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Introduction
Formulation

Definition (Robustness Problem)

Given a classification model f (θ, x) : Θ× RH → RK parameterized by θ, data
points drawn from the distribution (x, y) ∼ D and loss function L, robustness
problem is formulation as follows:

min
θ

E(x,y)∼D max
x′∈Sε(x)

L(f (θ, x′), y) (1)

where Sε(x) is called the adversarial budget: Sε(x) = {x′|‖x− x′‖∞ ≤ ε}.
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Introduction
Adversarial Training

max
‖x−x′‖∞≤ε

L(f (θ, x′), y) (2)

Fast Gradient Sign Method (FGSM) 1.

x′ ← x + εsign(OxL(f (θ, x′), y)) (3)

Projected Gradient Descent (PGD) 2 ∼ iterative fast gradient sign method.

x(t+1) ← Π{x′|‖x′−x‖≤ε}

[
x(t) + αsign(OxL(f (θ, x(t)), y))

]
(4)

Adversarial training: first generate (optimal) adversarial examples x′ and
then train model parameters based on x′.

1
”Explaining and harnessing adversarial examples.” ICLR 2014.

2
”Towards deep learning models resistant to adversarial attacks.” ICLR 2018.
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Introduction
Adversarial Training
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Figure: The training (dashed line) and test (solid line) curve in error (left) and loss
(right). The model is ResNet18; the dataset is CIFAR10.

Compared with vanilla training, adversarial training has

Slower convergence

Larger generalization gap
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Theoretical Analysis
Notation

{xi , yi}Ni=1: the given dataset.

L(θ): vanilla loss of parameter θ.

Lε(θ) : adversarial loss of parameter θ when the adversarial budget size is ε.

g(θ, x), gε(θ, x): vanilla and adversarial loss for an individual data point.

min
θ
Lε(θ) :=

1

N

N∑
i=1

gε(xi , θ)

gε(xi , θ) := max
x′i∈S

(p)
ε (xi )

g(x′i , θ) .

(5)
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Theoretical Analysis
Linear Model

For multiclass classification, K ≥ 3 and the logit function is
f (W) = [wT

1 x,w
T
2 x, ...,w

T
Kx] where W := {wi}Ki=1 ∈ Rm×K are the trainable

parameters.

g(x,W) = log
(

1 +
∑

j 6=y exp(wj−wy )x
)

.

gε(x,W): no analytical form, but convex.

Definition (Version Space)

The version space of gε(x,W) is defined as follows:

Vε =

{
W

∣∣∣∣(wi −wy )x′ ≤ 0,∀i ∈ [K ], x′ ∈ Sε(x)

}
. (6)

Vε is a convex set of ‘good directions’.

∀W ∈ Vε and W 6= 0, limγ→∞ gε(x, γW) = 0.
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Theoretical Analysis
Linear Model

Definition (Version Space)

The version space of gε(x,W) is defined as follows:

Vε =

{
W

∣∣∣∣(wi −wy )x′ ≤ 0,∀i ∈ [K ], x′ ∈ Sε(x)

}
. (7)

Proposition

Given the version space Vε defined in (7), then Vε2 ⊆ Vε1 when ε1 ≤ ε2.

The set of ‘good directions’ will shrink with increase of ε.
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Theoretical Analysis
Linear Model

Now, let’s talk about ‘bad directions’.

Definition

We define set Tε based on gε(x,W):

Tε =

{
W

∣∣∣∣0 ∈ arg min
γ

gε(x, γW)

}
. (8)

Theorem

Given Tε defined in (8), then Tε2 ⊆ Tε1 when ε1 ≥ ε2. In addition, ∃ε̄ such
that ∀ε ≥ ε̄, Tε = Rm×K . In this case 0 ∈ arg minW gε(x,W).

The set of ‘bad directions’ will expand with increase of ε.
For suffiently large ε, all non-zero vectors are ‘bad directions’, then the
model gets stuck at the orgin.
Similar obvervations in nonlinear models, although the theorem is not
applicable in this case.
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Theoretical Analysis
Nonlinear Model

For nonlinear models, there is no analytical form of g(x, θ) or gε(x, θ). Instead,
we assume the Lipschitzian smoothness of g .

Assumption (Lipschitzian Smoothness)

The function g satisfies the Lipschitzian smoothness conditions:

‖g(x, θ1)− g(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθg(x, θ1)− Oθg(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖ ,
‖Oθg(x1, θ)− Oθg(x2, θ)‖ ≤ Lθx‖x1 − x2‖p .

