong (2017) points out, all
bounds become looser in larger layer size and larger perturbation budgets.

C. Extra Experiment Results
C.1. Volume of Bounds

Like Figure 2, we put examples of other models and other datasets in Figure 6. We show that the results are consistent: the
distributions of non-uniform bounds among input features of the robust models have a ‘long tail’, which indicates the output
logits are affected little by some input features.

C.2. Robustness and Model Interpretability

Figure 7 gives more examples of bounding maps. Like the model discussed in section 4.2.2, we train two model: one to
distinguish digit ‘3’ from digit ‘8’, the other to distinguish digit ‘1’ from digit ‘2’.

C.3. Robustness and Decision Boundary

We put the average and minimum values of cosine similarity between ε values of all image pairs in Table 3.

Dataset Architecture Adversarial Training Mean Cosine Minimum Cosine

MNIST

100-100-100 - 0.9548 0.2304
PGD, τ = 0.1 0.9957 0.9155

300-300-300 - 0.9774 0.5038
PGD, τ = 0.1 0.9964 0.9104

500-500-500 - 0.9874 0.6367
PGD, τ = 0.1 0.9941 0.8920

Fashion-MNIST 1024-1024-1024 - 0.9805 0.5652
PGD, τ = 0.1 0.9752 0.7166

SVHN 1024-1024-1024 - 0.9836 0.7129
PGD, τ = 0.1 0.9952 0.9339

Table 3. Cosine Similarity of ε

On Certifying Non-uniform Bounds against Adversarial Attacks

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
bound

0

10

20

30

40

50

60

70

80

pi
xe

ls

normal
robust

(a) ‘100-100-100’ models on MNIST

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
bound

0

20

40

60

80

100

pi
xe

ls

normal
robust

(b) ‘500-500-500’ models on MNIST

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
bound

0

20

40

60

80

100

120

140

pi
xe

ls

normal
robust

(c) ‘1024-1024-1024’ models on Fashion-MNIST

0.00 0.02 0.04 0.06 0.08 0.10
bound

0

200

400

600

800

pi
xe

ls

normal
robust

(d) ‘1024-1024-1024’ models on SVHN

Figure 6. More examples of distributions of bounds for normal and robust models among all pixels.

On Certifying Non-uniform Bounds against Adversarial Attacks

Figure 7. Additional examples of bounding maps of images. The images on the left are based on model distinguishing digit ‘3’ from digit
‘8’. The images on the right are based on model distinguishing digit ‘1’ from digit ‘2’. Each tuple of 3 images demonstrate the original
images, the bounding map of the normal model and the bounding map of the robust model.

D. Algorithm for General Architectures
D.1. General Linear Layers

We first show our formulation for fully-connected layer in Algorithm 1 can be naturally generalized to any linear layer
with fixed variables. Here, we use popular convolutional layer as an example.

Given a convolutional layer with weights W(c) ∈ Rnin×nout×fw×fh , input xin ∈ Rnin×win×hin and output xout ∈
Rnout×wout×hout . If we do not use any padding, then wout = win − fw + 1 and hout = hin − fh + 1. Therefore, we can
reshape xin, xout into one-dimensional vectors x′in, x′out and rewrite convolutional operator in matrix multiplication form
x′out = Wx′in. W is a fixed matrix defined as follows where i1, i2, j1, j2, k1, k2 are integers.

Wi1winhin+j1hin+k1,i2wouthout+j2hin+k2 =

{
W

(c)
i1,i2,j1−j2,k1−k2 ; 0 ≤ j1 − j2 ≤ fw − 1, 0 ≤ k1 − k2 ≤ fh − 1

0 ; otherwise
(7)

As a result, we will use matrix multiplication 4 to represent any linear layer defined in the neural networks.

D.2. General Feedforward Neural Networks

As Figure 8 shows, any general feedforward neural networks can be considered as directed acyclic graph (DAG) G(V,E).
The vertices {1, 2, ..., N − 1, N} represent neurons of each layer and the activation functions are applied on the internal
nodes i.e. hidden units. Any edge (j, i) ∈ E corresponds to a weight matrix W(j→i) representing a direct connection
between the output of layer j and the input of layer i (i > j).