(9)

Lθ, Lθθ and Lθx are called Lipschitz constants.

C. Liu et. al. (EPFL & MSR) Adversarial Loss Landscape October 28, 2020 12 / 32



Theoretical Analysis
Nonlinear Model

Assumption (Lipschitzian Smoothness of g)

The function g satisfies the Lipschitzian smoothness conditions:

‖g(x, θ1)− g(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθg(x, θ1)− Oθg(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖ ,
‖Oθg(x1, θ)− Oθg(x2, θ)‖ ≤ Lθx‖x1 − x2‖p .

(10)

Lθ, Lθθ and Lθx are called Lipschitz constants.

Theorem (Smoothness of gε)

If the Lipschitzian smoothness of g holds, then we have:

‖gε(x, θ1)− gε(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθgε(θ1)− Oθgε(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖+ 2εLθx .

(11)

C. Liu et. al. (EPFL & MSR) Adversarial Loss Landscape October 28, 2020 13 / 32



Theoretical Analysis
Nonlinear Model

Assumption (Lipschitzian Smoothness of g)

The function g satisfies the Lipschitzian smoothness conditions:

‖g(x, θ1)− g(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθg(x, θ1)− Oθg(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖ ,
‖Oθg(x1, θ)− Oθg(x2, θ)‖ ≤ Lθx‖x1 − x2‖p .

(10)

Lθ, Lθθ and Lθx are called Lipschitz constants.

Theorem (Smoothness of gε)

If the Lipschitzian smoothness of g holds, then we have:

‖gε(x, θ1)− gε(x, θ2)‖ ≤ Lθ‖θ1 − θ2‖ ,
‖Oθgε(θ1)− Oθgε(x, θ2)‖ ≤ Lθθ‖θ1 − θ2‖+ 2εLθx .

(11)

C. Liu et. al. (EPFL & MSR) Adversarial Loss Landscape October 28, 2020 13 / 32



Theoretical Analysis
Nonlinear Model

The first order smoothness of g is preserved in gε.

The second order smoothness of g is, however, broken in gε. It is because
(optimal) adversarial examples x′ depends on model parameters θ.
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Figure: 2D sketch diagram showing the vanilla and the adversarial loss landscape.
The clean input data x is 1.0 and loss function g(x , θ) = log(1 + exp(θx)) (left:
ε = 0.6, right: ε = 1.2).
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Figure: 2D sketch diagram in the nonconvex cases. The adversarial budget in the
left part is smaller than the right part. The minima are sharper when the
adversarial budget is bigger.
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Theoretical Analysis
Nonlinear Model

Why smoothness matters?

Theorem (Convergence)

Let Lipschitzian assumption holds, the stochastic gradient OθL̂ε(θt) be unbiased

and have bounded variance, and the SGD update θt+1 = θt − αtOθL̂ε(θt) use a
constant step size αt = α = 1

Lθθ

√
T

for T iterations. Given the trajectory of the

parameters during optimization {θt}Tt=1, then we can bound the asymptotic
probability of large gradients for a sufficient large value of T as

∀γ ≥ 2,P(‖OθLε(θt)‖ > γεLθx) <
4

γ2 − 2γ + 4
. (12)

In adversarial training, i.e., ε > 0, we cannot guarantee convergence to a
critical point.

The gradients are non-vanishing, and we can only bound the probability of
obtaining gradients whose magnitude is larger than 2εLθx.
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Theoretical Analysis
Nonlinear Model

Why smoothness matters?

Non-smooth function usually has sharp minima. Sharp minima is shown to
generalize worst for deep learning models empirically. 3

Flat Minimum Sharp Minimum

Training Function

Testing Function

f (x)

Figure: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value
of the loss function and the X-axis the variables (parameters)

3
”On large-batch training for deep learning: Generalization gap and sharp minima.” ICLR 2017.
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Numerical Analysis
Experimental Settings

Models and datasets: LeNet on MNIST, VGG16 and ResNet18 on CIFAR10.

We use w to denote the width of the network, standard LeNet [LeCun 95],
VGG16 [Zhang 15], ResNet18 [He 16] are marked as w = 16.

Each experiment is run for 3 times.
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Numerical Analysis
Gradient Analysis
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Figure: Norm of the stochastic gradient ‖OθL̂ε(θ)‖ (Upper Left, Bottom Right),
robust training error Eε(θ) (Upper Right), and distance from the initial point
‖θ − θ0‖ (Bottom Left) during the first or last 2000 mini-batch updates for
CIFAR10 models.
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Numerical Analysis
Gradient Analysis
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Figure: Norm of the stochastic gradient ‖OθL̂ε(θ)‖ (Upper Left, Bottom Right),
robust training error Eε(θ) (Upper Right), and distance from the initial point
‖θ− θ0‖ (Bottom Left) during the first or last 500 mini-batch updates for MNIST
models.
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Numerical Analysis
Gradient Analysis

Extreme cases (’dead layer’) for ReLU networks. (small model, large ε)

Pre-activation of one layer is all negative for all training instances.

The network is effectively broken into two parts.

Layers before the ‘dead layer’ will never be updated.
Layers after the ‘dead layer’ don’t depend on the input.

The model gets stuck in a space consisting of only constant classifiers.
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Numerical Analysis
Hessian Analysis

The sharpness of Lε(θ) w.r.t. θ is captured by the top Eigenvalues of its
Hessian matrix O2

θLε(θ).
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Numerical Analysis
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Figure: Top Hessian eigenvalues of ResNet18
models on CIFAR10.
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Figure: Visualization of landscape in the
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Numerical Analysis
Hessian Analysis

Theorem about the smoothness of Lε(θ) indicates the numerical results of
Hessian top eigenvalues will increase with ε.
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Figure: Top Hessian eigenvalues of LeNet
models on MNIST.
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Numerical Analysis
Hessian Analysis

To confirm the reasons behind the increased curvature of Lε(θ) for larger ε,
we check the similarity of adversarial examples generated by parameter
θ + av and θ − av.

v can be a random unit vector or the top eigenvector of the Hessian matrix.
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Numerical Analysis
Hessian Analysis

To confirm the reasons behind the increased curvature of Lε(θ) for larger ε,
we check the similarity of adversarial examples generated by parameter
θ + av and θ − av.

v can be a random unit vector or the top eigenvector of the Hessian matrix.

v ε = 2/255 ε = 4/255 ε = 8/255
Cosine Test(%) Cosine Test(%) Cosine Test(%)

E
ig

en
ve

ct
or a = 0.0 0.976 27.0 0.962 42.1 0.945 58.6

a = 0.1 0.471 28.0 0.475 43.7 0.461 61.3
a = 0.3 0.148 34.2 0.157 49.9 0.140 70.2
a = 0.5 0.075 44.1 0.078 63.1 0.069 83.9
a = 1.0 0.050 79.0 0.046 88.4 0.034 89.0

R
a

n
d

o
m

a = 0.0 0.976 27.0 0.962 42.1 0.945 58.6
a = 0.1 0.975 27.1 0.962 42.1 0.945 58.6
a = 0.3 0.973 27.1 0.960 42.1 0.944 58.6
a = 0.5 0.968 27.1 0.957 42.1 0.942 58.7
a = 1.0 0.955 27.1 0.946 42.1 0.935 58.6

Table: Average cosine similarity of perturbations in the training set and its corresponding test
error between ResNet18 models with parameters θ + av and θ − av on CIFAR10.
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Numerical Analysis
Hessian Analysis

To confirm the reasons behind the increased curvature of Lε(θ) for larger ε,
we check the similarity of adversarial examples generated by parameter
θ + av and θ − av.
v can be a random unit vector or the top eigenvector of the Hessian matrix.

v ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4
Cosine Test(%) Cosine Test(%) Cosine Test(%) Cosine Test(%)

E
ig

en
ve

ct
or a = 0.00 0.861 3.34 0.837 6.72 0.918 6.94 0.928 8.74

a = 0.01 0.847 3.36 0.823 6.83 0.241 7.48 0.188 15.9
a = 0.03 0.812 3.42 0.789 7.07 0.236 9.19 0.282 31.4
a = 0.05 0.779 3.53 0.757 7.66 0.274 11.2 0.375 44.6
a = 0.10 0.705 4.20 0.683 10.4 0.367 19.1 0.455 99.3

R
a

n
d

o
m

a = 0.00 0.861 3.34 0.837 6.72 0.918 6.94 0.928 8.74
a = 0.01 0.860 3.34 0.837 6.71 0.913 6.99 0.906 8.80
a = 0.03 0.861 3.34 0.837 6.72 0.888 6.99 0.818 8.65
a = 0.05 0.860 3.35 0.837 6.69 0.863 6.94 0.745 8.49
a = 0.10 0.860 3.35 0.837 6.67 0.780 6.82 0.653 8.90

Table: The average cosine similarity of perturbations in the training set and its corresponding
test error between LeNet models with parameter θ + av and θ − av on MNIST.
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Periodic Adversarial Scheduling
Formulation

Instead of using constant ε, we introduce warmup in ε.