Now we can define the formulation of a general feedforward neural network, which covers popular residual networks
(ResNet) (He et al., 2016) and densely connected networks (DenseNet) (Huang et al., 2017a).

z(i) =

i−1∑
j=1

W(j→i)ẑ(j) + b(i)

ẑ(i) = σ(z(i))

(8)

Formulation (8) can be reduced to (1) if no skip-connection exists i.e. W(j→i) = 0 ∀j 6= i− 1. For notation simplicity, we
first define P(n)(j, i) as the set of all paths of length n from vertex j to i (i > j) in graph G(V,E):

4We drop bias term for simplicity.

On Certifying Non-uniform Bounds against Adversarial Attacks

z z z z z
(1) (2) (3) (N-1) (N)

Figure 8. An example of DAG representation of a general feedforward neural networks.

P(n)(j, i) = {(p0, p1, ..., pn−1, pn)|j = p0 < p1 < ... < pn−1 < pn = i, (pt, pt+1) ∈ E ∀0 ≤ t ≤ n− 1} (9)

Then we can define the linearized composite transformation from layer j to layer i as follows:

M(j→i) =

i−j∑
n=1

∑
p∈P(n)(j,i)

Πn−1
t=0 W

(pt→pt+1)D(pt) ∀ j < i (10)

Specially, we define M(j→i) = I ∀j = i. Similar to equation (4), we can write the output of each layer z(i) by:

z(i) =

i∑
l=2

M(l→i)W(1→l)x +

i∑
h=1

M(h→i)b(h) +

i−1∑
h=1

i∑
l=h+1

M(l→i)W(h→l)m(h) (11)

In equation (10) and (11), {D(h),m(h)}Nh=1 are defined in the same way as linear approximation in Section 3.1.

Based on equation (11), we can design the bound estimation algorithm (Algorithm 6) for a general feedforward neural
network. In line 11, M(j→i+1) can be calculated recursively as follows, so the total complexity is still quadratic in matrix
multiplication.

M(j→i+1) =

i∑
h=j+1

W(h→i+1)D(h)M(j→h) (12)

We can then follow the same path, gradient calculation and optimization by the augmented Lagragian method, to estimate
the certified region of the largest volume for a given data point x.

On Certifying Non-uniform Bounds against Adversarial Attacks

Algorithm 6 Bound Estimation for General Feedforward Neural Network
1: Input: Parameters {W(i),b(i)}N−1

i=1 , perturbation set Sε(x).
2: φ(1) = x, D(1) = I, m(1)

1 = −ε, m(1)
2 = ε

3: l(2) = W(1)x−W
(1)
+ ε + W

(1)
− ε + b(1)

4: u(2) = W(1)x−W
(1)
− ε + W

(1)
+ ε + b(1)

5: M(1→2) = W(1)

6: φ(2) = W(1)x + b(1)

7: for i = 2, ..., N − 1 do
8: Calculate D(i), m(i)

1 , m(i)
2 based on l(i) and u(i).

9: l
(i+1)
simp =

∑i
j=1

(
W

(j→i+1)
+ σ(l(j)) + W

(j→i+1)
− σ(u(j))

)
10: u

(i+1)
simp =

∑i
j=1

(
W

(j→i+1)
− σ(l(j)) + W

(j→i+1)
+ σ(u(j))

)
11: Calculate M(j→i+1) for ∀j < i+ 1 according to equation (10).
12: φ(i+1) =

∑i+1
j=1 W

(j→i+1)D(j)φ(j) + b(i+1)

13: l
(i+1)
quad = φ(i+1) +

∑i−1
h=1

[(∑i
l=h+1 M

(l→i)W(h→l)
)
+
m

(h)
1 +

(∑i
l=h+1 M

(l→i)W(h→l)
)
−
m

(h)
2

]
14: u

(i+1)
quad = φ(i+1) +

∑i−1
h=1

[(∑i
l=h+1 M

(l→i)W(h→l)
)
−
m

(h)
1 +

(∑i
l=h+1 M

(l→i)W(h→l)
)
+
m

(h)
2

]
15: l(i+1) = max(l

(i+1)
simp , l

(i+1)
quad)

16: u(i+1) = min(u
(i+1)
simp ,u

(i+1)
quad)

17: end for
18: Output: Bounds {l(i),u(i)}Ni=2