We use periodic scheduling in both learning rate and adversarial budget size.

Let the increasing list {T0,T1, ...,TM} be the epoch indices when the learning
rate and adversarial budget is reset. If the current epoch index d satisfy
Ti−1 ≤ d < Ti and p = d−Ti−1

Ti−Ti−1
, we introduce two different functions to schedule

the value of ε.

εcos(d) =
1

2
(1− cos pπ)(εmax − εmin) + εmin ,

εlin(d) = (εmax − εmin)p + εmin .
(13)
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Periodic Adversarial Scheduling
Formulation
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Figure: Adversarial budget scheduling for MNIST and CIFAR10 models.
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Periodic Adversarial Scheduling
Formulation
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Figure: Learning rate scheduling for VGG-8 and ResNet18-8 for CIFAR10 classification.
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Periodic Adversarial Scheduling
Advantages

Insensitive to learning rate choice.

Learning Rate Const Cosine Linear
Adam, 1× 10−4 8.58± 0.89 6.64± 0.70 6.69± 0.59
Adam, 3× 10−4 88.65± 0.00 7.44± 0.52 7.48± 0.11
Adam, 1× 10−3 88.65± 0.00 9.62± 0.83 7.48± 0.15

Table: Mean robust error and standard derivation of LeNet models with different adversarial
budget scheduling schemes and learning rates when ε = 0.4.
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Periodic Adversarial Scheduling
Advantages

Improved final results.

Task
Periodic
Learning

Rate

ε
Scheduler

Clean Error
(%)

Robust Error (%)
PGD
(%)

PGD100
(%)

APGD100
CE (%)

APGD100
DLR (%)

MNIST
LeNet
ε = 0.4

No
Constant 1.56(17) 8.58(89) 10.86(143) 15.18(155) 14.70(136)

Cosine 1.08(2) 6.64(70) 8.46(82) 14.36(134) 13.46(129)
Linear 1.06(6) 6.69(59) 8.79(116) 13.91(150) 13.17(120)

CIFAR10
VGG

ε = 8/255

No
Constant 28.25(47) 56.22(43) 56.19(32) 58.18(46) 58.65(69)

Cosine 25.06(19) 56.06(48) 56.00(42) 57.83(45) 58.88(16)
Linear 23.56(95) 56.09(14) 55.88(5) 57.74(16) 58.39(18)

Yes
Constant 28.33(81) 54.24(28) 54.16(26) 55.45(26) 56.56(4)

Cosine 23.91(21) 53.18(21) 53.10(18) 54.44(16) 55.80(24)
Linear 21.88(33) 53.03(14) 52.97(17) 54.32(17) 55.63(17)

CIFAR10
ResNet18
ε = 8/255

No
Constant 18.62(6) 55.00(8) 54.97(9) 57.26(13) 56.60(25)

Cosine 18.43(26) 53.95(23) 53.85(21) 56.16(18) 55.77(24)
Linear 18.55(14) 53.46(20) 53.41(10) 55.69(17) 55.45(22)

Yes
Constant 21.00(5) 48.98(25) 48.87(25) 50.29(27) 50.98(6)

Cosine 19.90(18) 48.57(25) 48.49(27) 49.71(22) 50.54(9)
Linear 20.26(28) 48.60(13) 48.52(13) 49.73(9) 50.68(11)

Table: Comparison between different adversarial budget schedulers under different adversarial
attacks. Cosine / Linear schedulers are consistently better than constant schedulers. The
number between brackets indicate the standard deviation across different runs. Specifically, for
example, 1.56(17) stands for 1.56± 0.17.
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Conclusion

Some take away messages

With the increase of the adversarial budget ε, the loss landscape becomes
unfavorable to optimization.

Non-smoothness.
Less-connected minima.
Harder to escape initial suboptimal regions.

Periodic scheduling and model ensembling can help ease the training
difficulty and improve robustness.
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Discussion

Ease the overfitting problem in adversarial training.

Entropy-SGD 4, Add fisher noise 5 e.t.c.

Design new activation functions.

ReLU is the key ingredients of the ’dead layer’ phenomenon.

4
”Entropy-SGD: Biasing Gradient Descent Into Wide Valleys”. ICLR 2017.

5
”An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise”. 2020.
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Thank You!
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